Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Development in Inulin Modification and its Applications

Author(s): Mahendra Singh, Himanshu Rani* and Harish Kumar Chopra

Volume 28, Issue 20, 2024

Published on: 11 July, 2024

Page: [1551 - 1566] Pages: 16

DOI: 10.2174/0113852728318805240627112106

Price: $65

Abstract

Inulin is a naturally occurring polydisperse and flexible polysaccharide. It is a non-toxic, biocompatible, water-soluble, biodegradable, and affordable polymer. Furthermore, because of its unique properties, inulin has piqued the interest of many researchers. Studies have revealed that inulin demonstrates a broad range of biological activities such as antioxidant, antifungal, antibacterial, anticancer, antidiabetic, and immunological modulating properties in the pharmaceutical industry. Inulin has been demonstrated to function as a sweetener, fat replacer, water-holding agent, thickener, texture modifier, and browning agent in dairy and bakery food items. Inulin has produced EMF, a biofuel that is one of the most desirable gasoline substitutes. Today, inulin is widely used in the chemical, food, and pharmaceutical industries. Chemical modification of inulin is an important methodology for expanding its applications in a variety of fields. This article discusses the numerous synthesis methods used to modify the inulin structure, including conventional and non-conventional methods such as microwave and ultrasonication, as well as the diverse applications of inulin and its derivatives in several industries. This review article seeks to explore the current state of research on synthetic modifications of inulin and its wide array of applications.

Next »
[1]
Meyer, D.; Bayarri, S.; Tárrega, A.; Costell, E. Inulin as texture modifier in dairy products. Food Hydrocoll., 2011, 25(8), 1881-1890.
[http://dx.doi.org/10.1016/j.foodhyd.2011.04.012]
[2]
El-Kholy, W.M.; Mahrous, H. Biological studies on bio-yoghurt fortified with prebiotic obtained from Jerusalem artichoke. Food Nutr. Sci., 2015, 6(16), 1552-1564.
[http://dx.doi.org/10.4236/fns.2015.616160]
[3]
Lopes, S.M.S.; Krausová, G.; Carneiro, J.W.P.; Gonçalves, J.E.; Gonçalves, R.A.C.; de Oliveira, A.J.B. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chem., 2017, 225, 154-161.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.100] [PMID: 28193409]
[4]
Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym., 2015, 130, 405-419.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.026] [PMID: 26076642]
[5]
Mudannayake, D.C.; Jayasena, D.D.; Wimalasiri, K.M.S.; Ranadheera, C.S.; Ajlouni, S. Inulin fructans food applications and alternative plant sources: A review. Int. J. Food Sci. Technol., 2022, 57(9), 5764-5780.
[http://dx.doi.org/10.1111/ijfs.15947]
[6]
Wichienchot, S.; Thammarutwasik, P.; Jongjareonrak, A.; Chansuwan, W.; Hmadhlu, P.; Hongpattarakere, T.; Itharat, A.; Ooraikul, B. Extraction and analysis of prebiotics from selected plants from southern Thailand. Songklanakarin J. Sci. Technol., 2011, 33(5), 517-523.
[7]
Li, Y.; Ma, X.; Liu, X. Physicochemical and rheological properties of cross-linked inulin with different degree of polymerization. Food Hydrocoll., 2019, 95, 318-325.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.026]
[8]
Izawa, K.; Hasegawa, T. Tosylated and azidated inulins as key substrates for further chemical modifications to access inulin-based advanced materials: An inulin-based glycocluster. Bioorg. Med. Chem. Lett., 2012, 22(2), 1189-1193.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.094] [PMID: 22177083]
[9]
Verraest, D. L.; Da Silva, L. P.; Peters, J. A.; Van Bekkum, H. Synthesis of cyanoethyl inulin, aminopropyl inulin and carboxyethyl inulin. Starch/Staerke, 1996, 48(5), 191-195.
[http://dx.doi.org/10.1002/star.19960480509]
[10]
Afinjuomo, F.; Fouladian, P.; Barclay, T.G.; Song, Y.; Petrovsky, N.; Garg, S. Influence of oxidation degree on the physicochemical properties of oxidized inulin. Polymers, 2020, 12(5), 1025.
[http://dx.doi.org/10.3390/polym12051025] [PMID: 32369991]
[11]
Verraest, D.L.; Peters, J.A.; Batelaan, J.G.; van Bekkum, H. Carboxymethylation of inulin. Carbohydr. Res., 1995, 271(1), 101-112.
[http://dx.doi.org/10.1016/0008-6215(95)00028-R] [PMID: 7648576]
[12]
Zhou, D.; Yu, W.; Wu, A.; Shu, W.; Zhang, Y. Optimization of preparation conditions of medium and highly substituted carboxymethyl inulin through response surface methodology. Carbohydr. Res., 2024, 536, 109009.
[http://dx.doi.org/10.1016/j.carres.2023.109009] [PMID: 38211450]
[13]
Won, C.Y.; Chu, C.C. Inulin polysaccharide having pendant amino acids: Synthesis and characterization. J. Appl. Polym. Sci., 1998, 70(5), 953-963.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19981031)70:5<953::AID-APP16>3.0.CO;2-U]
[14]
Rogge, T.M.; Stevens, C.V.; Booten, K.; Levecke, B.; Vandamme, A.; Vercauteren, C.; Haelterman, B.; Corthouts, J.; D’hooge, C. Improved synthesis and physicochemical properties of alkoxylated inulin. Top. Catal., 2004, 27(1-4), 39-47.
[http://dx.doi.org/10.1023/B:TOCA.0000013539.39364.a2]
[15]
Ren, J.; Liu, J.; Dong, F.; Guo, Z. Highly efficient synthesis and antioxidant activity of O-(aminoethyl)inulin. Carbohydr. Polym., 2011, 83(3), 1240-1244.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.030]
[16]
Ren, J.; Liu, J.; Dong, F.; Guo, Z. Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin. Carbohydr. Polym., 2011, 85(1), 268-271.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.041]
[17]
Dong, F.; Zhang, J.; Yu, C.; Li, Q.; Ren, J.; Wang, G.; Gu, G.; Guo, Z. Synthesis of amphiphilic aminated inulin via ‘click chemistry’ and evaluation for its antibacterial activity. Bioorg. Med. Chem. Lett., 2014, 24(18), 4590-4593.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.029] [PMID: 25149508]
[18]
Li, Q.; Qiu, L.; Tan, W.; Gu, G.; Guo, Z. Novel 1,2,3-triazolium-functionalized inulin derivatives: synthesis, free radical-scavenging activity, and antifungal activity. RSC Adv., 2017, 7(67), 42225-42232.
[http://dx.doi.org/10.1039/C7RA08244D]
[19]
Wei, L.; Sui, H.; Zhang, J.; Guo, Z. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate. Int. J. Biol. Macromol., 2021, 186, 47-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.148] [PMID: 34186123]
[20]
Ren, J.; Wang, P.; Dong, F.; Feng, Y.; Peng, D.; Guo, Z. Synthesis and antifungal properties of 6-amino-6-deoxyinulin, a kind of precursors for facile chemical modifications of inulin. Carbohydr. Polym., 2012, 87(2), 1744-1748.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.082]
[21]
Liu, J.; Lu, J.; Kan, J.; Wen, X.; Jin, C. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int. J. Biol. Macromol., 2014, 64, 76-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.028] [PMID: 24315946]
[22]
Hu, Y.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Guo, Z. Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. Int. J. Biol. Macromol., 2014, 70, 44-49.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.024] [PMID: 24971554]
[23]
Sun, Q.; Luan, L.; Arif, M.; Li, J.; Dong, Q.J.; Gao, Y.; Chi, Z.; Liu, C.G. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr. Polym., 2018, 189, 352-359.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.021] [PMID: 29580419]
[24]
Wu, X.Y.; Lee, P.I. Preparation and characterization of inulin ester microspheres as drug carriers. J. Appl. Polym. Sci., 2000, 77(4), 833-840.
[http://dx.doi.org/10.1002/(SICI)1097-4628(20000725)77:4<833::AID-APP17>3.0.CO;2-4]
[25]
Rogge, T.M.; Stevens, C.V. Facilitated synthesis of inulin esters by transesterification. Biomacromolecules, 2004, 5(5), 1799-1803.
[http://dx.doi.org/10.1021/bm049869q] [PMID: 15360290]
[26]
Rogge, T.M.; Stevens, C.V.; Colpaert, A.; Levecke, B.; Booten, K. Use of acyl phosphonates for the synthesis of inulin esters and their use as emulsion stabilizing agents. Biomacromolecules, 2007, 8(2), 485-489.
[http://dx.doi.org/10.1021/bm060592z] [PMID: 17291072]
[27]
Torlopov, M.A.; Udoratina, E.V.; Kuchin, A.V. Synthesis of inulin esters of phenylcarboxylic acids. Russ. J. Org. Chem., 2013, 49(5), 702-706.
[http://dx.doi.org/10.1134/S1070428013050114]
[28]
Zhu, X.; Jia, C.; Meng, X.; Xing, M.; Yi, Y.; Gao, X. Synthesis, characterization of inulin propionate ester, and evaluation of its in vitro effect on SCFA Production. Starch/Staerke, 2018, 70, 9-10.
[http://dx.doi.org/10.1002/star.201800037]
[29]
Afinjuomo, F.; Barclay, T.G.; Song, Y.; Parikh, A.; Petrovsky, N.; Garg, S. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React. Funct. Polym., 2019, 134, 104-111.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.10.014]
[30]
Chen, Y.; Zhang, J.; Tan, W.; Wang, G.; Dong, F.; Li, Q.; Guo, Z. Antioxidant activity of inulin derivatives with quaternary ammonium. Stärke, 2017, 69(11-12), 1700046.
[http://dx.doi.org/10.1002/star.201700046]
[31]
Chen, Y.; Tan, W.; Li, Q.; Dong, F.; Gu, G.; Guo, Z. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. Int. J. Biol. Macromol., 2018, 113, 1273-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.055] [PMID: 29548915]
[32]
Zhang, J.; Tan, W.; Mi, Y.; Luan, F.; Wei, L.; Li, Q.; Dong, F.; Guo, Z. Synthesis and characterization of inulin derivatives bearing urea groups with promising antifungal activity. Starch/Staerke, 2019, 71(1-2), 1800058.
[http://dx.doi.org/10.1002/star.201800058]
[33]
Chen, Y.; Mi, Y.; Zhang, J.; Dong, F.; Li, Q.; Ji, N.; Guo, Z. Radical scavenging activities of novel cationic inulin derivatives. Polymers , 2018, 10(12), 1295.
[http://dx.doi.org/10.3390/polym10121295] [PMID: 30961220]
[34]
Guo, Z.; Li, Q.; Wang, G.; Dong, F.; Zhou, H.; Zhang, J. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene. Carbohydr. Polym., 2014, 99, 469-473.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.044] [PMID: 24274532]
[35]
Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. Polymers , 2019, 11(2), 371.
[http://dx.doi.org/10.3390/polym11020371] [PMID: 30960355]
[36]
Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int. J. Biol. Macromol., 2020, 143, 714-723.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.127] [PMID: 31726150]
[37]
Mi, Y.; Zhang, J.; Han, X.; Tan, W.; Miao, Q.; Cui, J.; Li, Q.; Guo, Z. Modification of carboxymethyl inulin with heterocyclic compounds: Synthesis, characterization, antioxidant and antifungal activities. Int. J. Biol. Macromol., 2021, 181, 572-581.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.109] [PMID: 33766596]
[38]
Zhang, J.; Tan, W.; Zhao, P.; Mi, Y.; Guo, Z. Facile synthesis, characterization, antioxidant activity, and antibacterial activity of carboxymethyl inulin salt derivatives. Int. J. Biol. Macromol., 2022, 199, 138-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.140] [PMID: 34973272]
[39]
Yang, Y.; Tan, W.; Zhang, J.; Guo, Z.; Jiang, A.; Li, Q. Novel coumarin-functionalized inulin derivatives: Chemical modification and antioxidant activity assessment. Carbohydr. Res., 2022, 518, 108597.
[http://dx.doi.org/10.1016/j.carres.2022.108597] [PMID: 35617914]
[40]
Schoener, C.A.; Carillo-Conde, B.; Hutson, H.N.; Peppas, N.A. An inulin and doxorubicin conjugate for improving cancer therapy. J. Drug Deliv. Sci. Technol., 2013, 23(2), 111-118.
[http://dx.doi.org/10.1016/S1773-2247(13)50018-9] [PMID: 24734120]
[41]
Zhang, L.; Li, Y.; Wang, C.; Li, G.; Zhao, Y.; Yang, Y. Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery. Mater. Sci. Eng. C, 2014, 42, 111-115.
[http://dx.doi.org/10.1016/j.msec.2014.05.025] [PMID: 25063099]
[42]
Zhang, L.; Li, G.; Gao, M.; Liu, X.; Ji, B.; Hua, R.; Zhou, Y.; Yang, Y. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. Colloids Surf. B Biointerfaces, 2016, 144, 81-89.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.077] [PMID: 27070055]
[43]
Ganie, S.A.; Ali, A.; Mir, T.A.; Mazumdar, N. Inulin niacin conjugates: Preparation, characterization, kinetic and in vitro release studies. J. Polym. Environ., 2022, 30(2), 504-515.
[http://dx.doi.org/10.1007/s10924-021-02210-6]
[44]
Tripodo, G.; Pitarresi, G.; Palumbo, F.S.; Craparo, E.F.; Giammona, G. UV-photocrosslinking of inulin derivatives to produce hydrogels for drug delivery application. Macromol. Biosci., 2005, 5(11), 1074-1084.
[http://dx.doi.org/10.1002/mabi.200500134] [PMID: 16245273]
[45]
Pitarresi, G.; Giacomazza, D.; Triolo, D.; Giammona, G.; San Biagio, P.L. Rheological characterization and release properties of inulin-based hydrogels. Carbohydr. Polym., 2012, 88(3), 1033-1040.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.059]
[46]
Rahul, R.; Jha, U.; Sen, G.; Mishra, S. A novel polymeric flocculant based on polyacrylamide grafted inulin: Aqueous microwave assisted synthesis. Carbohydr. Polym., 2014, 99, 11-21.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.082] [PMID: 24274474]
[47]
Sardo, C.; Farra, R.; Licciardi, M.; Dapas, B.; Scialabba, C.; Giammona, G.; Grassi, M.; Grassi, G.; Cavallaro, G. Development of a simple, biocompatible and cost-effective Inulin-diethylenetriamine based siRNA delivery system. Eur. J. Pharm. Sci., 2015, 75, 60-71.
[http://dx.doi.org/10.1016/j.ejps.2015.03.021] [PMID: 25845631]
[48]
Petkova, N.; Genchev, G.; Vassilev, D.; Koleva, M. Krastanov and Panteley Denev, A.; Denev, P. Microwave-assisted isolation and acetylation of inulin from Helianthus tuberosus L. tubers. J. Renew. Mater., 2018, 6(7), 671-679.
[http://dx.doi.org/10.32604/JRM.2018.00001]
[49]
Vassilev, D.; Petkova, N.; Koleva, M.; Denev, P. Microwave synthesis of inulin acetate as potential bio-based additive for poly (vinyl chloride). J. Renew. Mater., 2018, 6(7), 707-714.
[http://dx.doi.org/10.32604/JRM.2018.00015]
[50]
Petkova, N.; Arabadzhieva, R.; Vassilev, D.; Gencheva, G.; Tumbarski, Y.; Ignatova-Ivanova, T.; Ibryamova, S.; Todorova, M.; Koleva, M.; Denev, P. Physicochemical characterization and antimicrobial properties of inulin acetate obtained by microwave-assisted synthesis. J. Renew. Mater., 2020, 8(4), 365-381.
[http://dx.doi.org/10.32604/jrm.2020.09292]
[51]
Yang, Y.; Abu-Omar, M.M.; Hu, C. Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate. Appl. Energy, 2012, 99, 80-84.
[http://dx.doi.org/10.1016/j.apenergy.2012.04.049]
[52]
Antonetti, C.; Melloni, M.; Licursi, D.; Fulignati, S.; Ribechini, E.; Rivas, S.; Parajó, J.C.; Cavani, F.; Raspolli Galletti, A.M. Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl. Catal. B, 2017, 206, 364-377.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.056]
[53]
Antonetti, C.; Fulignati, S.; Licursi, D.; Raspolli Galletti, A.M. Turning point toward the sustainable production of 5-hydroxymethyl-2-furaldehyde in water: Metal salts for its synthesis from fructose and inulin. ACS Sustain. Chem. Eng., 2019, 7(7), 6830-6838.
[http://dx.doi.org/10.1021/acssuschemeng.8b06162]
[54]
Florowska, A.; Florowski, T.; Kruszewski, B.; Janiszewska-Turak, E.; Bykowska, W.; Ksibi, N. Thermal and modern, non-thermal method induction as a factor of modification of inulin hydrogel properties. Foods, 2023, 12(22), 4154.
[http://dx.doi.org/10.3390/foods12224154] [PMID: 38002211]
[55]
Petkova, N.; Arabadzhieva, R.; Hambarliyska, I.; Vassilev, D.; Gencheva, G.; Tumbarski, Y.; Ignatova-Ivanova, T.; Ibryamova, S.; Koleva, M.; Denev, P. Ultrasound-assisted synthesis of antimicrobial inulin and sucrose esters with 10-undecylenic acid. Biointerface Res. Appl. Chem., 2021, 11(4), 12055-12067.
[http://dx.doi.org/10.33263/BRIAC114.1205512067]
[56]
Xu, H.; Gunenc, A.; Hosseinian, F. Ultrasound affects physical and chemical properties of Jerusalem artichoke and chicory inulin. J. Food Biochem., 2022, 46(4), e13934.
[http://dx.doi.org/10.1111/jfbc.13934] [PMID: 34569628]
[57]
Lou, X.; Luo, D.; Yue, C.; Zhang, T.; Li, P.; Xu, Y.; Xu, B.; Xiang, J. Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulin. Lebensm. Wiss. Technol., 2022, 154, 112578.
[http://dx.doi.org/10.1016/j.lwt.2021.112578]
[58]
Li, S.; Lei, D.; Zhu, Z.; Cai, J.; Manzoli, M.; Jicsinszky, L.; Grillo, G.; Cravotto, G. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrason. Sonochem., 2021, 74, 105568.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105568] [PMID: 33915483]
[59]
Jiang, W.; Wang, Y.; Ma, C.; Julian McClements, D.; Liu, F.; Liu, X. Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chem., 2022, 384, 132511.
[http://dx.doi.org/10.1016/j.foodchem.2022.132511] [PMID: 35247772]
[60]
Mi, X.; Hao, S.; Zheng, Y.; Yang, X. Effects of addition of inulin and β‐glucan on selected physicochemical and thermal properties of ultrasonic modified potato flour. J. Food Process. Preserv., 2022, 46(11), e17134.
[http://dx.doi.org/10.1111/jfpp.17134]
[61]
Blecker, C.; Chevalier, J.P.; Van Herck, J.C.; Fougnies, C.; Deroanne, C.; Paquot, M. Inulin: Its physicochemical properties and technological functionality. Rec. Res. Develop. Agricul. Food Chem., 2001, 5, 125-131.
[62]
Martinod, A.; Neville, A.; Euvrad, M.; Sorbie, K. Electrodeposition of a calcareous layer: Effects of green inhibitors. Chem. Eng. Sci., 2009, 64(10), 2413-2421.
[http://dx.doi.org/10.1016/j.ces.2009.01.024]
[63]
Boels, L.; Witkamp, G.J. Carboxymethyl inulin biopolymers: A green alternative for phosphonate calcium carbonate growth inhibitors. Cryst. Growth Des., 2011, 11(9), 4155-4165.
[http://dx.doi.org/10.1021/cg2007183]
[64]
Johannsen, F.R. Toxicological profile of carboxymethyl inulin. Food Chem. Toxicol., 2003, 41(1), 49-59.
[http://dx.doi.org/10.1016/S0278-6915(02)00213-2] [PMID: 12453728]
[65]
Öner, M.; Uysal, U. Synthesis of hydroxyapatite crystals using carboxymethyl inulin for use as a delivery of ibuprofen. Mater. Sci. Eng. C, 2013, 33(1), 482-489.
[http://dx.doi.org/10.1016/j.msec.2012.09.018] [PMID: 25428099]
[66]
Akın, B.; Öner, M.; Bayram, Y.; Demadis, K.D. Effects of carboxylate-modified, “green” inulin biopolymers on the crystal growth of calcium oxalate. Cryst. Growth Des., 2008, 8(6), 1997-2005.
[http://dx.doi.org/10.1021/cg800092q]
[67]
Rahul, R.; Jha, U.; Sen, G.; Mishra, S. Carboxymethyl inulin: A novel flocculant for wastewater treatment. Int. J. Biol. Macromol., 2014, 63, 1-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.015] [PMID: 24141069]
[68]
Hernández-Martínez, A.; Molina, G.; Jiménez-Hernández, L.; Oskam, A.; Fonseca, G.; Estevez, M. Evaluation of inulin replacing chitosan in a polyurethane/polysaccharide material for Pb2+ removal. Molecules, 2017, 22(12), 2093.
[http://dx.doi.org/10.3390/molecules22122093] [PMID: 29186073]
[69]
Mohd Yusop, H.; Mohd Ismail, A.I.H.; Wan Ismail, W.N. Preparation and characterization of new sol–gel hybrid inulin–TEOS adsorbent. Polymers , 2021, 13(8), 1295.
[http://dx.doi.org/10.3390/polym13081295] [PMID: 33921052]
[70]
Rakicka, M.; Wolniak, J.; Lazar, Z.; Rymowicz, W. Production of high titer of citric acid from inulin. BMC Biotechnol., 2019, 19(1), 11.
[http://dx.doi.org/10.1186/s12896-019-0503-0] [PMID: 30744615]
[71]
Heo, J.B.; Lee, Y.S.; Chung, C.H. Conversion of inulin-rich raw plant biomass to 2,5-furandicarboxylic acid (FDCA): Progress and challenge towards biorenewable plastics. Biotechnol. Adv., 2021, 53, 107838.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107838] [PMID: 34571195]
[72]
Mukherjee, A.; Dumont, M.J.; Raghavan, V. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenergy, 2015, 72, 143-183.
[http://dx.doi.org/10.1016/j.biombioe.2014.11.007]
[73]
Wang, T.; Nolte, M.W.; Shanks, B.H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem., 2014, 16(2), 548-572.
[http://dx.doi.org/10.1039/C3GC41365A]
[74]
Agirrezabal-Telleria, I.; Gandarias, I.; Arias, P.L.; Requies, J. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethyl-furfural) from renewable carbohydrates: A review. Catal. Today, 2014, 234, 42-58.
[http://dx.doi.org/10.1016/j.cattod.2013.11.027]
[75]
van Putten, R.J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[http://dx.doi.org/10.1021/cr300182k] [PMID: 23394139]
[76]
Petrovsky, N. Inulin-a versatile polysaccharide: use as food chemical and pharmaceutical agent. J. Excip. Food Chem., 2010, 13(13), 27-50.
[77]
Lu, Y.; Guo, X.; Hou, C.; Tang, R.; Luo, J.; Huang, R. Characteristics, and application of inulin in food processing. Food Res. Develop., 2018, 39(12), 194-199.
[78]
Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin: A versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3)
[79]
Flamm, G.; Glinsmann, W.; Kritchevsky, D.; Prosky, L.; Roberfroid, M. Inulin and oligofructose as dietary fiber: A review of the evidence. Crit. Rev. Food Sci. Nutr., 2001, 41(5), 353-362.
[http://dx.doi.org/10.1080/20014091091841] [PMID: 11497328]
[80]
Spotti, M.J.; Campanella, O.H. Functional modifications by physical treatments of dietary fibers used in food formulations. Curr. Opin. Food Sci., 2017, 15, 70-78.
[http://dx.doi.org/10.1016/j.cofs.2017.10.003]
[81]
Steinbach, E.; Masi, D.; Ribeiro, A.; Serradas, P.; Le Roy, T.; Clément, K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism, 2024, 150, 155712.
[http://dx.doi.org/10.1016/j.metabol.2023.155712] [PMID: 37884078]
[82]
Wan, X.; Guo, H.; Liang, Y.; Zhou, C.; Liu, Z.; Li, K.; Niu, F.; Zhai, X.; Wang, L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr. Polym., 2020, 246, 116589.
[http://dx.doi.org/10.1016/j.carbpol.2020.116589] [PMID: 32747248]
[83]
Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym., 2016, 147(147), 444-454.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.020] [PMID: 27178951]
[84]
Roberfroid, M. Inulin-type fructans: functional food ingredients; CRC Press: Boca Raton, 2004, pp. 1-392.
[http://dx.doi.org/10.1201/9780203504932]
[85]
Stevens, C.V.; Meriggi, A.; Booten, K. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules, 2001, 2(1), 1-16.
[http://dx.doi.org/10.1021/bm005642t] [PMID: 11749147]
[86]
Matusek, A.; Merész, P.; Le, T.K.D.; Örsi, F. Effect of temperature and pH on the degradation of fructo-oligosaccharides. Eur. Food Res. Technol., 2009, 228(3), 355-365.
[http://dx.doi.org/10.1007/s00217-008-0941-8]
[87]
López-Molina, D.; Navarro-Martínez, M.D.; Rojas-Melgarejo, F.; Hiner, A.N.P.; Chazarra, S.; Rodríguez-López, J.N. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry, 2005, 66(12), 1476-1484.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.003] [PMID: 15960982]
[88]
Zabot, G.L.; Silva, E.K.; Azevedo, V.M.; Meireles, M.A.A. Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds. Food Res. Int., 2016, 85, 26-35.
[http://dx.doi.org/10.1016/j.foodres.2016.04.005] [PMID: 29544843]
[89]
Tawfick, M.M.; Xie, H.; Zhao, C.; Shao, P.; Farag, M.A. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int. J. Biol. Macromol., 2022, 208(208), 948-961.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.218] [PMID: 35381290]
[90]
Collado Yurrita, L.; San Mauro Martín, I.; Ciudad-Cabañas, M.J.; Calle-Purón, M.E.; Hernández Cabria, M. Effectiveness of inulin intake on indicators of chronic constipation; a meta-analysis of controlled randomized clinical trials. Nutr. Hosp., 2014, 30(2), 244-252.
[PMID: 25208775]
[91]
Fernández-Bañares, F. Nutritional care of the patient with constipation. Best Pract. Res. Clin. Gastroenterol., 2006, 20(3), 575-587.
[http://dx.doi.org/10.1016/j.bpg.2005.11.002] [PMID: 16782530]
[92]
Den Hond, E.; Geypens, B.; Ghoos, Y. Effect of high performance chicory inulin on constipation. Nutr. Res., 2000, 20(5), 731-736.
[http://dx.doi.org/10.1016/S0271-5317(00)00162-7]
[93]
Griffin, I.J.; Hicks, P.M.D.; Heaney, R.P.; Abrams, S.A. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr. Res., 2003, 23(7), 901-909.
[http://dx.doi.org/10.1016/S0271-5317(03)00085-X]
[94]
Raschka, L.; Daniel, H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 2005, 37(5), 728-735.
[http://dx.doi.org/10.1016/j.bone.2005.05.015] [PMID: 16126464]
[95]
Singh, R.S.; Chauhan, K.; Pandey, A.; Larroche, C. Biocatalytic strategies for the production of high fructose syrup from inulin. Bioresour. Technol., 2018, 260, 395-403.
[http://dx.doi.org/10.1016/j.biortech.2018.03.127] [PMID: 29636277]
[96]
Golob, T.; Mičović, E.; Bertoncelj, J.; Jamnik, M. Sensory acceptability of chocolate with inulin. Acta Agric. Slov., 2004, 83(2), 221-231.
[http://dx.doi.org/10.14720/aas.2004.83.2.15426]
[97]
Konar, N. Influence of conching temperature and some bulk sweeteners on physical and rheological properties of prebiotic milk chocolate containing inulin. Eur. Food Res. Technol., 2013, 236(1), 135-143.
[http://dx.doi.org/10.1007/s00217-012-1873-x]
[98]
Sołowiej, B.; Glibowski, P.; Muszyński, S.; Wydrych, J.; Gawron, A.; Jeliński, T. The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocoll., 2015, 44, 1-11.
[http://dx.doi.org/10.1016/j.foodhyd.2014.08.022]
[99]
Li, H.; Yu, H.; Liu, Y.; Wang, Y.; Li, H.; Yu, J. The use of of inulin, maltitol and lecithin as fat replacers and plasticizers in a model reduced‐fat mozzarella cheese‐like product. J. Sci. Food Agric., 2019, 99(12), 5586-5593.
[http://dx.doi.org/10.1002/jsfa.9835] [PMID: 31152446]
[100]
Stanojevic, S.P.; Barać, M.B.; Pešić, M.B.; Vucelic-Radovic, B.V. Energy value and bioactive proteins of inulin‐enriched tofu produced by hydrothermal process with chymosin‐pepsin rennet. Int. J. Food Sci. Technol., 2021, 56(11), 5560-5568.
[http://dx.doi.org/10.1111/ijfs.15132]
[101]
Teferra, T.F. Possible actions of inulin as prebiotic polysaccharide: A review. Food Front., 2021, 2(4), 407-416.
[http://dx.doi.org/10.1002/fft2.92]
[102]
Wei, L.; Yang, W.; Wang, J.; Tian, Q.; He, Z. Synthesis and characterization of calcium phosphorylated inulin complex as a new source of enriched calcium supplement with prebiotic effect in food. Food Sci. Technol., 2019, 39(1), 237-244.
[http://dx.doi.org/10.1590/fst.37017]
[103]
Giri, S.; Dutta, P.; Giri, T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol., 2021, 64, 102595.
[http://dx.doi.org/10.1016/j.jddst.2021.102595]
[104]
Imran, S.; Gillis, R.B.; Kok, S.M.; Harding, S.E.; Adams, G.G. Application and use of inulin as a tool for therapeutic drug delivery. Biotechnol. Genet. Eng. Rev., 2012, 28(1), 33-46.
[http://dx.doi.org/10.5661/bger-28-33] [PMID: 22616480]
[105]
Akram, W.; Joshi, R.; Garud, N. Inulin: A promising carrier for controlled and targeted drug delivery system. J. Drug Deliv. Ther., 2019, 9(1-s), 437-441.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2398]
[106]
Hufnagel, B.; Muellner, V.; Hlatky, K.; Tallian, C.; Vielnascher, R.; Guebitz, G.M.; Wirth, M.; Gabor, F. Chemically modified inulin for intestinal drug delivery: A new dual bioactivity concept for inflammatory bowel disease treatment. Carbohydr. Polym., 2021, 252, 117091.
[http://dx.doi.org/10.1016/j.carbpol.2020.117091] [PMID: 33183582]
[107]
Cavallaro, G.; Sardo, C.; Scialabba, C.; Licciardi, M.; Giammona, G.; Lamberti, G. Smart inulin-based polycationic nanodevices for siRNA delivery. Curr. Drug Deliv., 2017, 14(2), 224-230.
[PMID: 27527075]
[108]
Scialabba, C.; Licciardi, M.; Mauro, N.; Rocco, F.; Ceruti, M.; Giammona, G. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm., 2014, 88(3), 695-705.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.008] [PMID: 25281781]
[109]
Fares, M.M.; Salem, M.S.; Khanfar, M. Inulin and poly(acrylic acid) grafted inulin for dissolution enhancement and preliminary controlled release of poorly water-soluble Irbesartan drug. Int. J. Pharm., 2011, 410(1-2), 206-211.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.029] [PMID: 21421037]
[110]
Afinjuomo, F.; Abdella, S.; Youssef, S.H.; Song, Y.; Garg, S. Inulin and its application in drug delivery. Pharmaceuticals, 2021, 14(9), 855.
[http://dx.doi.org/10.3390/ph14090855] [PMID: 34577554]
[111]
Vervoort, L.; Vinckier, I.; Moldenaers, P.; Van Den Mooter, G.; Augustijns, P.; Kinget, R. Inulin hydrogels as carriers for colonic drug targeting. Rheological characterization of the hydrogel formation and the hydrogel network. J. Pharm. Sci., 1999, 88(2), 209-214.
[http://dx.doi.org/10.1021/js9802796] [PMID: 9950640]
[112]
Mandracchia, D.; Denora, N.; Franco, M.; Pitarresi, G.; Giammona, G.; Trapani, G. New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In vitro release of glutathione and oxytocin. J. Biomater. Sci. Polym. Ed., 2011, 22(1-3), 313-328.
[http://dx.doi.org/10.1163/092050609X12609582084086] [PMID: 20557715]
[113]
Castelli, F.; Sarpietro, M.G.; Micieli, D.; Ottimo, S.; Pitarresi, G.; Tripodo, G.; Carlisi, B.; Giammona, G. Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. Eur. J. Pharm. Sci., 2008, 35(1-2), 76-85.
[http://dx.doi.org/10.1016/j.ejps.2008.06.005] [PMID: 18619534]
[114]
Tripodo, G.; Perteghella, S.; Grisoli, P.; Trapani, A.; Torre, M.L.; Mandracchia, D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur. J. Pharm. Biopharm., 2019, 136, 250-258.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.022] [PMID: 30685506]
[115]
Kesharwani, S.S.; Dachineni, R.; Bhat, G.J.; Tummala, H. Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J. Drug Deliv. Sci. Technol., 2019, 54, 101254.
[http://dx.doi.org/10.1016/j.jddst.2019.101254]
[116]
Jiménez-Sánchez, M.; Pérez-Morales, R.; Goycoolea, F.M.; Mueller, M.; Praznik, W.; Loeppert, R.; Bermúdez-Morales, V.; Zavala-Padilla, G.; Ayala, M.; Olvera, C. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydr. Polym., 2019, 215, 160-169.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.060] [PMID: 30981341]
[117]
Kilimci, U.; Evli, S.; Öndeş, B.; Uygun, M.; Uygun, D.A. Inulinase immobilized lectin affinity magnetic nanoparticles for inulin hydrolysis. Appl. Biochem. Biotechnol., 2021, 193(5), 1415-1426.
[http://dx.doi.org/10.1007/s12010-020-03476-7] [PMID: 33417232]
[118]
Vaidyanath, S.; Harish, B.S.; Gayathri, G.; Trilokesh, C.; Uppuluri, K.B.; Anbazhagan, V. Maximizing the direct recovery and stabilization of cellulolytic enzymes from Trichoderma harzanium BPGF1 fermented broth using carboxymethyl inulin nanoparticles. Int. J. Biol. Macromol., 2020, 160, 964-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.185] [PMID: 32464205]
[119]
Hartzell, A.L.; Maldonado-Gómez, M.X.; Yang, J.; Hutkins, R.W.; Rose, D.J. In vitro digestion and fermentation of 5-formyl-aminosailcylate-inulin: A potential prodrug of 5-aminosalicylic acid. Bioact. Carbohydr. Diet. Fib., 2013, 2(1), 8-14.
[http://dx.doi.org/10.1016/j.bcdf.2013.08.001]
[120]
Jain, A.K.; Sood, V.; Bora, M.; Vasita, R.; Katti, D.S. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydr. Polym., 2014, 112, 225-234.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.087] [PMID: 25129739]
[121]
Srinarong, P.; Hämäläinen, S.; Visser, M.R.; Hinrichs, W.L.J.; Ketolainen, J.; Frijlink, H.W. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load. J. Pharm. Sci., 2011, 100(6), 2333-2342.
[http://dx.doi.org/10.1002/jps.22471] [PMID: 21254065]
[122]
Visser, M.R.; Baert, L.; Klooster, G.; Schueller, L.; Geldof, M.; Vanwelkenhuysen, I.; de Kock, H.; De Meyer, S.; Frijlink, H.W.; Rosier, J.; Hinrichs, W.L. Inulin solid dispersion technology to improve the absorption of the BCS class IV drug TMC240. Eur. J. Pharm. Biopharm., 2010, 74(2), 233-238.
[http://dx.doi.org/10.1016/j.ejpb.2009.10.004] [PMID: 19861163]
[123]
Essien, H.; Lai, J.Y.; Hwang, K.J. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes. J. Med. Chem., 1988, 31(5), 898-901.
[http://dx.doi.org/10.1021/jm00400a002] [PMID: 3361577]
[124]
Wang, L.; Song, Y.; Parikh, A.; Joyce, P.; Chung, R.; Liu, L.; Afinjuomo, F.; Hayball, J.D.; Petrovsky, N.; Barclay, T.G.; Garg, S. Doxorubicin-loaded delta inulin conjugates for controlled and targeted drug delivery: Development, characterization, and in vitro evaluation. Pharmaceutics, 2019, 11(11), 581.
[http://dx.doi.org/10.3390/pharmaceutics11110581] [PMID: 31698755]
[125]
Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydr. Polym., 2018, 199, 102-108.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.015] [PMID: 30143109]
[126]
Kokubun, S.; Ratcliffe, I.; Williams, P.A. The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin. Carbohydr. Polym., 2018, 194, 18-23.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.018] [PMID: 29801827]
[127]
Hartzell, A.L.; Maldonado-Gómez, M.X.; Hutkins, R.W.; Rose, D.J. Synthesis and in vitro digestion and fermentation of acylated inulin. Bioact. Carbohydr. Diet. Fib., 2013, 1(1), 81-88.
[http://dx.doi.org/10.1016/j.bcdf.2013.01.004]
[128]
Walz, M.; Hirth, T.; Weber, A. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying. Colloids Surf. A Physicochem. Eng. Asp., 2018, 536, 47-52.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.072]
[129]
Catenacci, L.; Sorrenti, M.; Perteghella, S.; Mandracchia, D.; Torre, M.L. Trapani, A.; Milanese, C.; Tripodo, G. Combination of inulin and β-] cyclodextrin properties for colon delivery of hydrophobic drugs. Int. J. Pharm., 2020, 589, 119861.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119861] [PMID: 32911044]
[130]
Jayanthi, K.G.; Suja, S.K. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb. Technol., 2020, 140, 109631.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109631] [PMID: 32912691]
[131]
Fayed, B.; Abood, A.; El-Sayed, H.S.; Hashem, A.M.; Mehanna, N.S.H. A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability. Carbohydr. Polym., 2018, 193, 137-143.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.068] [PMID: 29773365]
[132]
Molina, G.A.; Elizalde-Mata, A.; Hernández-Martínez, Á.R.; Fonseca, G.; Cruz Soto, M.; Rodríguez-Morales, Á.L.; Estevez, M. Synthesis and characterization of inulin-based responsive polyurethanes for breast cancer applications. Polymers , 2020, 12(4), 865.
[http://dx.doi.org/10.3390/polym12040865] [PMID: 32283702]
[133]
Kumar, S.; Kesharwani, S.S.; Kuppast, B.; Bakkari, M.A.; Tummala, H. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J. Control. Release, 2017, 261, 263-274.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.026] [PMID: 28669593]
[134]
Kirtania, M.D.; Kahali, N.; Maity, A. Inulin-based hydrogel plant and algal hydrogels for drug delivery and regenerative medicine; Woodhead Publishing, 2021, pp. 261-292.
[http://dx.doi.org/10.1016/B978-0-12-821649-1.00005-2]
[135]
Tabandeh, M.R.; Aminlari, M. Synthesis, physicochemical and immunological properties of oxidized inulin-l-asparaginase bioconjugate. J. Biotechnol., 2009, 141(3-4), 189-195.
[http://dx.doi.org/10.1016/j.jbiotec.2009.03.020] [PMID: 19433225]
[136]
Akram, W.; Garud, N.; Joshi, R. Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov. Ther., 2019, 13(1), 1-8.
[http://dx.doi.org/10.5582/ddt.2019.01000] [PMID: 30880316]
[137]
Sun, Q.; Arif, M.; Chi, Z.; Li, G.; Liu, C.G. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int. J. Biol. Macromol., 2021, 169, 206-215.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.094] [PMID: 33340633]
[138]
Lewis, H.B. The value of inulin as a foodstuff. J. Am. Med. Assoc., 1912, LVIII(16), 1176-1177.
[http://dx.doi.org/10.1001/jama.1912.04260040192004]
[139]
Roberfroid, M.B. Functional foods: concepts and application to inulin and oligofructose. Br. J. Nutr., 2002, 87(S2)(Suppl. 2), S139-S143.
[http://dx.doi.org/10.1079/BJN/2002529] [PMID: 12088510]
[140]
Zeng, X.; Du, Z.; Ding, X.; Zhao, Y.; Jiang, W. Preparation, characterization and in vitro hypoglycemic activity of banana condensed tannin–inulin conjugate. Food Funct., 2020, 11(9), 7973-7986.
[http://dx.doi.org/10.1039/D0FO01652G] [PMID: 32839802]
[141]
Liu, J.; Lu, J.; Wen, X.; Kan, J.; Jin, C. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int. J. Biol. Macromol., 2015, 72, 1479-1484.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.066] [PMID: 25316429]
[142]
Verraest, D.L.; Peters, J.A.; van Bekkum, H.; van Rosmalen, G.M. Carboxymethyl inulin: A new inhibitor for calcium carbonate precipitation. J. Am. Oil Chem. Soc., 1996, 73(1), 55-62.
[http://dx.doi.org/10.1007/BF02523448]
[143]
López-Molina, D.; Chazarra, S.; How, C.W.; Pruidze, N.; Navarro-Perán, E.; García-Cánovas, F.; García-Ruiz, P.A.; Rojas-Melgarejo, F.; Rodríguez-López, J.N. Cinnamate of inulin as a vehicle for delivery of colonic drugs. Int. J. Pharm., 2015, 479(1), 96-102.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.064] [PMID: 25550210]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy