Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry Test_Journal

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 123-456

Research Article

Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives

Author(s): Parul Gupta, Anjali Sharma* and Vishnu Mittal

Volume 1, Issue 2, 2025

Published on: 04 December, 2024

Page: [961 - 980] Pages: 20

DOI: 10.2174/0118715206299272240409043736

Price: $50

Abstract

As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions

[1]
Tatum EL. Molecular biology, nucleic acids, and the future of medicine. Perspect Biol Med 1966; 10(1): 19-32.
[http://dx.doi.org/10.1353/pbm.1966.0027] [PMID: 6002665]
[2]
Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity 2010; 105(1): 4-13.
[http://dx.doi.org/10.1038/hdy.2010.54] [PMID: 20461105]
[3]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[4]
Orkin SH, Reilly P. Paying for future success in gene therapy. Science 2016; 352(6289): 1059-61.
[http://dx.doi.org/10.1126/science.aaf4770] [PMID: 27230368]
[5]
Zhao Y, Huang L. Lipid nanoparticles for gene delivery. Adv Genet 2014; 88: 13-36.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00002-X] [PMID: 25409602]
[6]
Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications. Hum Gene Ther 2013; 24(11): 914-27.
[http://dx.doi.org/10.1089/hum.2013.2517] [PMID: 24164239]
[7]
Auroux PA, Koc Y, deMello A, Manz A, Day PJR. Miniaturised nucleic acid analysis. Lab Chip 2004; 4(6): 534-46.
[http://dx.doi.org/10.1039/b408850f] [PMID: 15570362]
[8]
Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol 2000; 18(1): 33-7.
[http://dx.doi.org/10.1038/71889] [PMID: 10625387]
[9]
Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 2004; 10(4): 652-9.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.006] [PMID: 15451449]
[10]
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4(7): 581-93.
[http://dx.doi.org/10.1038/nrd1775] [PMID: 16052241]
[11]
Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 1999; 96(9): 5177-81.
[http://dx.doi.org/10.1073/pnas.96.9.5177] [PMID: 10220439]
[12]
Kopeček J, Yang J. Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 2012; 51(30): 7396-417.
[http://dx.doi.org/10.1002/anie.201201040] [PMID: 22806947]
[13]
Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995; 92(16): 7297-301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[14]
Wang Y, Gao S, Ye WH, Yoon HS, Yang YY. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 2006; 5(10): 791-6.
[http://dx.doi.org/10.1038/nmat1737] [PMID: 16998471]
[15]
Osborne SE, Ellington AD. Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 1997; 97(2): 349-70.
[http://dx.doi.org/10.1021/cr960009c] [PMID: 11848874]
[16]
Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021; 16(6): 630-43.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[17]
Wang X, Niu D, Hu C, Li P. Polyethyleneimine-based nanocarriers for gene delivery. Curr Pharm Des 2015; 21(42): 6140-56.
[http://dx.doi.org/10.2174/1381612821666151027152907] [PMID: 26503146]
[18]
Niculescu AG, Grumezescu AM. Polymer-based nanosystems—A versatile delivery approach. Materials 2021; 14(22): 6812.
[http://dx.doi.org/10.3390/ma14226812] [PMID: 34832213]
[19]
Zhang D, Song Q, Wang W, et al. Unleashing a dual‐warhead nanomedicine to precisely sensitize immunotherapy for pancreatic ductal adenocarcinoma. Adv Funct Mater 2024; 2315447.
[http://dx.doi.org/10.1002/adfm.202315447]
[20]
Yıldırım M, Acet Ö, Yetkin D, Acet BÖ, Karakoc V, Odabası M. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer. J Drug Deliv Sci Technol 2022; 74: 103552.
[http://dx.doi.org/10.1016/j.jddst.2022.103552]
[21]
Acet Ö. Design of enhanced smart delivery systems for therapeutic enzymes: Kinetic and release performance of dual effected enzyme-loaded nanopolymers. Catal Lett 2023; 153(10): 3174-84.
[http://dx.doi.org/10.1007/s10562-023-04418-8]
[22]
Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 2009; 48(23): 4174-9.
[http://dx.doi.org/10.1002/anie.200805998] [PMID: 19408274]
[23]
Li S, Tseng W-C, Stolz DB, Wu S-P, Watkins SC, Huang L. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: Implications for intravenous lipofection. Gene Ther 1999; 6(4): 585-94.
[http://dx.doi.org/10.1038/sj.gt.3300865] [PMID: 10476218]
[24]
Lara AR, Ramírez OT, Wunderlich M. Plasmid DNA production for therapeutic applications. Methods Mol Biol 2012; 824: 271-303.
[http://dx.doi.org/10.1007/978-1-61779-433-9_14] [PMID: 22160904]
[25]
Gill DR, Pringle IA, Hyde SC. Progress and prospects: The design and production of plasmid vectors. Gene Ther 2009; 16(2): 165-71.
[http://dx.doi.org/10.1038/gt.2008.183] [PMID: 19129858]
[26]
Kobelt D, Schleef M, Schmeer M, Aumann J, Schlag PM, Walther W. Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 2013; 53(1): 80-9.
[http://dx.doi.org/10.1007/s12033-012-9535-6] [PMID: 22467123]
[27]
Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes 2017; 8(2): 65-87.
[http://dx.doi.org/10.3390/genes8020065] [PMID: 28208635]
[28]
Tang X, Zhang S, Fu R, et al. Therapeutic prospects of mRNA-based gene therapy for glioblastoma. Front Oncol 2019; 9: 1208.
[http://dx.doi.org/10.3389/fonc.2019.01208] [PMID: 31781503]
[29]
Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. mRNA as gene therapeutic: How to control protein expression. J Control Release 2011; 150(3): 238-47.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.020] [PMID: 20970469]
[30]
Borch TH, Svane IM. Synthetic mRNA. In: Rhoads RE, Ed. Methods in Molecular Biology. New York, NY: Springer New York 2016; Vol. 1428.
[31]
Youn H, Chung JK. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther 2015; 15(9): 1337-48.
[http://dx.doi.org/10.1517/14712598.2015.1057563] [PMID: 26125492]
[32]
Freund I, Eigenbrod T, Helm M, Dalpke AH. RNA modifications modulate activation of innate toll-like receptors. Genes 2019; 10(2): 92-110.
[http://dx.doi.org/10.3390/genes10020092] [PMID: 30699960]
[33]
Parr CJC, Wada S, Kotake K, et al. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res 2020; 48(6): e35-44.
[http://dx.doi.org/10.1093/nar/gkaa070] [PMID: 32090264]
[34]
Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 2015; 217: 337-44.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.051] [PMID: 26342664]
[35]
Sioud M, Furset G, Cekaite L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem Biophys Res Commun 2007; 361(1): 122-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.177] [PMID: 17658482]
[36]
Meng Z, O’Keeffe-Ahern J, Lyu J, Pierucci L, Zhou D, Wang W. A new developing class of gene delivery: Messenger RNA-based therapeutics. Biomater Sci 2017; 5(12): 2381-92.
[http://dx.doi.org/10.1039/C7BM00712D] [PMID: 29063914]
[37]
Emam SE, Elsadek NE, Abu Lila AS, et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J Control Release 2021; 334: 327-34.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.001] [PMID: 33957196]
[38]
Nagareddy R, Thomas RG, Jeong YY. Stimuli-responsive polymeric nanomaterials for the delivery of immunotherapy moieties: Antigens, adjuvants and agonists. Int J Mol Sci 2021; 22(22): 12510.
[http://dx.doi.org/10.3390/ijms222212510] [PMID: 34830392]
[39]
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm 2023; 4(1): e187.
[http://dx.doi.org/10.1002/mco2.187] [PMID: 36654533]
[40]
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-based mRNA delivery strategies for advanced therapies. Adv Healthc Mater 2023; 12(15): 2202688.
[http://dx.doi.org/10.1002/adhm.202202688] [PMID: 36785927]
[41]
Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm 2022; 19(6): 1669-86.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00916] [PMID: 35594500]
[42]
Zhang P, Wagner E. History of polymeric gene delivery systems. Polymeric Gene Delivery Systems 2018; pp. 1-39.
[43]
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med 2017; 9(1): 60-76.
[http://dx.doi.org/10.1186/s13073-017-0450-0] [PMID: 28655327]
[44]
Yildirim M, Acet Ö. Immunomodulatory activities of pH/temperature sensitive smart naringenin-loaded nanopolymers on the mammalian macrophages. Appl Surf Sci Adv 2023; 18: 100527.
[http://dx.doi.org/10.1016/j.apsadv.2023.100527]
[45]
Acet Ö, Dikici E, Acet BÖ, Odabaşı M, Mijakovic I, Pandit S. Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes. Colloids Surf B Biointerfaces 2023; 221: 113024.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113024] [PMID: 36403418]
[46]
Acet Ö, Ali Noma SA, Acet BÖ, Dikici E, Osman B, Odabaşı M. A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes. J Pharm Biomed Anal 2023; 226: 115250.
[http://dx.doi.org/10.1016/j.jpba.2023.115250] [PMID: 36657352]
[47]
Li W, Gai M, Rutkowski S, et al. An automated device for layer-by-layer coating of dispersed superparamagnetic nanoparticle templates. Colloid J 2018; 80(6): 648-59.
[http://dx.doi.org/10.1134/S1061933X18060078]
[48]
Antipina MN, Kiryukhin MV, Skirtach AG, Sukhorukov GB. Micropackaging via layer-by-layer assembly: Microcapsules and microchamber arrays. Int Mater Rev 2014; 59(4): 224-44.
[http://dx.doi.org/10.1179/1743280414Y.0000000030]
[49]
Rinaldi C, Wood MJA. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat Rev Neurol 2018; 14(1): 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148] [PMID: 29192260]
[50]
Kole R, Krainer AR, Altman S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11(2): 125-40.
[http://dx.doi.org/10.1038/nrd3625] [PMID: 22262036]
[51]
Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019; 18(6): 421-46.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[52]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[53]
Tipanee J, Chai YC, VandenDriessche T, Chuah MK. Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017; 37(6): BSR20160614.
[http://dx.doi.org/10.1042/BSR20160614] [PMID: 29089466]
[54]
Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21(12): 1468-78.
[http://dx.doi.org/10.1038/s41556-019-0425-z] [PMID: 31792376]
[55]
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38(7): 824-44.
[http://dx.doi.org/10.1038/s41587-020-0561-9] [PMID: 32572269]
[56]
Lächelt U, Wagner E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem Rev 2015; 115(19): 11043-78.
[http://dx.doi.org/10.1021/cr5006793] [PMID: 25872804]
[57]
Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther 2017; 17(1): 105-18.
[http://dx.doi.org/10.1080/14712598.2017.1248941] [PMID: 27740858]
[58]
Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 2011; 100(1): 38-52.
[http://dx.doi.org/10.1002/jps.22243] [PMID: 20575003]
[59]
Ni R, Feng R, Chau Y. Synthetic approaches for nucleic acid delivery: Choosing the right carriers. Life 2019; 9(3): 59.
[http://dx.doi.org/10.3390/life9030059] [PMID: 31324016]
[60]
Miller N, Vile R. Targeted vectors for gene therapy. FASEB J 1995; 9(2): 190-9.
[http://dx.doi.org/10.1096/fasebj.9.2.7781922] [PMID: 7781922]
[61]
Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 1999; 6(2): 113-38.
[http://dx.doi.org/10.1038/sj.cgt.7700024] [PMID: 10195879]
[62]
Vaheri A, Pagano JS. Infectious poliovirus RNA: A sensitive method of assay. Virology 1965; 27(3): 434-6.
[http://dx.doi.org/10.1016/0042-6822(65)90126-1] [PMID: 4285107]
[63]
Wang ZV, Deng Y, Wang QA, Sun K, Scherer PE. Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 2010; 151(6): 2933-9.
[http://dx.doi.org/10.1210/en.2010-0136] [PMID: 20363877]
[64]
Papadakis E, Nicklin S, Baker A, White S. Promoters and control elements: Designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4(1): 89-113.
[http://dx.doi.org/10.2174/1566523044578077] [PMID: 15032617]
[65]
Šimčíková M, Prather KLJ, Prazeres DMF, Monteiro GA. Towards effective non-viral gene delivery vector. Biotechnol Genet Eng Rev 2015; 31(1-2): 82-107.
[http://dx.doi.org/10.1080/02648725.2016.1178011] [PMID: 27160661]
[66]
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, et al. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front Bioeng Biotechnol 2021; 9: 701031.
[http://dx.doi.org/10.3389/fbioe.2021.701031] [PMID: 34354988]
[67]
McCutchan JH, Pagano JS. Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst 1968; 41(2): 351-7.
[PMID: 4299537]
[68]
Gulick T. Transfection using DEAE-Dextran Current Protocols in Cell Biology 2003; 19(20.4): 1-10.
[http://dx.doi.org/10.1002/0471143030.cb2004s19]
[69]
Laemmli UK. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci USA 1975; 72(11): 4288-92.
[http://dx.doi.org/10.1073/pnas.72.11.4288] [PMID: 1060108]
[70]
Chattoraj DK, Gosule LC, Schellman JA. DNA condensation with polyamines. J Mol Biol 1978; 121(3): 327-37.
[http://dx.doi.org/10.1016/0022-2836(78)90367-4] [PMID: 671541]
[71]
Hauck ES, Hecker JG. Non-viral delivery of RNA gene therapy to the central nervous system. Pharmaceutics 2022; 14(1): 165.
[http://dx.doi.org/10.3390/pharmaceutics14010165] [PMID: 35057059]
[72]
Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 1987; 262(10): 4429-32.
[http://dx.doi.org/10.1016/S0021-9258(18)61209-8] [PMID: 3558345]
[73]
Chowdhury NR, Wu CH, Wu GY, Yerneni PC, Bommineni VR, Chowdhury JR. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. Prolonged persistence in cytoplasmic vesicles after partial hepatectomy. J Biol Chem 1993; 268(15): 11265-71.
[http://dx.doi.org/10.1016/S0021-9258(18)82119-6] [PMID: 8496181]
[74]
Kumar R, Santa Chalarca CF, Bockman MR, et al. Polymeric delivery of therapeutic nucleic acids. Chem Rev 2021; 121(18): 11527-652.
[http://dx.doi.org/10.1021/acs.chemrev.0c00997] [PMID: 33939409]
[75]
Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol 2018; 18(2): 126-31.
[http://dx.doi.org/10.1136/practneurol-2017-001764] [PMID: 29455156]
[76]
Batista-Duharte A, Sendra L, Herrero M, Téllez-Martínez D, Carlos I, Aliño S. Progress in the use of antisense oligonucleotides for vaccine improvement. Biomolecules 2020; 10(2): 316.
[http://dx.doi.org/10.3390/biom10020316] [PMID: 32079263]
[77]
Kim SW. Polylysine copolymers for gene delivery. Cold Spring Harb Protoc 2012; 2012(4): pdb.ip068619.
[http://dx.doi.org/10.1101/pdb.ip068619] [PMID: 22474666]
[78]
Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003; 278(45): 44826-31.
[http://dx.doi.org/10.1074/jbc.M308643200] [PMID: 12944394]
[79]
Mata-Ventosa A. RNase H-sensitive multifunctional ASO-based nanostructures as promising tools for the treatment of multifactorial complex pathologies. ChemRxiv 2023.
[http://dx.doi.org/10.26434/chemrxiv-2023-r7whl]
[80]
Sergeeva OV. Modulation of RNA splicing by oligonucleotides: Mechanisms of action and therapeutic implications. Nucleic Acid Ther 2022; 32(3): 123-38.
[81]
Haensler J, Szoka FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4(5): 372-9.
[http://dx.doi.org/10.1021/bc00023a012] [PMID: 8274523]
[82]
Araújo RV, Santos SS, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[83]
Schirle NT, Sheu-Gruttadauria J, MacRae IJ. Structural basis for microRNA targeting. Science 2014; 346(6209): 608-13.
[http://dx.doi.org/10.1126/science.1258040] [PMID: 25359968]
[84]
Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers. J Control Release 2000; 65(1-2): 133-48.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1] [PMID: 10699277]
[85]
Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. J Biomed Mater Res 1996; 30(1): 53-65.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199601)30:1<53:AID-JBM8>3.0.CO;2-Q] [PMID: 8788106]
[86]
Shen Y, Zhou Z, Sui M, et al. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine 2010; 5(8): 1205-17.
[http://dx.doi.org/10.2217/nnm.10.86] [PMID: 21039198]
[87]
Jablonka E, Lamb MJ. Evolution in four dimensions. In: Revised edition: Genetic, epigenetic, behavioral, and symbolic variation in the history of life . MIT press. 2014.
[http://dx.doi.org/10.7551/mitpress/9689.001.0001]
[88]
Baughn MW. Therapeutic Restoration of Stathmin-2 RNA Processing in TDP-43 Proteinopathies. San Diego: University of California 2021.
[89]
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm 2000; 197(1-2): 239-41.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[90]
Wagner E, Kloeckner J. Gene delivery using polymer therapeutics. Adv Polym Sci 2006; 192: 135-73.
[http://dx.doi.org/10.1007/12_023]
[91]
Sharma A, Porterfield JE, Smith E, Sharma R, Kannan S, Kannan RM. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J Control Release 2018; 283: 175-89.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.003] [PMID: 29883694]
[92]
Sayed N, Allawadhi P, Khurana A, et al. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294: 120375.
[http://dx.doi.org/10.1016/j.lfs.2022.120375] [PMID: 35123997]
[93]
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic mechanisms in DNA double strand break repair: A clinical review. Front Mol Biosci 2021; 8: 685440.
[http://dx.doi.org/10.3389/fmolb.2021.685440] [PMID: 34307454]
[94]
Yamamoto Y, Gerbi SA. Making ends meet: Targeted integration of DNA fragments by genome editing. Chromosoma 2018; 127(4): 405-20.
[http://dx.doi.org/10.1007/s00412-018-0677-6] [PMID: 30003320]
[95]
Yang H, Ren S, Yu S, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci 2020; 21(18): 6461.
[http://dx.doi.org/10.3390/ijms21186461] [PMID: 32899704]
[96]
Ma Y, Sha M, Cheng S, Yao W, Li Z, Qi XR. Construction of hyaluronic tetrasaccharide clusters modified polyamidoamine siRNA delivery system. Nanomaterials 2018; 8(6): 433.
[http://dx.doi.org/10.3390/nano8060433] [PMID: 29899207]
[97]
Altwaijry N, Somani S, Parkinson JA, et al. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Deliv 2018; 25(1): 679-89.
[http://dx.doi.org/10.1080/10717544.2018.1440666] [PMID: 29493296]
[98]
Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin–PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999; 6(4): 595-605.
[http://dx.doi.org/10.1038/sj.gt.3300900] [PMID: 10476219]
[99]
Wightman L, Kircheis R, Rössler V, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001; 3(4): 362-72.
[http://dx.doi.org/10.1002/jgm.187] [PMID: 11529666]
[100]
Schlosser K, Taha M, Deng Y, Stewart DJ. Systemic delivery of microRNA mimics with polyethylenimine elevates pulmonary microRNA levels, but lacks pulmonary selectivity. Pulm Circ 2018; 8(1): 1-4.
[http://dx.doi.org/10.1177/2045893217750613] [PMID: 29251557]
[101]
Wagner E. Polymers for siRNA delivery: Inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 2012; 45(7): 1005-13.
[http://dx.doi.org/10.1021/ar2002232] [PMID: 22191535]
[102]
Cleland JL, Langer R. Formulation and delivery of proteins and peptides: Design and development strategies. ACS Publications 1994.
[http://dx.doi.org/10.1021/bk-1994-0567]
[103]
Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005; 7(5): 657-63.
[http://dx.doi.org/10.1002/jgm.696] [PMID: 15543529]
[104]
Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible proton sponge effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 2013; 21(1): 149-57.
[http://dx.doi.org/10.1038/mt.2012.185] [PMID: 23032976]
[105]
Reschke M, Piotrowski-Daspit AS, Pober JS, Saltzman WM. Nucleic acid delivery to the vascular endothelium. Mol Pharm 2022; 19(12): 4466-86.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00653] [PMID: 36251765]
[106]
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev 2020; 156: 119-32.
[http://dx.doi.org/10.1016/j.addr.2020.06.014] [PMID: 32585159]
[107]
Doyle SR, Chan C. Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells. Genet Vaccines Ther 2007; 5(1): 11.
[http://dx.doi.org/10.1186/1479-0556-5-11] [PMID: 18036259]
[108]
Godbey WT, Wu KK, Hirasaki GJ, Mikos AG. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 1999; 6(8): 1380-8.
[http://dx.doi.org/10.1038/sj.gt.3300976] [PMID: 10467362]
[109]
Garnett MC. Gene-delivery systems using cationic polymers. Crit Rev Ther Drug Carrier Syst 1999; 16(2): 10.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i2.10]
[110]
Lee SH, Choi SH, Kim SH, Park TG. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. J Control Release 2008; 125(1): 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.011] [PMID: 17976853]
[111]
Zauner W, Ogris M, Wagner E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev 1998; 30(1-3): 97-113.
[http://dx.doi.org/10.1016/S0169-409X(97)00110-5] [PMID: 10837605]
[112]
Choi SH, Lee SH, Park TG. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 2006; 7(6): 1864-70.
[http://dx.doi.org/10.1021/bm060182a] [PMID: 16768408]
[113]
Peng L, Wagner E. Polymeric carriers for nucleic acid delivery: Current designs and future directions. Biomacromolecules 2019; 20(10): 3613-26.
[http://dx.doi.org/10.1021/acs.biomac.9b00999] [PMID: 31497946]
[114]
He J, Xu S, Mixson AJ. The multifaceted histidine-based carriers for nucleic acid delivery: Advances and challenges. Pharmaceutics 2020; 12(8): 774.
[http://dx.doi.org/10.3390/pharmaceutics12080774] [PMID: 32823960]
[115]
Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther 2005; 11(6): 990-5.
[http://dx.doi.org/10.1016/j.ymthe.2005.02.010] [PMID: 15922971]
[116]
Grandinetti G, Ingle NP, Reineke TM. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: Implications for a mechanism of cytotoxicity. Mol Pharm 2011; 8(5): 1709-19.
[http://dx.doi.org/10.1021/mp200078n] [PMID: 21699201]
[117]
Bader RA. Engineering Polymer Systems for Improved Drug Delivery. John Wiley & Sons, Inc 2014.
[118]
Halman JR, Kim KT, Gwak SJ, et al. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. Nanomedicine 2020; 23: 102094.
[http://dx.doi.org/10.1016/j.nano.2019.102094] [PMID: 31669854]
[119]
Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(5): e1452.
[http://dx.doi.org/10.1002/wnan.1452] [PMID: 28160452]
[120]
Vermeulen LMP, Brans T, Samal SK, et al. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano 2018; 12(3): 2332-45.
[http://dx.doi.org/10.1021/acsnano.7b07583] [PMID: 29505236]
[121]
Gwak SJ, Lee JS. Suicide gene therapy by amphiphilic copolymer nanocarrier for spinal cord tumor. Nanomaterials 2019; 9(4): 573.
[http://dx.doi.org/10.3390/nano9040573] [PMID: 30965667]
[122]
Bus T, Traeger A, Schubert US. The great escape: How cationic polyplexes overcome the endosomal barrier. J Mater Chem B Mater Biol Med 2018; 6(43): 6904-18.
[http://dx.doi.org/10.1039/C8TB00967H] [PMID: 32254575]
[123]
Ajdary M, Moosavi MA, Rahmati M, et al. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 2018; 8(9): 634.
[http://dx.doi.org/10.3390/nano8090634] [PMID: 30134524]
[124]
Park JS, Yang HN, Yi SW, Kim JH, Park KH. Neoangiogenesis of human mesenchymal stem cells transfected with peptide-loaded and gene-coated PLGA nanoparticles. Biomaterials 2016; 76: 226-37.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.062] [PMID: 26546915]
[125]
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16(11): 1149-67.
[http://dx.doi.org/10.1080/17425247.2019.1663822] [PMID: 31498013]
[126]
Mejlsøe SL, Christensen JB. Dendrimers in drug delivery. In: Advanced and Modern Approaches for Drug Delivery. Elsevier 2023; pp. 357-87.
[http://dx.doi.org/10.1016/B978-0-323-91668-4.00005-8]
[127]
Raup A, Stahlschmidt U, Jérôme V, Synatschke C, Müller A, Freitag R. Influence of polyplex formation on the performance of star-shaped polycationic transfection agents for mammalian cells. Polymers 2016; 8(6): 224.
[http://dx.doi.org/10.3390/polym8060224] [PMID: 30979314]
[128]
Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene delivery to human T cells. J Control Release 2018; 282: 140-7.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.043] [PMID: 29518467]
[129]
Jeon O, Yang HS, Lee TJ, Kim BS. Heparin-conjugated polyethylenimine for gene delivery. J Control Release 2008; 132(3): 236-42.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.017] [PMID: 18597881]
[130]
Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv Drug Deliv Rev 2003; 55(2): 199-215.
[http://dx.doi.org/10.1016/S0169-409X(02)00179-5] [PMID: 12564977]
[131]
Lee WS, Kim YK, Zhang Q, et al. Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomedicine 2014; 10(3): 525-34.
[http://dx.doi.org/10.1016/j.nano.2013.10.005] [PMID: 24184000]
[132]
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex evolution: Understanding biology, optimizing performance. Mol Ther 2017; 25(7): 1476-90.
[http://dx.doi.org/10.1016/j.ymthe.2017.01.024] [PMID: 28274797]
[133]
Schaffert D, Ogris M. Nucleic acid carrier systems based on polyethylenimine conjugates for the treatment of metastatic tumors. Curr Med Chem 2013; 20(28): 3456-70.
[http://dx.doi.org/10.2174/0929867311320280004] [PMID: 23745556]
[134]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[135]
Zhang Y, Ma W, Zhan Y, et al. Nucleic acids and analogs for bone regeneration. Bone Res 2018; 6(1): 37.
[http://dx.doi.org/10.1038/s41413-018-0042-7] [PMID: 30603226]
[136]
Grijalvo S, Alagia A, Jorge A, Eritja R. Covalent strategies for targeting messenger and non-coding RNAs: An updated review on siRNA, miRNA and antimiR conjugates. Genes 2018; 9(2): 74.
[http://dx.doi.org/10.3390/genes9020074] [PMID: 29415514]
[137]
Raftery RM, Walsh DP, Castaño IM, et al. Delivering nucleic‐acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: Challenges, progress and future perspectives. Adv Mater 2016; 28(27): 5447-69.
[http://dx.doi.org/10.1002/adma.201505088] [PMID: 26840618]
[138]
Bulmus V, Woodward M, Lin L, Murthy N, Stayton P, Hoffman A. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Control Release 2003; 93(2): 105-20.
[http://dx.doi.org/10.1016/j.jconrel.2003.06.001] [PMID: 14636717]
[139]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[140]
Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009; 30(12): 2180-98.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.026] [PMID: 19200596]
[141]
Adeyemi SA. A Novel Peptide-Enhanced Drug Delivery System for Squamous Cell Oesophageal Carcinoma. University of the Witwatersrand, Faculty of Health Sciences 2017.
[142]
Tsarevsky NV, Matyjaszewski K. Combining atom transfer radical polymerization and disulfide/thiol redox chemistry: A route to well-defined biodegradable polymeric materials. Macromolecules 2005; 38(8): 3087-92.
[http://dx.doi.org/10.1021/ma050020r]
[143]
Sunshine JC, Peng DY, Green JJ. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol Pharm 2012; 9(11): 3375-83.
[http://dx.doi.org/10.1021/mp3004176] [PMID: 22970908]
[144]
Scherer F, Schillinger U, Putz U, Stemberger A, Plank C. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med 2002; 4(6): 634-43.
[http://dx.doi.org/10.1002/jgm.298] [PMID: 12439855]
[145]
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon. Nano Rev Exp 2018; 9(1): 1488497.
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
[146]
Capito RM, Spector M. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 2007; 14(9): 721-32.
[http://dx.doi.org/10.1038/sj.gt.3302918] [PMID: 17315042]
[147]
Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP, O’Brien FJ. Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 2015; 4(2): 223-7.
[http://dx.doi.org/10.1002/adhm.201400397] [PMID: 25125073]
[148]
Mageed RA, Adams G, Woodrow D, Podhajcer OL, Chernajovsky Y. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther 1998; 5(12): 1584-92.
[http://dx.doi.org/10.1038/sj.gt.3300785] [PMID: 10023437]
[149]
Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules 2020; 25(17): 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[150]
Wang XT, Liu PY, Xin KQ, Tang JB. Tendon healing in vitro: BFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes. J Hand Surg Am 2005; 30(6): 1255-61.
[http://dx.doi.org/10.1016/j.jhsa.2005.06.001] [PMID: 16344185]
[151]
Yang Q, Liu S, Liu X, Liu Z, Xue W, Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater 2019; 96: 436-55.
[http://dx.doi.org/10.1016/j.actbio.2019.06.043] [PMID: 31254682]
[152]
Cohen-Sacks H, Elazar V, Gao J, et al. Delivery and expression of pDNA embedded in collagen matrices. J Control Release 2004; 95(2): 309-20.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.001] [PMID: 14980779]
[153]
Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS. Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability. Pharm Res 1998; 15(9): 1332-9.
[http://dx.doi.org/10.1023/A:1011981000671] [PMID: 9755882]
[154]
Zhao C, Nie S, Tang M, Sun S. Polymeric pH-sensitive membranes—A review. Prog Polym Sci 2011; 36(11): 1499-520.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.004]
[155]
Park IK, Kim TH, Park YH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release 2001; 76(3): 349-62.
[http://dx.doi.org/10.1016/S0168-3659(01)00448-5] [PMID: 11578748]
[156]
Fernández Fernández E, Santos-Carballal B, Weber WM, Goycoolea FM. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. Int J Pharm 2016; 502(1-2): 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.083] [PMID: 26875537]
[157]
Lallana E, Ríos de la Rosa JM, Tirella A, et al. Chitosan/hyaluronic acid nanoparticles: Rational design revisited for RNA delivery. Mol Pharm 2017; 14(7): 2422-36.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00320] [PMID: 28597662]
[158]
Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine 2016; 12(3): 643-53.
[http://dx.doi.org/10.1016/j.nano.2015.10.011] [PMID: 26582736]
[159]
Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv 2010; 7(10): 1209-26.
[http://dx.doi.org/10.1517/17425247.2010.513969] [PMID: 20836625]
[160]
Gaur S, Wen Y, Song JH, et al. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 2015; 6(30): 29161-77.
[http://dx.doi.org/10.18632/oncotarget.4971] [PMID: 26313360]
[161]
Cosco D, Cilurzo F, Maiuolo J, et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep 2015; 5(1): 17579.
[http://dx.doi.org/10.1038/srep17579] [PMID: 26620594]
[162]
Chen X, Gu S, Chen BF, et al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 2015; 53: 239-50.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.071] [PMID: 25890723]
[163]
Köping-Höggård M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001; 8(14): 1108-21.
[http://dx.doi.org/10.1038/sj.gt.3301492] [PMID: 11526458]
[164]
Kievit FM, Veiseh O, Bhattarai N, et al. PEI–PEG–chitosan‐copolymer-coated iron oxide nanoparticles for safe gene delivery: Synthesis, complexation, and transfection. Adv Funct Mater 2009; 19(14): 2244-51.
[http://dx.doi.org/10.1002/adfm.200801844] [PMID: 20160995]
[165]
Ping Y, Liu C, Zhang Z, Liu KL, Chen J, Li J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials 2011; 32(32): 8328-41.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.038] [PMID: 21840593]
[166]
Wong K, Sun G, Zhang X, et al. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 2006; 17(1): 152-8.
[http://dx.doi.org/10.1021/bc0501597] [PMID: 16417264]
[167]
Jiang HL, Kim YK, Arote R, et al. Chitosan-graft-polyethylenimine as a gene carrier. J Control Release 2007; 117(2): 273-80.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.025] [PMID: 17166614]
[168]
Raftery R, O’Brien F, Cryan SA. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 2013; 18(5): 5611-47.
[http://dx.doi.org/10.3390/molecules18055611] [PMID: 23676471]
[169]
Gao JQ, Zhao QQ, Lv TF, et al. Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. Int J Pharm 2010; 387(1-2): 286-94.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.033] [PMID: 20035848]
[170]
Mellet CO, Fernández JMG, Benito JM. Cyclodextrin-based gene delivery systems. Chem Soc Rev 2011; 40(3): 1586-608.
[http://dx.doi.org/10.1039/C0CS00019A] [PMID: 21042619]
[171]
Kumar V. Chitin and chitosan: The defense booster in agricultural field. In: Handbook of Biopolymers. Jenny Stanford Publishing 2018; pp. 93-134.
[http://dx.doi.org/10.1201/9780429024757-5]
[172]
Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: Synthesis, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev 2008; 60(9): 1000-17.
[http://dx.doi.org/10.1016/j.addr.2008.02.011] [PMID: 18413280]
[173]
Pun SH, Bellocq NC, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 2004; 15(4): 831-40.
[http://dx.doi.org/10.1021/bc049891g] [PMID: 15264871]
[174]
Haider A, Khan S, Iqbal DN, et al. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. Eur Polym J 2024; 210: 112983.
[http://dx.doi.org/10.1016/j.eurpolymj.2024.112983]
[175]
Bellocq NC, Pun SH, Jensen GS, Davis ME. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 2003; 14(6): 1122-32.
[http://dx.doi.org/10.1021/bc034125f] [PMID: 14624625]
[176]
Wada K, Arima H, Tsutsumi T, et al. Improvement of gene delivery mediated by mannosylated dendrimer/α-cyclodextrin conjugates. J Control Release 2005; 104(2): 397-413.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.016] [PMID: 15907588]
[177]
Lai WF. Cyclodextrins in non-viral gene delivery. Biomaterials 2014; 35(1): 401-11.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.061] [PMID: 24103652]
[178]
Li J, Yang C, Li H, et al. Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv Mater 2006; 18(22): 2969-74.
[http://dx.doi.org/10.1002/adma.200600812]
[179]
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005; 6(2): E329-57.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[180]
Quan F, Zhang A, Cheng F, Cui L, Liu J, Xia Y. Biodegradable polymeric architectures via reversible deactivation radical polymerizations. Polymers 2018; 10(7): 758.
[http://dx.doi.org/10.3390/polym10070758] [PMID: 30960683]
[181]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[182]
Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[183]
Hu QD, Tang GP, Chu PK. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: From design to applications. Acc Chem Res 2014; 47(7): 2017-25.
[http://dx.doi.org/10.1021/ar500055s] [PMID: 24873201]
[184]
Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv 2021; 28(1): 1397-418.
[http://dx.doi.org/10.1080/10717544.2021.1938756] [PMID: 34184949]
[185]
Feng R, Deng P, Teng F, Song Z. Recent development of copolymeric delivery system for anticancer agents based on cyclodextrin derivatives. Anticancer Agents Med Chem 2016; 16(3): 299-308.
[http://dx.doi.org/10.2174/1871520615666150909120234] [PMID: 26349814]
[186]
Park IK, von Recum HA, Jiang S, Pun SH. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir 2006; 22(20): 8478-84.
[http://dx.doi.org/10.1021/la061757s] [PMID: 16981766]
[187]
Lehto T, Ezzat K, Wood MJA. EL Andaloussi S. Peptides for nucleic acid delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 172-82.
[http://dx.doi.org/10.1016/j.addr.2016.06.008] [PMID: 27349594]
[188]
Cai X, Dou R, Guo C, et al. Cationic polymers as transfection reagents for nucleic acid delivery. Pharmaceutics 2023; 15(5): 1502.
[http://dx.doi.org/10.3390/pharmaceutics15051502] [PMID: 37242744]
[189]
Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004; 83(3): 97-111.
[http://dx.doi.org/10.1078/0171-9335-00363] [PMID: 15202568]
[190]
Dass C. Lipoplex-mediated delivery of nucleic acids: Factors affecting in vivo transfection. J Mol Med 2004; 82(9): 579-91.
[http://dx.doi.org/10.1007/s00109-004-0558-8] [PMID: 15221077]
[191]
Pun SH, Davis ME. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug Chem 2002; 13(3): 630-9.
[http://dx.doi.org/10.1021/bc0155768] [PMID: 12009955]
[192]
Luo D, Woodrow-Mumford K, Belcheva N, Saltzman WM. Controlled DNA delivery systems. Pharm Res 1999; 16(8): 1300-8.
[http://dx.doi.org/10.1023/A:1014870102295] [PMID: 10468035]
[193]
Cook AB. Highly branched and hyperbranched polymers: Synthesis, characterisation, and application in nucleic acid delivery. University of Warwick 2018.
[194]
Konwar B, Sagar K. Lipase: An industrial enzyme through metagenomics. Apple Academic Press 2018.
[http://dx.doi.org/10.1201/9781315159232]
[195]
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015; 6(1): 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[196]
Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Mark Saltzman W. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009; 8(6): 526-33.
[http://dx.doi.org/10.1038/nmat2444] [PMID: 19404239]
[197]
Zhang J, Cui J, Deng Y, Jiang Z, Saltzman WM. Multifunctional poly(amine- co -ester- co -orthoester) for efficient and safe gene delivery. ACS Biomater Sci Eng 2016; 2(11): 2080-9.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00502] [PMID: 28649641]
[198]
Devalliere J, Chang WG, Andrejecsk JW, et al. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 2014; 28(2): 908-22.
[http://dx.doi.org/10.1096/fj.13-238527] [PMID: 24221087]
[199]
Babar IA, Cheng CJ, Booth CJ, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012; 109(26): E1695-704.
[http://dx.doi.org/10.1073/pnas.1201516109] [PMID: 22685206]
[200]
Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies. Int J Pharm 2012; 427(1): 3-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.013] [PMID: 21798324]
[201]
Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 2011; 28(1): 1-45.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i1.10] [PMID: 21395514]
[202]
Chen JC. Evolution and computational generation of highly functionalized nucleic acid polymers. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences 2021.
[203]
Engelhart AE, Hud NV. Primitive genetic polymers. Cold Spring Harb Perspect Biol 2010; 2(12): a002196.
[http://dx.doi.org/10.1101/cshperspect.a002196] [PMID: 20462999]
[204]
Wilson CJ, Bommarius AS, Champion JA, et al. Biomolecular assemblies: Moving from observation to predictive design. Chem Rev 2018; 118(24): 11519-74.
[http://dx.doi.org/10.1021/acs.chemrev.8b00038] [PMID: 30281290]
[205]
Oude Blenke E, Mahakena S, Fens M, van den Dikkenberg J, Holkers M, Mastrobattista E. Impact of chemistry and nanoformulation parameters on cellular uptake and airway distribution of RNA oligonucleotides. J Control Release 2020; 317: 154-65.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.025] [PMID: 31765703]
[206]
Choi KY, Correa S, Min J, et al. Binary targeting of siRNA to hematologic cancer cells in vivo using layer-by-layer nanoparticles. Adv Funct Mater 2019; 29(20): 1900018.
[http://dx.doi.org/10.1002/adfm.201900018] [PMID: 31839764]
[207]
Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018; 8(1): 16776.
[http://dx.doi.org/10.1038/s41598-018-34960-0] [PMID: 30425265]
[208]
Lynn DM, Langer R. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 2000; 122(44): 10761-8.
[http://dx.doi.org/10.1021/ja0015388]
[209]
Lim Y, Kim C, Kim K, Kim SW, Park J. Development of a safe gene delivery system using biodegradable polymer, Poly[α-(4-aminobutyl)- l -glycolic acid]. J Am Chem Soc 2000; 122(27): 6524-5.
[http://dx.doi.org/10.1021/ja001033h]
[210]
Bishop CJ, Abubaker-Sharif B, Guiriba T, Tzeng SY, Green JJ. Gene delivery polymer structure–function relationships elucidated via principal component analysis. Chem Commun 2015; 51(60): 12134-7.
[http://dx.doi.org/10.1039/C5CC04417K] [PMID: 26126593]
[211]
Kaczmarek JC, Kauffman KJ, Fenton OS, et al. Optimization of a degradable polymer–lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett 2018; 18(10): 6449-54.
[http://dx.doi.org/10.1021/acs.nanolett.8b02917] [PMID: 30211557]
[212]
Choi J, Rui Y, Kim J, et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine 2020; 23: 102115.
[http://dx.doi.org/10.1016/j.nano.2019.102115] [PMID: 31655205]
[213]
Zamboni CG, Kozielski KL, Vaughan HJ, et al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 2017; 263: 18-28.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.384] [PMID: 28351668]
[214]
Sunshine JC, Sunshine SB, Bhutto I, Handa JT, Green JJ. Poly(β-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS One 2012; 7(5): e37543.
[http://dx.doi.org/10.1371/journal.pone.0037543] [PMID: 22629417]
[215]
Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 2010; 40(3): 159-70.
[http://dx.doi.org/10.1016/j.ejps.2010.03.019] [PMID: 20359532]
[216]
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114(1): 100-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.014] [PMID: 16831482]
[217]
Fields RJ, Cheng CJ, Quijano E, et al. Surface modified poly(β amino ester)-containing nanoparticles for plasmid DNA delivery. J Control Release 2012; 164(1): 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.020] [PMID: 23041278]
[218]
Zhou J, Liu J, Cheng CJ, et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater 2012; 11(1): 82-90.
[http://dx.doi.org/10.1038/nmat3187] [PMID: 22138789]
[219]
Sunshine J, Bhise N, Green JJ. Degradable polymers for gene delivery. Annu Int Conf IEEE Eng Med Biol Soc 2009; 2009: 2412-5.
[PMID: 19964958]
[220]
Kauffman AC, Piotrowski-Daspit AS, Nakazawa KH, Jiang Y, Datye A, Saltzman WM. Tunability of biodegradable poly(amine- co -ester) polymers for customized nucleic acid delivery and other biomedical applications. Biomacromolecules 2018; 19(9): 3861-73.
[http://dx.doi.org/10.1021/acs.biomac.8b00997] [PMID: 30110158]
[221]
Jiang Y, Gaudin A, Zhang J, et al. A top-down approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 2018; 176: 122-30.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.043] [PMID: 29879653]
[222]
Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J Mol Liq 2018; 251: 150-66.
[http://dx.doi.org/10.1016/j.molliq.2017.12.050]
[223]
Kazlauskas RJ, Bornscheuer UT. Biotransformations with lipases. Biotechnol Biotransformations I 1998; 8: 36-191.
[http://dx.doi.org/10.1002/9783527620906.ch3]
[224]
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. ScientificWorldJournal 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/625258] [PMID: 24672342]
[225]
Nahas HH, Mansour SA, Nouh FA, et al. Fungal laccases to where and where? Industrially important fungi for sustainable development. Bioprospect Biomol 2021; 2: 205-30.
[http://dx.doi.org/10.1007/978-3-030-85603-8_6]
[226]
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020; 24(1): 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[227]
Cui J, Piotrowski-Daspit AS, Zhang J, et al. Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver. J Control Release 2019; 304: 259-67.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.044] [PMID: 31054286]
[228]
Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: From functional genomics to therapeutics. Adv Genet 2005; 54: 115-42.
[http://dx.doi.org/10.1016/S0065-2660(05)54006-9] [PMID: 16096010]
[229]
Hammond SM, Aartsma-Rus A, Alves S, et al. Delivery of oligonucleotide-based therapeutics: Challenges and opportunities. EMBO Mol Med 2021; 13(4): e13243.
[http://dx.doi.org/10.15252/emmm.202013243] [PMID: 33821570]
[230]
Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: A review. Tissue Eng Part B Rev 2012; 18(1): 1-14.
[http://dx.doi.org/10.1089/ten.teb.2011.0081] [PMID: 21707439]
[231]
Pinheiro VB, Holliger P. The XNA world: Progress towards replication and evolution of synthetic genetic polymers. Curr Opin Chem Biol 2012; 16(3-4): 245-52.
[http://dx.doi.org/10.1016/j.cbpa.2012.05.198] [PMID: 22704981]
[232]
Hollenstein M. Nucleoside triphosphates-building blocks for the modification of nucleic acids. Molecules 2012; 17(11): 13569-91.
[http://dx.doi.org/10.3390/molecules171113569] [PMID: 23154273]
[233]
Rogers JM, Suga H. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org Biomol Chem 2015; 13(36): 9353-63.
[http://dx.doi.org/10.1039/C5OB01336D] [PMID: 26280393]
[234]
Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S. Bioapplications of RAFT polymerization. Chem Rev 2009; 109(11): 5402-36.
[http://dx.doi.org/10.1021/cr9001403] [PMID: 19764725]
[235]
McClellan AK, Hao T, Brooks TA, Smith AE. RAFT polymerization for the synthesis of tertiary amine-based diblock copolymer nucleic acid delivery vehicles. Macromol Biosci 2017; 17(12): 1700225.
[http://dx.doi.org/10.1002/mabi.201700225] [PMID: 29139616]
[236]
Chen Z, Lichtor PA, Berliner AP, Chen JC, Liu DR. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat Chem 2018; 10(4): 420-7.
[http://dx.doi.org/10.1038/s41557-018-0008-9] [PMID: 29507367]
[237]
Hartmann L, Krause E, Antonietti M, Börner HG. Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 2006; 7(4): 1239-44.
[http://dx.doi.org/10.1021/bm050884k] [PMID: 16602744]
[238]
Wang Y, Luo J, Truebenbach I, et al. Double click-functionalized sirna polyplexes for gene silencing in epidermal growth factor receptor-positive tumor cells. ACS Biomater Sci Eng 2020; 6(2): 1074-89.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01904] [PMID: 33464867]
[239]
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 2019; 19(2): 65-81.
[http://dx.doi.org/10.1038/s41568-018-0104-6] [PMID: 30647431]
[240]
Kuhn J, Lin Y, Krhac Levacic A, et al. Delivery of Cas9/sgRNA ribonucleoprotein complexes via hydroxystearyl oligoamino amides. Bioconjug Chem 2020; 31(3): 729-42.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00853] [PMID: 31967454]
[241]
He D, Müller K, Krhac Levacic A, Kos P, Lächelt U, Wagner E. Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery. Bioconjug Chem 2016; 27(3): 647-59.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00649] [PMID: 26726077]
[242]
Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 2019; 31(10): 1805730.
[http://dx.doi.org/10.1002/adma.201805730] [PMID: 30614561]
[243]
Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci 2020; 21(23): 9123.
[http://dx.doi.org/10.3390/ijms21239123] [PMID: 33266216]
[244]
Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 2018; 24(1): 4.
[http://dx.doi.org/10.3390/molecules24010004] [PMID: 30577475]
[245]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[246]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[247]
Sunshine JC, Green JJ. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 2013; 8(7): 1173-89.
[http://dx.doi.org/10.2217/nnm.13.98] [PMID: 23837856]
[248]
Merkel OM, Mintzer MA, Librizzi D, et al. Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi: The effects of peripheral groups and core structure on biological activity. Mol Pharm 2010; 7(4): 969-83.
[http://dx.doi.org/10.1021/mp100101s] [PMID: 20524664]
[249]
Jin GW, Rejinold NS, Choy JH. Multifunctional polymeric micelles for cancer therapy. Polymers 2022; 14(22): 4839.
[http://dx.doi.org/10.3390/polym14224839] [PMID: 36432965]
[250]
Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm 2009; 367(1-2): 195-203.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.039] [PMID: 18940242]
[251]
Duan L, Ouyang K, Xu X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet 2021; 12: 673286.
[http://dx.doi.org/10.3389/fgene.2021.673286] [PMID: 34054927]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy