Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

In silico Investigation on the Structural Insights into the Binding of Squalamine Inhibitor with Membrane-Bound Α-Synuclein

In Press, (this is not the final "Version of Record"). Available online 09 July, 2024
Author(s): Dorothy Das, Priyam Bharadwaz and Venkata Satish Kumar Mattaparthi*
Published on: 09 July, 2024

DOI: 10.2174/0115701646301714240703100842

Price: $95

Abstract

Background: Parkinson's disease (PD) and its associated symptoms are closely associated with the self-assembly of α-Synuclein (α-Syn). Squalamine is a naturally occurring chemical substance with established antiviral and anticancer properties, and its profound impact on the α- Syn aggregation both in vivo and in vitro is well studied. Examining its interaction with lipid vesicles, which are known to encourage nucleation, can signify the mechanism of action of squalamine. The squalamine molecule is believed to displace α-Syn from the surfaces of the lipid vesicles, therefore preventing the initial steps in the process of aggregation. Additionally, the squalamine molecule reduces the harmful effects of α-Syn oligomers in human neuroblastoma cells by preventing them from interacting with lipid membranes.

Objective: The aim of this study was to perform computational investigation of the conformational changes of membrane-bound α-Syn in the presence of squalamine inhibitor molecule

Method: Molecular Dynamics (MD) trajectory analysis was carried out to study the structural change of the α-Syn-squalamine conformers as a function of simulation time. The percentage of the secondary structural components of the α-Syn-squalamine complex was determined. Optimization of small molecule inhibitors was carried out using Density Functional Theory (DFT) analysis. Additionally, the values of electrophilicity (ω), nucleophilicity (N), Electron affinity (EA), and ionization potential (IP) were calculated.

Results: The docking of the α-Syn-squalamine complex revealed the binding site and the best structure was selected based on the highest docking vina score (-5.8), and the contact residues were listed. From the conformational snapshots of the α-Syn-squalamine complex, it was evident that the α-Syn remained stable, maintaining its integrity throughout the simulation. The α-helical content was found to be retained from the secondary structural content analysis. The ω and N of the squalamine molecule were calculated to be -0.84 and 3.25, respectively.

Conclusion: Our findings suggest that in the presence of a squalamine inhibitor molecule, α-Syn adopts a helical conformation that ensures stability and may indicate that the squalamine molecule causes gradual displacement of α-Syn across different regions within the lipid membrane.

[1]
Breydo, L.; Wu, J.W.; Uversky, V.N. α-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(2), 261-285.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.002] [PMID: 22024360]
[2]
Dettmer, U.; Selkoe, D.; Bartels, T. New insights into cellular α-synuclein homeostasis in health and disease. Curr. Opin. Neurobiol., 2016, 36, 15-22.
[http://dx.doi.org/10.1016/j.conb.2015.07.007] [PMID: 26282834]
[3]
Perni, M.; Galvagnion, C.; Maltsev, A.; Meisl, G.; Müller, M.B.D.; Challa, P.K.; Kirkegaard, J.B.; Flagmeier, P.; Cohen, S.I.A.; Cascella, R.; Chen, S.W.; Limbocker, R.; Sormanni, P.; Heller, G.T.; Aprile, F.A.; Cremades, N.; Cecchi, C.; Chiti, F.; Nollen, E.A.A.; Knowles, T.P.J.; Vendruscolo, M.; Bax, A.; Zasloff, M.; Dobson, C.M. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci., 2017, 114(6), E1009-E1017.
[http://dx.doi.org/10.1073/pnas.1610586114] [PMID: 28096355]
[4]
Buell, A.K.; Galvagnion, C.; Gaspar, R.; Sparr, E.; Vendruscolo, M.; Knowles, T.P.J.; Linse, S.; Dobson, C.M. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci., 2014, 111(21), 7671-7676.
[http://dx.doi.org/10.1073/pnas.1315346111] [PMID: 24817693]
[5]
Fink, A.L. The aggregation and fibrillation of alpha-synuclein. Acc. Chem. Res., 2006, 39(9), 628-634.
[http://dx.doi.org/10.1021/ar050073t] [PMID: 16981679]
[6]
Galvagnion, C.; Buell, A.K.; Meisl, G.; Michaels, T.C.T.; Vendruscolo, M.; Knowles, T.P.J.; Dobson, C.M. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol., 2015, 11(3), 229-234.
[http://dx.doi.org/10.1038/nchembio.1750] [PMID: 25643172]
[7]
Brycki, B.; Koenig, H.; Pospieszny, T. Quaternary alkylammonium conjugates of steroids: Synthesis, molecular structure, and biological studies. Molecules, 2015, 20(11), 20887-20900.
[http://dx.doi.org/10.3390/molecules201119735] [PMID: 26610455]
[8]
Moore, K.S.; Wehrli, S.; Roder, H.; Rogers, M.; Forrest, J.N., Jr; McCrimmon, D.; Zasloff, M. Squalamine: an aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci., 1993, 90(4), 1354-1358.
[http://dx.doi.org/10.1073/pnas.90.4.1354] [PMID: 8433993]
[9]
Khelaifia, S.; Drancourt, M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin. Microbiol. Infect., 2012, 18(9), 841-848.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03913.x] [PMID: 22748132]
[10]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[11]
Schlottmann, P.G.; Alezzandrini, A.A.; Zas, M.; Rodriguez, F.J.; Luna, J.D.; Wu, L. New treatment modalities for neovascular age-related macular degeneration. Asia Pac. J. Ophthalmol., 2017, 6(6), 514-519.
[PMID: 28933517]
[12]
Yeung, T.; Gilbert, G.E.; Shi, J.; Silvius, J.; Kapus, A.; Grinstein, S. Membrane phosphatidylserine regulates surface charge and protein localization. Science, 2008, 319(5860), 210-213.
[http://dx.doi.org/10.1126/science.1152066] [PMID: 18187657]
[13]
Sumioka, A.; Yan, D.; Tomita, S. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron, 2010, 66(5), 755-767.
[http://dx.doi.org/10.1016/j.neuron.2010.04.035] [PMID: 20547132]
[14]
Alexander, R.T.; Jaumouillé, V.; Yeung, T.; Furuya, W.; Peltekova, I.; Boucher, A.; Zasloff, M.; Orlowski, J.; Grinstein, S. Membrane surface charge dictates the structure and function of the epithelial Na + /H + exchanger. EMBO J., 2011, 30(4), 679-691.
[http://dx.doi.org/10.1038/emboj.2010.356] [PMID: 21245831]
[15]
Dou, T.; Kurouski, D. Phosphatidylcholine and phosphatidylserine uniquely modify the secondary structure of α-synuclein oligomers formed in their presence at the early stages of protein aggregation. ACS Chem. Neurosci., 2022, 13(16), 2380-2385.
[http://dx.doi.org/10.1021/acschemneuro.2c00355] [PMID: 35904551]
[16]
Limbocker, R.; Staats, R.; Chia, S.; Ruggeri, F.S.; Mannini, B.; Xu, C.K.; Perni, M.; Cascella, R.; Bigi, A.; Sasser, L.R.; Block, N.R.; Wright, A.K.; Kreiser, R.P.; Custy, E.T.; Meisl, G.; Errico, S.; Habchi, J.; Flagmeier, P.; Kartanas, T.; Hollows, J.E.; Nguyen, L.T.; LeForte, K.; Barbut, D.; Kumita, J.R.; Cecchi, C.; Zasloff, M.; Knowles, T.P.J.; Dobson, C.M.; Chiti, F.; Vendruscolo, M. Squalamine and its derivatives modulate the aggregation of amyloid-β and α-synuclein and suppress the toxicity of their oligomers. Front. Neurosci., 2021, 15, 680026.
[http://dx.doi.org/10.3389/fnins.2021.680026] [PMID: 34220435]
[17]
West, C.L.; Mao, Y.K.; Delungahawatta, T.; Amin, J.Y.; Farhin, S.; McQuade, R.M.; Diwakarla, S.; Pustovit, R.; Stanisz, A.M.; Bienenstock, J.; Barbut, D.; Zasloff, M.; Furness, J.B.; Kunze, W.A. Squalamine restores the function of the enteric nervous system in mouse models of parkinson’s disease. J. Parkinsons Dis., 2020, 10(4), 1477-1491.
[http://dx.doi.org/10.3233/JPD-202076] [PMID: 32925094]
[18]
Grosso Jasutkar, H.; Oh, S.E.; Mouradian, M.M. Therapeutics in the pipeline targeting α-synuclein for parkinson’s disease. Pharmacol. Rev., 2022, 74(1), 207-237.
[http://dx.doi.org/10.1124/pharmrev.120.000133] [PMID: 35017177]
[19]
Camilleri, M.; Subramanian, T.; Pagan, F.; Isaacson, S.; Gil, R.; Hauser, R.A.; Feldman, M.; Goldstein, M.; Kumar, R.; Truong, D.; Chhabria, N.; Walter, B.L.; Eskenazi, J.; Riesenberg, R.; Burdick, D.; Tse, W.; Molho, E.; Robottom, B.; Bhatia, P.; Kadimi, S.; Klos, K.; Shprecher, D.; Marquez-Mendoza, O.; Hidalgo, G.; Grill, S.; Li, G.; Mandell, H.; Hughes, M.; Stephenson, S.; Vandersluis, J.; Pfeffer, M.; Duker, A.; Shivkumar, V.; Kinney, W.; MacDougall, J.; Zasloff, M.; Barbut, D. Oral ENT-01 targets enteric neurons to treat constipation in parkinson disease. Ann. Intern. Med., 2022, 175(12), 1666-1674.
[http://dx.doi.org/10.7326/M22-1438] [PMID: 36343348]
[20]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K. The protein data bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(6), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[21]
Ulmer, T.S.; Bax, A.; Cole, N.B.; Nussbaum, R.L. Structure and dynamics of micelle-bound human alpha-synuclein. J. Biol. Chem., 2005, 280(10), 9595-9603.
[http://dx.doi.org/10.1074/jbc.M411805200] [PMID: 15615727]
[22]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[23]
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305.
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]
[24]
Weigend, F. Accurate coulomb-fitting basis sets for H to RN. Phys. Chem. Chem. Phys., 2006, 8(9), 1057-1065.
[http://dx.doi.org/10.1039/b515623h] [PMID: 16633586]
[25]
Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem., 2003, 24(6), 669-681.
[http://dx.doi.org/10.1002/jcc.10189] [PMID: 12666158]
[26]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15), 154104.
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.E.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Young, D.W.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, R.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.
[28]
Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; Gaussian Inc.: Pittsburgh, 2003. Available from: https://www.scienceopen.com/document?vid=6652d352-0292-499f-88d6-2221dae56281
[29]
Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB- Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res., 2022, 50(W1), W159-W164.
[http://dx.doi.org/10.1093/nar/gkac394] [PMID: 35609983]
[30]
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[31]
Fusco, G.; Pape, T.; Stephens, A.D.; Mahou, P.; Costa, A.R.; Kaminski, C.F.; Kaminski Schierle, G.S.; Vendruscolo, M.; Veglia, G.; Dobson, C.M.; De Simone, A.; De Simone, A. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat. Commun., 2016, 7(1), 12563.
[http://dx.doi.org/10.1038/ncomms12563] [PMID: 27640673]
[32]
Das, D.; Mattaparthi, V.S.K. Conformational dynamics of A30g α-synuclein that causes familial Parkinson’s disease. J. Biomol. Struct. Dyn., 2023, 2023, 1-13.
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera : A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; Gohlke, H.; Goetz, A.W.; Greene, D.; Harris, R.; Homeyer, N.; Huang, Y.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T.S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D.J.; Merz, K.M.; Miao, Y.; Monard, G.; Nguyen, C.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D.R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.; Simmerling, C.L.; Smith, J.; Salomon Ferrer, R.; Swails, J.; Walker, R.C.; Wang, J.; Wei, H.; Wolf, R.M.; Wu, X.; Xiao, L.; York, D.M.; Kollman, P.A. AMBER 2018; University of California: San Francisco, 2018. Available from: https://ambermd.org/doc12/Amber18.pdf
[35]
Henriques, J.; Cragnell, C.; Skepö, M. Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment. J. Chem. Theory Comput., 2015, 11(7), 3420-3431.
[http://dx.doi.org/10.1021/ct501178z] [PMID: 26575776]
[36]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N .log( N ) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[37]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with Amber on gpus. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[38]
Wang, Z.; Pan, H.; Sun, H.; Kang, Y.; Liu, H.; Cao, D.; Hou, T. fastDRH: A webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief. Bioinform., 2022, 23(5), bbac201.
[http://dx.doi.org/10.1093/bib/bbac201] [PMID: 35580866]
[39]
Lu, J.; Kobertz, W.R.; Deutsch, C. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol., 2007, 371(5), 1378-1391.
[http://dx.doi.org/10.1016/j.jmb.2007.06.038] [PMID: 17631312]
[40]
Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem., 2008, 73(12), 4615-4624.
[http://dx.doi.org/10.1021/jo800572a] [PMID: 18484771]
[41]
Aksimentiev, A.; Schulten, K. Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J., 2005, 88(6), 3745-3761.
[http://dx.doi.org/10.1529/biophysj.104.058727] [PMID: 15764651]
[42]
Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105(26), 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[43]
Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[44]
Parr, R.G.; Weitao, Y. Density-functional theory of atoms and molecules; Oxford Science Publications: New York, 1995, pp. i-iv.
[http://dx.doi.org/10.1093/oso/9780195092769.001.0001]
[45]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[46]
Land, H.; Humble, M.S. Yasara: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol., 2018, 1685, 43-67.
[http://dx.doi.org/10.1007/978-1-4939-7366-8_4] [PMID: 29086303]
[47]
Das, D.; Bharadwaz, P.; Mattaparthi, V.S.K. Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions. J. Biomol. Struct. Dyn., 2023, 1-12.
[http://dx.doi.org/10.1080/07391102.2023.2262599] [PMID: 37768058]
[48]
Costantini, S.; Colonna, G.; Facchiano, A.M. ESBRI: A web server for evaluating salt bridges in proteins. Bioinformation, 2008, 3(3), 137-138.
[http://dx.doi.org/10.6026/97320630003137] [PMID: 19238252]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy