Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

The Influence of Phytoconstituents for the Management of Antipsoriatic Activity in Various Animal Models

In Press, (this is not the final "Version of Record"). Available online 30 July, 2024
Author(s): Ravina Yadav, Tejpal Yadav*, Ashutosh Upadhayay, Md. Sabir Alam, Gaurav Dubey, Vikram Kumar and Adarsh Sahu
Published on: 30 July, 2024

DOI: 10.2174/0118715230320581240711063558

Price: $95

Abstract

It is possible for psoriasis to manifest at any point in a person's life, regardless of their age, gender, or geographic location. It is a chronic immune-linked inflammatory skin ill-ness that affects individuals of various racial and ethnic origins. It is recognized to be a long-lasting condition. Because of the significant contribution that natural products have made, there has been a significant advancement in the treatment of skin illnesses such as psoriasis. The biggest number of phytochemicals derived from a wide range of plants and herbs are now being used in a variety of applications throughout the whole world. Additionally, a number of phyto-chemicals, including aloe-emodin, psoralen, curcumin, and others, have been effectively ex-tracted in pure or clear form, and they have shown a great deal of efficacy in the treatment of psoriasis illness. There is evidence that a few herbal remedies are effective, and the occurrence of these phytochemicals provides more proof. When synthetic medications are used for chronic therapy, they may cause a variety of adverse consequences; hence, the exploration of natural pharmaceuticals can give a successful natural treatment with a minimal amount of adverse ef-fects. Within the scope of this concise review, a number of plant sources that possess anti-pso-riatic activity are investigated, and the antipsoriatic effects of these plant sources are shown on a number of animal models using particular pathways.

[1]
Honma, M.; Hayashi, K. Psoriasis: Recent progress in molecular‐targeted therapies. J. Dermatol., 2021, 48(6), 761-777.
[http://dx.doi.org/10.1111/1346-8138.15727] [PMID: 33404109]
[2]
Kamiya, K.; Kishimoto, M.; Sugai, J.; Komine, M.; Ohtsuki, M. Risk factors for the development of psoriasis. Int. J. Mol. Sci., 2019, 20(18), 4347.
[http://dx.doi.org/10.3390/ijms20184347] [PMID: 31491865]
[3]
Di Salvo, E.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from mediterranean plants: Biological activities for skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Plants, 2023, 12(20), 3579.
[http://dx.doi.org/10.3390/plants12203579] [PMID: 37896042]
[4]
Sarac, G.; Koca, T.T.; Baglan, T. A brief summary of clinical types of psoriasis. North. Clin. Istanb., 2016, 3(1), 79-82.
[PMID: 28058392]
[5]
Langley, R.G.B.; Krueger, G.G.; Griffiths, C.E. Psoriasis: Epidemiology, clinical features, and quality of life. Ann. Rheum. Dis., 2005, 64(Suppl 2)(Suppl. 2), ii18-ii23.
[http://dx.doi.org/10.1136/ard.2004.033217] [PMID: 15708928]
[6]
Baker, H. Psoriasis-clinical features. BMJ, 1971, 3(5768), 231-233.
[http://dx.doi.org/10.1136/bmj.3.5768.231] [PMID: 4934376]
[7]
Chalmers, R.J.G.; O’Sullivan, T.; Owen, C.M.; Griffiths, C.E.M. A systematic review of treatments for guttate psoriasis. Br. J. Dermatol., 2001, 145(6), 891-894.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04505.x] [PMID: 11899141]
[8]
Ko, H.C.; Jwa, S.W.; Song, M.; Kim, M.B.; Kwon, K.S. Clinical course of guttate psoriasis: Long‐term follow‐up study. J. Dermatol., 2010, 37(10), 894-899.
[http://dx.doi.org/10.1111/j.1346-8138.2010.00871.x] [PMID: 20860740]
[9]
Engin, B.; Aşkın, Ö.; Tüzün, Y. Palmoplantar psoriasis. Clin. Dermatol., 2017, 35(1), 19-27.
[http://dx.doi.org/10.1016/j.clindermatol.2016.09.004] [PMID: 27938808]
[10]
Carrasquillo, O.Y.; Pabón-Cartagena, G.; Falto-Aizpurua, L.A.; Santiago-Vázquez, M.; Cancel-Artau, K.J.; Arias-Berrios, G.; Martín-García, R.F. Treatment of erythrodermic psoriasis with biologics: A systematic review. J. Am. Acad. Dermatol., 2020, 83(1), 151-158.
[http://dx.doi.org/10.1016/j.jaad.2020.03.073] [PMID: 32247872]
[11]
Pasch, M.C. Nail psoriasis: A review of treatment options. Drugs, 2016, 76(6), 675-705.
[http://dx.doi.org/10.1007/s40265-016-0564-5] [PMID: 27041288]
[12]
Ortonne, J.P.; Chimenti, S.; Luger, T.; Puig, L.; Reid, F.; Trüeb, R.M. Scalp psoriasis: European consensus on grading and treatment algorithm. J. Eur. Acad. Dermatol. Venereol., 2009, 23(12), 1435-1444.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03372.x] [PMID: 19614856]
[13]
Premkumar, B. A review on allopathic and herbal remedies for psoriasis. Int J Front Sci Tech., 2017, 5(4), 1-15.
[14]
Nestle, F.O.; Nickoloff, B.J. Animal models of psoriasis: A brief update. J. Eur. Acad. Dermatol. Venereol., 2006, 20(s2), 24-27.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01769.x]
[15]
Singh, K.K.; Tripathy, S. Natural treatment alternative for psoriasis: A review on herbal resources. J. Appl. Pharm. Sci., 2014, 4(11), 114-121.
[16]
Georgescu, S.R.; Tampa, M.; Caruntu, C.; Sarbu, M.I.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Constantin, C.; Neagu, M. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci., 2019, 20(3), 739.
[http://dx.doi.org/10.3390/ijms20030739] [PMID: 30744173]
[17]
Hugh, J.M.; Newman, M.D.; Weinberg, J.M. The pathophysiology of psoriasis. In: Advances in Psoriasis: A Multisystemic Guide; Weinberg, J.M.; Lebwohl, M., Eds.; Springer: London, 2014, pp. 9-19.
[http://dx.doi.org/10.1007/978-1-4471-4432-8_2]
[18]
Reich, K. The concept of psoriasis as a systemic inflammation: Implications for disease management. J. Eur. Acad. Dermatol. Venereol., 2012, 26(s2)(Suppl. 2), 3-11.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04410.x] [PMID: 22356630]
[19]
Grozdev, I.; Korman, N.; Tsankov, N. Psoriasis as a systemic disease. Clin. Dermatol., 2014, 32(3), 343-350.
[http://dx.doi.org/10.1016/j.clindermatol.2013.11.001] [PMID: 24767182]
[20]
Omosa, L.K.; Midiwo, J.O.; Kuete, V. Curcuma longa. In: Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press, 2017, pp. 425-435.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00019-4]
[21]
Liu, H.; Danthi, S.J.; Enyeart, J.J. Curcumin potently blocks Kv1.4 potassium channels. Biochem. Biophys. Res. Commun., 2006, 344(4), 1161-1165.
[http://dx.doi.org/10.1016/j.bbrc.2006.04.020] [PMID: 16647042]
[22]
Kang, D.; Li, B.; Luo, L.; Jiang, W.; Lu, Q.; Rong, M.; Lai, R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie, 2016, 123, 73-80.
[http://dx.doi.org/10.1016/j.biochi.2016.01.013] [PMID: 26826458]
[23]
Geetha, M. Pharmacognostic and phytochemical investigation of Givotia Rottleriformis Griff. Ex wight bark. J. Pharmacogn. Phytochem., 2013, 2(3), 188-194.
[24]
Vismaya, W. Extraction and recovery of karanjin: A value addition to karanja (Pongamia pinnata) seed oil. Ind. Crops Prod., 2010, 32(2), 118-122.
[http://dx.doi.org/10.1016/j.indcrop.2010.03.011]
[25]
Siddiqui, L.; Tyagi, Y. Rao ngr. To evaluate the role of herbal drugs in the management of psoriasis: A review article. World J. Pharm. Res., 9(5), 14.
[26]
Sebök, B.; Bonnekoh, B.; Kerényi, M.; Gollnick, H. Tazarotene induces epidermal cell differentiation in the mouse tail test used as an animal model for psoriasis. Skin Pharmacol. Physiol., 2000, 13(5), 285-291.
[http://dx.doi.org/10.1159/000029935] [PMID: 10940819]
[27]
V, A. Anti-psoriatic activity of flavonoids from the bark of Givotia Rottleriformis Griff. Ex wight. Iran J Pharm Sci., 2014, 10(3), 81-94.
[28]
Schön, M.P. Advances in psoriasis treatment. Lancet, 2005, 366(9494), 1333-1335.
[http://dx.doi.org/10.1016/S0140-6736(05)67542-3] [PMID: 16226595]
[29]
Vijayalakshmi, A.; Geetha, M. Anti-psoriatic activity of Givotia Rottleriformis in rats. Indian J. Pharmacol., 2014, 46(4), 386-390.
[http://dx.doi.org/10.4103/0253-7613.135949] [PMID: 25097275]
[30]
Reddy, Y.S.R.; Venkatesh, S.; Ravichandran, T.; Subburaju, T.; Suresh, B. Pharmacognostical studies on Wrightia tinctoria Bark. Pharm. Biol., 1999, 37(4), 291-295.
[http://dx.doi.org/10.1076/phbi.37.4.291.5798]
[31]
Chandrashekar, R. Wrightia tinctoria: An overview. J. Drug Deliv. Ther., 2013, 3(2)
[32]
S, S.; Hari, A.; Pattam, S.; Nihal, P.; Athira, A. An Updated Review on Wrightia tinctoria (Roxb). R Br. J. Pharm. Res. Int., 2021, 234-244.
[http://dx.doi.org/10.9734/jpri/2021/v33i56A33906]
[33]
Billiau, A.; Matthys, P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol., 2001, 70(6), 849-860.
[http://dx.doi.org/10.1189/jlb.70.6.849] [PMID: 11739546]
[34]
Srivastava, A.; Nagar, H.; Chandel, H.; Ranawat, M. Antipsoriatic activity of ethanolic extract of Woodfordia fruticosa (L.) Kurz flowers in a novel in vivo screening model. Indian J. Pharmacol., 2016, 48(5), 531-536.
[http://dx.doi.org/10.4103/0253-7613.190740] [PMID: 27721539]
[35]
Sundarrajan, S.; Lulu, S.; Arumugam, M. Deciphering the mechanism of action of Wrightia tinctoria for psoriasis based on systems pharmacology approach. J. Altern. Complement. Med., 2017, 23(11), 866-878.
[http://dx.doi.org/10.1089/acm.2016.0248] [PMID: 28604055]
[36]
S, V.T.; S, F.; B, H.M.; D, M.S. A review on therapeutic potential of Nigella sativa (kalonji) seeds. J. Med. Plants Res., 2014, 8(3), 167-177.
[http://dx.doi.org/10.5897/JMPR10.737]
[37]
Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res., 2003, 17(4), 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[38]
Amin, B; Hosseinzadeh, H. Black Cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med., 2015, 82(01/02), 8-16.
[39]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[40]
Palaniswamy, D.; Nithyanantham, M.; Raghu, P.S.; Dwarampudi, L.P. Antipsoriatic activity and cytotoxicity of ethanolic extract of Nigella sativa seeds. Pharmacogn. Mag., 2012, 8(32), 268-272.
[http://dx.doi.org/10.4103/0973-1296.103650] [PMID: 24082629]
[41]
Zhao, Q.; Chen, X.Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. , 2016, 61(18), 1391-1398.
[http://dx.doi.org/10.1007/s11434-016-1136-5] [PMID: 27730005]
[42]
Wang, P.W.; Lin, T.Y.; Yang, P.M.; Fang, J.Y.; Li, W.T.; Pan, T.L. Therapeutic efficacy of Scutellaria baicalensis Georgi against psoriasis-like lesions via regulating the responses of keratinocyte and macrophage. Biomed. Pharmacother., 2022, 155, 113798.
[http://dx.doi.org/10.1016/j.biopha.2022.113798] [PMID: 36271574]
[43]
Wu, J.; Li, H.; Li, M. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis. Int. J. Clin. Exp. Med., 2015, 8(2), 2128-2137.
[PMID: 25932143]
[44]
Saravanakumar, A.; Venkateshwaran, K.; Vanitha, J.; Ganesh, M.; Vasudevan, M.; Sivakumar, T. Evaluation of antibacterial activity, phenol and flavonoid contents of Thespesia populnea flower extracts. Pak. J. Pharm. Sci., 2009, 22(3), 282-286.
[PMID: 19553175]
[45]
Shrivastav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Anti-psoriatic and phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Pharm. Sci., 2009, 1, 176-185.
[46]
Akbar, S. Smilax china L. (Smilacaceae).In: Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Akbar, S., Ed.; Springer International Publishing : Cham, 2020, pp. 1665-1671. [Internet]
[http://dx.doi.org/ 10.1007/978-3-030-16807-0_172]
[47]
Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Nirmala, S.; Jayakumari, S. Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. for anti–psoriatic activity. Asian Pac. J. Trop. Biomed., 2012, 2(4), 269-275.
[http://dx.doi.org/10.1016/S2221-1691(12)60021-5] [PMID: 23569912]
[48]
Jain, S.; Patil, U.K. Phytochemical and pharmacological profile of Cassia tora Linn., An overview. IJNPR, 2010, 1(4), 430-437.
[49]
Vijayalakshmi, A.; Madhira, G. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn., 2014, 24(3), 322-329.
[http://dx.doi.org/10.1016/j.bjp.2014.07.010]
[50]
Priya, M.; Elenjikkal, S. Traditional and modern use of Indian Madder (Rubia cordifolia L.): An overview. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 154-164.
[51]
Verma, A.; Kumar, B.; Alam, P.; Singh, V.; Gupta, S. Rubia cordifolia – A review on pharmaconosy and phytochemistry. Int. J. Pharm. Sci. Res., 2016, 7, 2720-2731.
[52]
Lin, Z.X.; Jiao, B.W.; Che, C.T.; Zuo, Z.; Mok, C.F.; Zhao, M.; Ho, W.K.K.; Tse, W.P.; Lam, K.Y.; Fan, R.Q.; Yang, Z.J.; Cheng, C.H.K. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro and promotes keratinocyte differentiation in vivo: Potential application for psoriasis treatment. Phytother. Res., 2010, 24(7), 1056-1064.
[http://dx.doi.org/10.1002/ptr.3079] [PMID: 19960426]
[53]
Amenta, R.; Camarda, L.; Di Stefano, V.; Lentini, F.; Venza, F. Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia, 2000, 71(Suppl. 1), S13-S20.
[http://dx.doi.org/10.1016/S0367-326X(00)00172-6] [PMID: 10930708]
[54]
Iversen, L.; Kragballe, K. Arachidonic acid metabolism in skin health and disease. Prostaglandins Other Lipid Mediat., 2000, 63(1-2), 25-42.
[http://dx.doi.org/10.1016/S0090-6980(00)00095-2] [PMID: 11104339]
[55]
Bader, A.; Martini, F.; Schinella, G.R.; Rios, J.L.; Prieto, J.M. Modulation of Cox-1, 5-, 12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases. Phytother. Res., 2015, 29(1), 108-113.
[http://dx.doi.org/10.1002/ptr.5234] [PMID: 25278440]
[56]
Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 2006, 108(1), 133-141.
[http://dx.doi.org/10.1016/j.jep.2006.04.023] [PMID: 16730935]
[57]
Saelee, C.; Thongrakard, V.; Tencomnao, T. Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-κB signaling biomarkers in HaCaT keratinocytes. Molecules, 2011, 16(5), 3908-3932.
[http://dx.doi.org/10.3390/molecules16053908] [PMID: 21555979]
[58]
Bhoir, S.S.; Vishwapathi, V.; Singh, K.K. Antipsoriatic potential of Annona squamosa seed oil: An in vitro and in vivo evaluation. Phytomedicine, 2019, 54, 265-277.
[http://dx.doi.org/10.1016/j.phymed.2018.07.003] [PMID: 30668377]
[59]
Khushboo, P.S.; Jadhav, V.M.; Kadam, V.J.; Sathe, N.S. Psoralea corylifolia Linn.-“Kushtanashini”. Pharmacogn. Rev., 2010, 4(7), 69-76.
[http://dx.doi.org/10.4103/0973-7847.65331] [PMID: 22228944]
[60]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) — Folklore to modern evidence.[Review] Fitoterapia, 2013, 90, 44-56.
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[61]
Alalaiwe, A.; Hung, C.F.; Leu, Y.L.; Tahara, K.; Chen, H.H.; Hu, K.Y.; Fang, J.Y. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur. J. Pharm. Sci., 2018, 124, 114-126.
[http://dx.doi.org/10.1016/j.ejps.2018.08.031] [PMID: 30153523]
[62]
Nabatanzi, A.M.; Nkadimeng, S.; Lall, N.; Kabasa, J.D.J.; McGaw, L. Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants, 2020, 9(6), 753.
[http://dx.doi.org/10.3390/plants9060753] [PMID: 32549404]
[63]
Folashade, O.O.; Olufunso, S.B.O. Comparative evaluation of the antipsoriatic activity of Acalypha wilkesiana, Culcasia scandens with Kigelia africana using the mouse tail model. AJPAC, 2017, 11(4), 37-41.
[http://dx.doi.org/10.5897/AJPAC2017.0717]
[64]
Oyedeji, F.O.; Bankole-Ojo, O.S. Quantitative evaluation of the antipsoriatic activity of sausage tree (Kigelia africana). Afr J Pure Appl Chem., 2012, 6(13), 214-218.
[65]
Epifano, F.; Fiorito, S.; Genovese, S. Phytochemistry and pharmacognosy of the genus Psorospermum. Phytochem. Rev., 2013, 12(4), 673-684.
[http://dx.doi.org/10.1007/s11101-013-9274-8]
[66]
Asogwa, F.C.; Ibezim, A.; Ntie-Kang, F.; Asogwa, C.J.; Okoye, C.O.B. Anti-psoriatic and immunomodulatory evaluation of psorospermum febrifugum spach and its phytochemicals. Sci. Am., 2020, 7, e00229.
[http://dx.doi.org/10.1016/j.sciaf.2019.e00229]
[67]
Manresa, M.C. Animal Models of Contact Dermatitis: 2,4-Dinitrofluorobenzene-Induced Contact Hypersensitivity. Methods Mol. Biol., 2021, 2223, 87-100.
[http://dx.doi.org/10.1007/978-1-0716-1001-5_7] [PMID: 33226589]
[68]
Wu, X.; Deng, X.; Wang, J.; Li, Q. Baicalin inhibits cell proliferation and inflammatory cytokines induced by tumor necrosis factor α (TNF-α) in human immortalized keratinocytes (HaCaT) human keratinocytes by inhibiting the STAT3/Nuclear factor kappa B (NF-κB) Signaling pathway. Med. Sci. Monit., 2020, 26, e919392.
[http://dx.doi.org/10.12659/MSM.919392] [PMID: 32321906]
[69]
Farhan, M. The Promising Role of Polyphenols in Skin disorders. Molecules, 2024, 29(4), 865.
[http://dx.doi.org/10.3390/molecules29040865] [PMID: 38398617]
[70]
Herman, A.; Herman, A. Topically used herbal products for the treatment of psoriasis – mechanism of action, drug delivery, clinical studies. Planta Med., 2016, 82(17), 1447-1455.
[http://dx.doi.org/10.1055/s-0042-115177] [PMID: 27574899]
[71]
Biswasroy, P.; Pradhan, D.; Sahu, D.K.; Rai, V.; Halder, J.; Rajwar, T.K.; Bhola, R.K.; Kar, B.; Ghosh, G.; Rath, G. Phytochemical investigation, structural elucidation, in silico study and anti-psoriatic activity of potent bioactive from Betula utilis. J. Biomol. Struct. Dyn., 2023, 41(17), 8093-8108.
[http://dx.doi.org/10.1080/07391102.2022.2130981] [PMID: 36214696]
[72]
Agrawal, A.; Kulkarni, G.T. Topical application of aerial portion of Acalypha indica Linn ameliorates psoriasis in rodents: Evidences from in vivo and in silico studies. J. Ethnopharmacol., 2023, 315, 116685.
[http://dx.doi.org/10.1016/j.jep.2023.116685]
[73]
Sarkar, D.; Gorai, P.; Pramanik, A.; Mondal, A.; Mondal, N.K.; Modak, B.K.; Bhattacharyya, S. Characterization and active component identification of Premna herbacea roxb. root extract reveals anti-inflammatory effect and amelioration of imiquimod induced psoriasis via modulation of macrophage inflammatory response. Phytomedicine, 2023, 119, 155007.
[http://dx.doi.org/10.1016/j.phymed.2023.155007]
[74]
Nguyen, L.T.H.; Ahn, S.H.; Shin, H.M.; Yang, I.J. Anti-psoriatic effect of Rheum palmatum L. and its underlying molecular mechanisms. Int. J. Mol. Sci., 2022, 23(24), 16000.
[http://dx.doi.org/10.3390/ijms232416000] [PMID: 36555642]
[75]
Sadasivan, S.; Latha, P.G.; Sasikumar, J.M.; Rajashekaran, S.; Shyamal, S.; Shine, V.J. Hepatoprotective studies on Hedyotis corymbosa (L.). Lam. J. Ethnopharmacol., 2006, 106(2), 245-249.
[http://dx.doi.org/10.1016/j.jep.2006.01.002] [PMID: 16495024]
[76]
You, B.J.; Wu, Y.C.; Wu, C.Y.; Bao, B.Y.; Chen, M.Y.; Chang, Y.H.; Lee, H.Z. Proteomics displays cytoskeletal proteins and chaperones involvement in Hedyotis corymbosa-induced photokilling in skin cancer cells. Exp. Dermatol., 2011, 20(8), 653-658.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01290.x] [PMID: 21569101]
[77]
Singh, N.; Shaikh, A.M.; Gupta, P.; Kovács, B.; Abuzinadah, M.F.; Ahmad, A.; Goel, R.; Singh, S.; Vinayak, C. Nanophytosomal gel of Heydotis corymbosa (L.) extract against psoriasis: Characterisation, in vitro and in vivo biological activity. Pharmaceuticals, 2024, 17(2), 213.
[http://dx.doi.org/10.3390/ph17020213] [PMID: 38399427]
[78]
Shiven, A.; Alam, A.; Dewangan, H.K.; Shah, K.; Alam, P.; Kapoor, D.N. Optimisation and in vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model. J. Microencapsul., 2024, 1-15.
[http://dx.doi.org/10.1080/02652048.2024.2354249] [PMID: 38780157]
[79]
Dabholkar, N.; Rapalli, V.K.; Singhvi, G. Potential herbal constituents for psoriasis treatment as protective and effective therapy. Phytother. Res., 2021, 35(5), 2429-2444.
[http://dx.doi.org/10.1002/ptr.6973] [PMID: 33277958]
[80]
Irveti, P.; Gupta, V. Management of Psoriasia. A focus on phytochemicals. Asian J. Pharm. Clin. Res., 2019.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i6.31060]
[81]
Na-Bangchang, K.; Teerachaisakul, M.; Muhamad, P.; Kasemnitichok, Y.; Sangnarong, N.; Boonprasert, K.; Tarasuk, M.; Plengsuriyakarn, T. Antiproliferative and anti-inflammatory activities of deprungsith formulation and its bioactive compounds against mild psoriasis and potential of metabolic herb-drug interactions. J. Evid. Based Integr. Med., , 2023, 28, 2515690X231191101.
[http://dx.doi.org/10.1177/2515690X231191101] [PMID: 37553989]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy