Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

High-Content Profiling of Cell Responsiveness to Graded Substrates Based on Combinatorially Variant Polymers

Author(s): Er Liu, Matthew D. Treiser, Hiral Patel, Hak-Joon Sung, Kristen E. Roskov, Joachim Kohn, Matthew L. Becker and Prabhas V. Moghe

Volume 12, Issue 7, 2009

Page: [646 - 655] Pages: 10

DOI: 10.2174/138620709788923737

Price: $65

Abstract

We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the “global” and “high content” structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest “gradient” of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy