Abstract
Inulin is a naturally occurring polydisperse and flexible polysaccharide. It is a non-toxic, biocompatible, water-soluble, biodegradable, and affordable polymer. Furthermore, because of its unique properties, inulin has piqued the interest of many researchers. Studies have revealed that inulin demonstrates a broad range of biological activities such as antioxidant, antifungal, antibacterial, anticancer, antidiabetic, and immunological modulating properties in the pharmaceutical industry. Inulin has been demonstrated to function as a sweetener, fat replacer, water-holding agent, thickener, texture modifier, and browning agent in dairy and bakery food items. Inulin has produced EMF, a biofuel that is one of the most desirable gasoline substitutes. Today, inulin is widely used in the chemical, food, and pharmaceutical industries. Chemical modification of inulin is an important methodology for expanding its applications in a variety of fields. This article discusses the numerous synthesis methods used to modify the inulin structure, including conventional and non-conventional methods such as microwave and ultrasonication, as well as the diverse applications of inulin and its derivatives in several industries. This review article seeks to explore the current state of research on synthetic modifications of inulin and its wide array of applications.