Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

The General Neurocognitive Decline in Patients with Methamphetamine Use and Transient Methamphetamine-induced Psychosis is Primarily Determined by Oxidative and AGE-RAGE Stress

Author(s): Michael Maes*, Mazin Fadhil Altufaili, Amer Fadhil Alhaideri, Shatha Rouf Moustafa, Kristina Stoyanova, Mengqi Niu, Bo Zhou, Jing Li and Hussein Kadhem Al-Hakeim

Volume 24, Issue 20, 2024

Published on: 09 July, 2024

Page: [1816 - 1828] Pages: 13

DOI: 10.2174/0115680266320808240709061445

Price: $65

Abstract

Background: Chronic Methamphetamine (MA) usage is linked to oxidative and AGE (advanced glycation end products) - RAGE (receptors for AGEs) stress, changes in magnesium, calcium, and copper, increased psychotic symptoms, and neurocognitive deficits. Nevertheless, it is still unclear whether these biological pathways mediate the latter impairments.

Objective: This study aimed to investigate the relationships between neurocognition, the aforementioned biomarkers, and psychotic symptoms.

Methods: We recruited 67 participants, namely 40 patients diagnosed with MA-substance use and 27 healthy controls, and assessed the Brief Assessment of Cognition in Schizophrenia (BACS), symptoms of psychosis, excitation, and formal thought disorders, oxidative toxicity (computed as the sum of myeloperoxidase (MPO), oxidized high-density lipoprotein (HDL), oxidized low-DL, and malondialdehyde), antioxidant defenses (catalase, glutathione peroxidase, total antioxidant capacity, zinc, and HDL), and increased AGEs and RAGEs.

Results: We were able to extract one validated latent vector from the Mini-Mental State Examination score and the BACS test results (including executive functions, verbal fluency, and attention), labeled general cognitive decline (G-CoDe). We found that 76.1% of the variance in the G-CoDe was explained by increased oxidative toxicity, lowered antioxidant defenses, number of psychotic episodes, and MA dose. In patients with MA use, MPO was significantly associated with the GCoDe.

Conclusion: The use of MA induced mild cognitive impairments through MA-induced activation of detrimental outcome pathways, including oxidative and AGE-RAGE stress, and suppression of protective antioxidant pathways. Increased MPO, oxidative, and AGE-RAGE stress are new drug targets to prevent neurocognitive deficits and psychosis due to MA use.

« Previous
[1]
Jones, C.M.; Houry, D.; Han, B.; Baldwin, G.; Vivolo-Kantor, A.; Compton, W.M. Methamphetamine use in the United States: Epidemiological update and implications for prevention, treatment, and harm reduction. Ann. N. Y. Acad. Sci., 2022, 1508(1), 3-22.
[http://dx.doi.org/10.1111/nyas.14688] [PMID: 34561865]
[2]
Strickland, J.C.; Stoops, W.W.; Dunn, K.E.; Smith, K.E.; Havens, J.R. The continued rise of methamphetamine use among people who use heroin in the United States. Drug Alcohol Depend., 2021, 225, 108750.
[http://dx.doi.org/10.1016/j.drugalcdep.2021.108750] [PMID: 34052690]
[3]
Paulus, M.P.; Stewart, J.L. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder. JAMA Psychiatry, 2020, 77(9), 959-966.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.0246] [PMID: 32267484]
[4]
Stoneberg, D.M.; Shukla, R.K.; Magness, M.B. Global methamphetamine trends: An evolving problem. Int. Crim. Justice Rev., 2018, 28(2), 136-161.
[http://dx.doi.org/10.1177/1057567717730104]
[5]
UNODC. World Drug Report 2022 (Sales No. E.22.XI.8): Retrieved from United Nations Publication. 2022. Available from: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html
[6]
UNODC. World Drug Report 2021 (Sales No. E.21.XI.8): Retrieved from United Nations Publication. 2021. Available from: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html
[7]
Areca, P.M. Neuropathology of Drug Addictions and Substance Misuse; Elsevier, 2016.
[8]
Kalayasiri, R.; Dadwat, K.; Thika, S.; Sirivichayakul, S.; Maes, M. Methamphetamine (MA) use and MA-induced psychosis are associated with increasing aberrations in the compensatory immunoregulatory system, interleukin-1α, and CCL5 levels. Transl. Psychiatry, 2023, 13(1), 361.
[http://dx.doi.org/10.1038/s41398-023-02645-6] [PMID: 37996407]
[9]
Chiang, M.; Lombardi, D.; Du, J.; Makrum, U.; Sitthichai, R.; Harrington, A.; Shukair, N.; Zhao, M.; Fan, X. Methamphetamine-associated psychosis: Clinical presentation, biological basis, and treatment options. Hum. Psychopharmacol., 2019, 34(5), e2710.
[http://dx.doi.org/10.1002/hup.2710] [PMID: 31441135]
[10]
Voce, A.; Calabria, B.; Burns, R.; Castle, D.; McKetin, R. A systematic review of the symptom profile and course of methamphetamine-associated psychosis. Subst. Use Misuse, 2019, 54(4), 549-559.
[http://dx.doi.org/10.1080/10826084.2018.1521430] [PMID: 30693832]
[11]
Meredith, C.W.; Jaffe, C.; Ang-Lee, K.; Saxon, A.J. Implications of chronic methamphetamine use: A literature review. Harv. Rev. Psychiatry, 2005, 13(3), 141-154.
[http://dx.doi.org/10.1080/10673220591003605] [PMID: 16020027]
[12]
McKetin, R.; Lubman, D.I.; Najman, J.M.; Dawe, S.; Butterworth, P.; Baker, A.L. Does methamphetamine use increase violent behaviour? Evidence from a prospective longitudinal study. Addiction, 2014, 109(5), 798-806.
[http://dx.doi.org/10.1111/add.12474] [PMID: 24400972]
[13]
Harro, J. Neuropsychiatric adverse effects of amphetamine and methamphetamine. Int. Rev. Neurobiol., 2015, 120, 179-204.
[http://dx.doi.org/10.1016/bs.irn.2015.02.004] [PMID: 26070758]
[14]
McKetin, R. Methamphetamine psychosis: Insights from the past. Addiction, 2018, 113(8), 1522-1527.
[http://dx.doi.org/10.1111/add.14170] [PMID: 29516555]
[15]
Bernheim, A.; See, R.E.; Reichel, C.M. Chronic methamphetamine self-administration disrupts cortical control of cognition. Neurosci. Biobehav. Rev., 2016, 69, 36-48.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.020] [PMID: 27450578]
[16]
Al-Hakeim, H.K.; Altufaili, M.F.; Almulla, A.F.; Moustafa, S.R.; Maes, M. Increased lipid peroxidation and lowered antioxidant defenses predict methamphetamine induced psychosis. Cells, 2022, 11(22), 3694.
[http://dx.doi.org/10.3390/cells11223694] [PMID: 36429122]
[17]
Al-Hakeim, H.K.; Altufaili, M.F.; Alhaideri, A.F.; Almulla, A.F.; Moustafa, S.R.; Maes, M. Increased AGE–RAGE axis stress in methamphetamine abuse and methamphetamine-induced psychosis: Associations with oxidative stress and increased atherogenicity. Addict. Biol., 2023, 28(10), e13333.
[http://dx.doi.org/10.1111/adb.13333] [PMID: 37753569]
[18]
Lecomte, T.; Dumais, A.; Dugré, J.R.; Potvin, S. The prevalence of substance-induced psychotic disorder in methamphetamine misusers: A meta-analysis. Psychiatry Res., 2018, 268, 189-192.
[http://dx.doi.org/10.1016/j.psychres.2018.05.033] [PMID: 30041133]
[19]
Arunogiri, S.; Foulds, J.A.; McKetin, R.; Lubman, D.I. A systematic review of risk factors for methamphetamine-associated psychosis. Aust. N. Z. J. Psychiatry, 2018, 52(6), 514-529.
[http://dx.doi.org/10.1177/0004867417748750] [PMID: 29338289]
[20]
Thomas, E.; Lategan, H.; Verster, C.; Kidd, M.; Weich, L. Methamphetamine-induced psychosis: Clinical features, treatment modalities and outcomes. S. Afr. J. Psychiatry, 2016, 22(1), 6.
[http://dx.doi.org/10.4102/sajpsychiatry.v22i1.980] [PMID: 30263171]
[21]
Hart, C.L.; Marvin, C.B.; Silver, R.; Smith, E.E. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology, 2012, 37(3), 586-608.
[http://dx.doi.org/10.1038/npp.2011.276] [PMID: 22089317]
[22]
Potvin, S.; Pelletier, J.; Grot, S.; Hébert, C.; Barr, A.M.; Lecomte, T. Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis. Addict. Behav., 2018, 80, 154-160.
[http://dx.doi.org/10.1016/j.addbeh.2018.01.021] [PMID: 29407687]
[23]
Al-Musawi, A.F.; Al-Hakeim, H.K.; Al-Khfaji, Z.A.; Al-Haboby, I.H.; Almulla, A.F.; Stoyanov, D.S.; Maes, M. In schizophrenia, the effects of the IL-6/IL-23/Th17 axis on health-related quality of life and disabilities are partly mediated by generalized cognitive decline and the symptomatome. Int. J. Environ. Res. Public Health, 2022, 19(22), 15281.
[http://dx.doi.org/10.3390/ijerph192215281] [PMID: 36429996]
[24]
Maes, M. Major neurocognitive psychosis: A novel schizophrenia endophenotype class that is based on machine learning and resembles Kraepelin’s and Bleuler’s conceptions. Acta Neuropsychiatr., 2023, 35(3), 123-137.
[http://dx.doi.org/10.1017/neu.2022.32] [PMID: 36373497]
[25]
Maes, M.; Kanchanatawan, B. In (deficit) schizophrenia, a general cognitive decline partly mediates the effects of neuro-immune and neuro-oxidative toxicity on the symptomatome and quality of life. CNS Spectr., 2021, 2021, 1-10.
[http://dx.doi.org/10.1017/S1092852921000419] [PMID: 33843548]
[26]
Battle, D.E. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS, 2013, 25(2), 191-192.
[PMID: 24413388]
[27]
Gossop, M.; Darke, S.; Griffiths, P.; Hando, J.; Powis, B.; Hall, W.; Strang, J. The Severity of Dependence Scale (SDS): Psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction, 1995, 90(5), 607-614.
[http://dx.doi.org/10.1046/j.1360-0443.1995.9056072.x] [PMID: 7795497]
[28]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[29]
Overall, J.E.; Gorham, D.R. The brief psychiatric rating scale. Psychol. Rep., 1962, 10(3), 799-812.
[http://dx.doi.org/10.2466/pr0.1962.10.3.799]
[30]
Keefe, R.; Goldberg, T.E.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res., 2004, 68(2-3), 283-297.
[http://dx.doi.org/10.1016/j.schres.2003.09.011] [PMID: 15099610]
[31]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 1995, 57(1), 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[32]
Dean, AC; Groman, SM; Morales, AM; London, ED An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 2013, 38(2), 259-74.
[http://dx.doi.org/10.1038/npp.2012.179]
[33]
Fitzpatrick, R.E.; Rubenis, A.J.; Lubman, D.I.; Verdejo-Garcia, A. Cognitive deficits in methamphetamine addiction: Independent contributions of dependence and intelligence. Drug Alcohol Depend., 2020, 209, 107891.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.107891] [PMID: 32061948]
[34]
Ruchinskas, R.A.; Curyto, K.J. Cognitive screening in geriatric rehabilitation. Rehabil. Psychol., 2003, 48(1), 14-22.
[http://dx.doi.org/10.1037/0090-5550.48.1.14]
[35]
Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc., 1992, 40(9), 922-935.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01992.x] [PMID: 1512391]
[36]
Kanchanatawan, B.; Tangwongchai, S.; Supasitthumrong, T.; Sriswasdi, S.; Maes, M. Episodic memory and delayed recall are significantly more impaired in younger patients with deficit schizophrenia than in elderly patients with amnestic mild cognitive impairment. PLoS One, 2018, 13(5), e0197004.
[http://dx.doi.org/10.1371/journal.pone.0197004] [PMID: 29763451]
[37]
Almulla, A.F.; Moustafa, S.R.; Al-Dujaili, A.H.; Al-Hakeim, H.K.; Maes, M. Lowered serum cesium levels in schizophrenia: Association with immune-inflammatory biomarkers and cognitive impairments. Braz J Psychiatry., 2021, 43(2), 131-137.
[http://dx.doi.org/10.1590/1516-4446-2020-0908]
[38]
Almulla, A.F.; Al-Rawi, K.F.; Maes, M.; Al-Hakeim, H.K. In schizophrenia, immune-inflammatory pathways are strongly associated with depressive and anxiety symptoms, which are part of a latent trait which comprises neurocognitive impairments and schizophrenia symptoms. J. Affect. Disord., 2021, 287, 316-326.
[http://dx.doi.org/10.1016/j.jad.2021.03.062] [PMID: 33812245]
[39]
Al-Hakeim, H.K.; Almulla, A.F.; Al-Dujaili, A.H.; Maes, M. Construction of a neuro-immune-cognitive pathway-phenotype underpinning the phenome of deficit schizophrenia. Curr. Top. Med. Chem., 2020, 20(9), 747-758.
[http://dx.doi.org/10.2174/1568026620666200128143948] [PMID: 31994463]
[40]
Maes, M.; Sirivichayakul, S.; Matsumoto, A.K.; Michelin, A.P.; de Oliveira Semeão, L.; de Lima Pedrão, J.V.; Moreira, E.G ; Barbosa, D.S.; Carvalho, A.F.; Solmi, M.; Kanchanatawan, B. Lowered antioxidant defenses and increased oxidative toxicity are hallmarks of deficit schizophrenia: A nomothetic network psychiatry approach. Mol. Neurobiol., 2020, 57(11), 4578-4597.
[http://dx.doi.org/10.1007/s12035-020-02047-5] [PMID: 32754898]
[41]
Orellana, G.; Slachevsky, A. Executive functioning in schizophrenia. Front. Psychiatry, 2013, 4, 35.
[http://dx.doi.org/10.3389/fpsyt.2013.00035] [PMID: 23805107]
[42]
Orellana, G.; Slachevsky, A.; Peña, M. Executive attention impairment in first-episode schizophrenia. BMC Psychiatry, 2012, 12(1), 154.
[http://dx.doi.org/10.1186/1471-244X-12-154] [PMID: 22998680]
[43]
Tamminga, C.A.; Buchanan, R.W.; Gold, J.M. The role of negative symptoms and cognitive dysfunction in schizophrenia outcome. Int. Clin. Psychopharmacol., 1998, 13(Suppl. 3), S21-S26.
[http://dx.doi.org/10.1097/00004850-199803003-00004] [PMID: 9690966]
[44]
Harvey, P.D.; Green, M.F.; Bowie, C.; Loebel, A. The dimensions of clinical and cognitive change in schizophrenia: Evidence for independence of improvements. Psychopharmacology, 2006, 187(3), 356-363.
[http://dx.doi.org/10.1007/s00213-006-0432-1] [PMID: 16783539]
[45]
Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[46]
Kierdorf, K.; Fritz, G. RAGE regulation and signaling in inflammation and beyond. J. Leukoc. Biol., 2013, 94(1), 55-68.
[http://dx.doi.org/10.1189/jlb.1012519] [PMID: 23543766]
[47]
Sanmartin, A.; Foncea, R.; Laurindo, F.; Ebensperger, R.; Griendling, K.; Leighton, F. Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radic. Biol. Med., 2007, 42(11), 1671-1679.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.002] [PMID: 17462535]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy