Abstract
The pathogenesis of sporadic Parkinsons disease (PD) remains enigmatic. Mitochondrial complex-I defects are known to occur in the substantia nigra (SN) of PD patients and are also debated in some extracerebral tissues. Early sequencing efforts of the mitochondrial DNA (mtDNA) did not reveal specific mutations, but a long lasting discussion was devoted to the issue of randomly distributed low level point mutations, caused by oxidative stress. However, a potential functional impact remained a matter of speculation, since heteroplasmy (mutational load) at any base position analyzed, remained far below the relevant functional threshold. A clearly age-dependent increase of the ‘common mtDNA deletion’ had been demonstrated in most brain regions by several authors since 1992. However, heteroplasmy did hardly exceed 1% of total mtDNA. It became necessary to exploit PCR techniques, which were able to detect any deletion in a few microdissected dopaminergic neurons of the SN. In 2006, two groups published biochemically relevant loads of somatic mtDNA deletions in these neurons. They seem to accumulate to relevant levels in the SN dopaminergic neurons of aged individuals in general, but faster in those developing PD. It is reasonable to assume that this accumulation causes mitochondrial dysfunction of the SN, although it cannot be taken as a final proof for an early pathogenetic role of this dysfunction. Recent studies demonstrate a distribution of deletion breakpoints, which does not differ between PD, aging and classical mitochondrial disorders, suggesting a common, but yet unknown mechanism.
Current Genomics
Title: Do mtDNA Mutations Participate in the Pathogenesis of Sporadic Parkinsons Disease?
Volume: 10 Issue: 8
Author(s): E. Kirches
Affiliation:
Abstract: The pathogenesis of sporadic Parkinsons disease (PD) remains enigmatic. Mitochondrial complex-I defects are known to occur in the substantia nigra (SN) of PD patients and are also debated in some extracerebral tissues. Early sequencing efforts of the mitochondrial DNA (mtDNA) did not reveal specific mutations, but a long lasting discussion was devoted to the issue of randomly distributed low level point mutations, caused by oxidative stress. However, a potential functional impact remained a matter of speculation, since heteroplasmy (mutational load) at any base position analyzed, remained far below the relevant functional threshold. A clearly age-dependent increase of the ‘common mtDNA deletion’ had been demonstrated in most brain regions by several authors since 1992. However, heteroplasmy did hardly exceed 1% of total mtDNA. It became necessary to exploit PCR techniques, which were able to detect any deletion in a few microdissected dopaminergic neurons of the SN. In 2006, two groups published biochemically relevant loads of somatic mtDNA deletions in these neurons. They seem to accumulate to relevant levels in the SN dopaminergic neurons of aged individuals in general, but faster in those developing PD. It is reasonable to assume that this accumulation causes mitochondrial dysfunction of the SN, although it cannot be taken as a final proof for an early pathogenetic role of this dysfunction. Recent studies demonstrate a distribution of deletion breakpoints, which does not differ between PD, aging and classical mitochondrial disorders, suggesting a common, but yet unknown mechanism.
Export Options
About this article
Cite this article as:
Kirches E., Do mtDNA Mutations Participate in the Pathogenesis of Sporadic Parkinsons Disease?, Current Genomics 2009; 10 (8) . https://dx.doi.org/10.2174/138920209789503879
DOI https://dx.doi.org/10.2174/138920209789503879 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Nanoparticles vs Cancer: A Multifuncional Tool
Current Topics in Medicinal Chemistry Pharmacological Roles of the Large-Conductance Calcium-Activated Potassium Channel
Current Topics in Medicinal Chemistry Genetic and Pharmacogenetic Aspects of Alcohol-Dependence
Current Pharmacogenomics Sigma Receptors in Oncology: Therapeutic and Diagnostic Applications of Sigma Ligands
Current Pharmaceutical Design Metal Complexes, their Cellular Targets and Potential for Cancer Therapy
Current Pharmaceutical Design CNS Drug Development – Lost in Translation?
Mini-Reviews in Medicinal Chemistry Applications of 211At and 223Ra in Targeted Alpha-Particle Radiotherapy
Current Radiopharmaceuticals Neuroblastoma and Stem Cell Therapy: An Updated Review
CNS & Neurological Disorders - Drug Targets Glycogen Synthase Kinase-3 (GSK-3) Inhibitors for the Treatment of Alzheimers Disease
Current Pharmaceutical Design Dangerous Liaisons between Beta-Amyloid and Cholinergic Neurotransmission
Current Pharmaceutical Design Some Implications of Receptor Kinase Signaling Pathway for Development of Multitargeted Kinase Inhibitors
Current Radiopharmaceuticals Opioid Withdrawal Syndrome: Emerging Concepts and Novel Therapeutic Targets
CNS & Neurological Disorders - Drug Targets P2Y Receptors: Focus on Structural, Pharmacological and Functional Aspects in the Brain
Current Medicinal Chemistry Procarbazine – A Traditional Drug in the Treatment of Malignant Gliomas
Current Medicinal Chemistry Silencing of Disease-related Genes by Small Interfering RNAs
Current Molecular Medicine ADAM Proteins- Therapeutic Potential in Cancer
Current Cancer Drug Targets Anti-Tumorigenic Effects of Resveratrol in Lung Cancer Cells Through Modulation of c-FLIP
Current Cancer Drug Targets Preventive and Protective Roles of Dietary Nrf2 Activators Against Central Nervous System Diseases
CNS & Neurological Disorders - Drug Targets Targeting the Atypical Chemokine Receptor ACKR3/CXCR7: Phase 1 - Phage Display Peptide Identification and Characterization
Current Topics in Medicinal Chemistry Methamphetamine and HIV Infection, Role in Neurocognitive Dysfunction
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry