Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Biochemical Advances in Antitubercular Drugs: Challenges and Future

Author(s): Akanksha Jain, Rajesh Kumar, Poonam Mothsra, Atul Kumar Sharma, Anil Kumar Singh* and Yogesh Kumar*

Volume 24, Issue 21, 2024

Published on: 25 June, 2024

Page: [1829 - 1855] Pages: 27

DOI: 10.2174/0115680266286294240610102911

Price: $65

Abstract

Tuberculosis (TB) is one of the leading causes of death world-wide after AIDS. It infects around one-third of global population and approximately two million people die annually from this disease because it is a very contagious disease spread by Mycobacterium tuberculosis. The increasing number of drug-resistant strains and the failure of conventional treatments against this strain are the challenges of the coming decades. New therapeutic techniques aim to confirm cure without deterioration, to reduce deaths, contagions and the formation of drug-resistant strains. A plethora of new diagnostic tests are available to diagnose the active tuberculosis, screen latent M. tuberculosis infection, and to identify drug-resistant strains of M. tuberculosis. When effective prevention strategies do not prevail, high rates of early case detection and successive cures to control TB emergence would not be possible. In this review, we discussed the structural features of M. tuberculosis, Multi drug resistance tuberculosis (MDR-TB), extremely drug-resistant tuberculosis (XDR-TB), the mechanism of M. tuberculosis infection, the mode of action of first and second-line antitubercular drugs, the mechanism of resistance to the existing drugs, compounds in preclinical and clinical trial and drugs presently available for the treatment of tuberculosis. Moreover, the new diagnostic techniques to detect M. tuberculosis are also discussed in this review.

Next »
[1]
Nathavitharana, R.R.; Friedland, J.S. A tale of two global emergencies: Tuberculosis control efforts can learn from the Ebola outbreak. Eur. Respir. J., 2015, 46(2), 293-296.
[http://dx.doi.org/10.1183/13993003.00436-2015] [PMID: 26232473]
[2]
World Health Organization. Global tuberculosis report 2023. 2023. Available From: https://www.who.int/publications/i/ item/9789240083851
[3]
World Health Organization. What’s new in the TB section of the 2023 WHO model lists of essential medicines. 2023. Available From: https://www.who.int/news/item/09-08-2023-what-s- new-in-the-tb-section-of-the-2023-who-model-lists-of-essential-medicines
[4]
Zhu, H.; Zhou, X.; Zhuang, Z.; Li, L.; Bi, J.; Mi, K. Advances of new drugs bedaquiline and delamanid in the treatment of multi-drug resistant tuberculosis in children. Front. Cell. Infect. Microbiol., 2023, 13, 1183597.
[http://dx.doi.org/10.3389/fcimb.2023.1183597] [PMID: 37384221]
[5]
Li, S.; Poulton, N.C.; Chang, J.S.; Azadian, Z.A.; DeJesus, M.A.; Ruecker, N.; Zimmerman, M.D.; Eckartt, K.A.; Bosch, B.; Engelhart, C.A.; Sullivan, D.F.; Gengenbacher, M.; Dartois, V.A.; Schnappinger, D.; Rock, J.M. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat. Microbiol., 2022, 7(6), 766-779.
[http://dx.doi.org/10.1038/s41564-022-01130-y] [PMID: 35637331]
[6]
Ness, T.; Van, L.H.; Petermane, I.; Duarte, R.; Lange, C.; Menzies, D.; Cirillo, D.M. Rolling out new anti-tuberculosis drugs without diagnostic capacity. Breathe, 2023, 19(2), 230084.
[http://dx.doi.org/10.1183/20734735.0084-2023] [PMID: 37492347]
[7]
Lange, C.; Köhler, N.; Günther, G. Regimens for drug-resistant tuberculosis. N. Engl. J. Med., 2023, 388(2), 190.
[PMID: 36630637]
[8]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[http://dx.doi.org/10.1038/nrmicro2236] [PMID: 19855401]
[9]
Esmail, H.; Barry, C.E., III; Young, D.B.; Wilkinson, R.J. The ongoing challenge of latent tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1645), 20130437.
[http://dx.doi.org/10.1098/rstb.2013.0437] [PMID: 24821923]
[10]
Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; Menzies, D.; Raviglione, M. Tuberculosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16076.
[http://dx.doi.org/10.1038/nrdp.2016.76] [PMID: 27784885]
[11]
Duncan, K.; Barry, C.E., III Prospects for new antitubercular drugs. Curr. Opin. Microbiol., 2004, 7(5), 460-465.
[http://dx.doi.org/10.1016/j.mib.2004.08.011] [PMID: 15451500]
[12]
Bos, K.I.; Harkins, K.M.; Herbig, A.; Coscolla, M.; Weber, N.; Comas, I.; Forrest, S.A.; Bryant, J.M.; Harris, S.R.; Schuenemann, V.J.; Campbell, T.J.; Majander, K.; Wilbur, A.K.; Guichon, R.A.; Wolfe Steadman, D.L.; Cook, D.C.; Niemann, S.; Behr, M.A.; Zumarraga, M.; Bastida, R.; Huson, D.; Nieselt, K.; Young, D.; Parkhill, J.; Buikstra, J.E.; Gagneux, S.; Stone, A.C.; Krause, J. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 2014, 514(7523), 494-497.
[http://dx.doi.org/10.1038/nature13591] [PMID: 25141181]
[13]
Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; Yeboah-Manu, D.; Bothamley, G.; Mei, J.; Wei, L.; Bentley, S.; Harris, S.R.; Niemann, S.; Diel, R.; Aseffa, A.; Gao, Q.; Young, D.; Gagneux, S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet., 2013, 45(10), 1176-1182.
[http://dx.doi.org/10.1038/ng.2744] [PMID: 23995134]
[14]
Oh, P.; Granich, R.; Scott, J.; Sun, B.; Joseph, M.; Stringfield, C.; Thisdell, S.; Staley, J.; Workman-Malcolm, D.; Borenstein, L.; Lehnkering, E.; Ryan, P.; Soukup, J.; Nitta, A.; Flood, J. Human exposure following Mycobacterium tuberculosis infection of multiple animal species in a Metropolitan Zoo. Emerg. Infect. Dis., 2002, 8(11), 1290-1293.
[http://dx.doi.org/10.3201/eid0811.020302] [PMID: 12453358]
[15]
Fitzgerald, D.W.; Sterling, T.R.; Haas, D.W. Mycobacterium tuberculosis. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases; Philadelphia: W.B. Saunders, 2015; pp. 2787-2818.
[16]
Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem., 1995, 64(1), 29-63.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000333] [PMID: 7574484]
[17]
Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R., Jr; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem. J., 2019, 476(14), 1995-2016.
[http://dx.doi.org/10.1042/BCJ20190324] [PMID: 31320388]
[18]
Ortalo-Magné, A.; Lemassu, A.; Lanéelle, M.A.; Bardou, F.; Silve, G.; Gounon, P.; Marchal, G.; Daffé, M. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol., 1996, 178(2), 456-461.
[http://dx.doi.org/10.1128/jb.178.2.456-461.1996] [PMID: 8550466]
[19]
Ortalo-Magné, A.; Dupont, M.A.; Lemassu, A.; Andersen, A.B.; Gounon, P.; Mamadou, D. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology (Reading), 1995, 141(7), 1609-1620.
[http://dx.doi.org/10.1099/13500872-141-7-1609] [PMID: 7551029]
[20]
Warner, D.F.; Koch, A.; Mizrahi, V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol., 2015, 23(1), 14-21.
[http://dx.doi.org/10.1016/j.tim.2014.10.005] [PMID: 25468790]
[21]
Reed, M.B.; Domenech, P.; Manca, C.; Su, H.; Barczak, A.K.; Kreiswirth, B.N.; Kaplan, G.; Barry, C.E., III A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 2004, 431(7004), 84-87.
[http://dx.doi.org/10.1038/nature02837] [PMID: 15343336]
[22]
Damtie, D.; Woldeyohannes, D.; Tebeje, B. Review on molecular mechanism of first line antibiotic resistance in mycobacterium tuberculosis. Mycobact. Dis., 2014, 4, 174.
[23]
Blanchard, J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem., 1996, 65(1), 215-239.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001243] [PMID: 8811179]
[24]
Danilchanka, O.; Pires, D.; Anes, E.; Niederweis, M. The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules. Antimicrob. Agents Chemother., 2015, 59(4), 2328-2336.
[http://dx.doi.org/10.1128/AAC.04222-14] [PMID: 25645841]
[25]
Baek, S.H.; Li, A.H.; Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol., 2011, 9(5), e1001065.
[http://dx.doi.org/10.1371/journal.pbio.1001065] [PMID: 21629732]
[26]
Daniel, J.; Deb, C.; Dubey, V.S.; Sirakova, T.D.; Abomoelak, B.; Morbidoni, H.R.; Kolattukudy, P.E. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol., 2004, 186(15), 5017-5030.
[http://dx.doi.org/10.1128/JB.186.15.5017-5030.2004] [PMID: 15262939]
[27]
Baker, J.J.; Abramovitch, R.B. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci. Rep., 2018, 8(1), 4168.
[http://dx.doi.org/10.1038/s41598-018-22343-4] [PMID: 29520087]
[28]
Knutson, K.L.; Hmama, Z.; Herrera-Velit, P.; Rochford, R.; Reiner, N.E. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J. Biol. Chem., 1998, 273(1), 645-652.
[http://dx.doi.org/10.1074/jbc.273.1.645] [PMID: 9417127]
[29]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[30]
Seung, K.J.; Gelmanova, i.e.; Peremitin, G.G.; Golubchikova, V.T.; Pavlova, V.E.; Sirotkina, O.B.; Yanova, G.V.; Strelis, A.K. The effect of initial drug resistance on treatment response and acquired drug resistance during standardized short-course chemotherapy for tuberculosis. Clin. Infect. Dis., 2004, 39(9), 1321-1328.
[http://dx.doi.org/10.1086/425005] [PMID: 15494909]
[31]
Gelmanova, I.Y.; Keshavjee, S.; Golubchikova, V.T.; Berezina, V.I.; Strelis, A.K.; Yanova, G.V.; Atwood, S.; Murray, M. Barriers to successful tuberculosis treatment in Tomsk, Russian Federation: Non-adherence, default and the acquisition of multidrug resistance. Bull. World Health Organ., 2007, 85(9), 703-711.
[http://dx.doi.org/10.2471/BLT.06.038331] [PMID: 18026627]
[32]
Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; McHugh, T.D.; Wills, G.H.; Bateson, A.; Hunt, R.; Van Niekerk, C.; Li, M.; Olugbosi, M.; Spigelman, M. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2020, 382(10), 893-902.
[http://dx.doi.org/10.1056/NEJMoa1901814] [PMID: 32130813]
[33]
Yu, W.; Wang, Y.; Mei, J.; Hu, F.; Ji, L. Overview of tuberculosis BT. In: Tuberculosis Control in Migrating Population; Yu, W.; Lu, P-X.; Tan, W., Eds.; Springer: Singapore, 2020; pp. 1-10.
[34]
Orme, I.M.; Robinson, R.T.; Cooper, A.M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol., 2015, 16(1), 57-63.
[http://dx.doi.org/10.1038/ni.3048] [PMID: 25521685]
[35]
Watford, W.T.; Wright, J.R.; Hester, C.G.; Jiang, H.; Frank, M.M. Surfactant protein A regulates complement activation. J. Immunol., 2001, 167(11), 6593-6600.
[http://dx.doi.org/10.4049/jimmunol.167.11.6593] [PMID: 11714829]
[36]
Russell, D.G. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol. Rev., 2011, 240(1), 252-268.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00984.x] [PMID: 21349098]
[37]
Wolf, A.J.; Desvignes, L.; Linas, B.; Banaiee, N.; Tamura, T.; Takatsu, K.; Ernst, J.D. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med., 2008, 205(1), 105-115.
[http://dx.doi.org/10.1084/jem.20071367] [PMID: 18158321]
[38]
Samstein, M.; Schreiber, H.A.; Leiner, I.M.; Sušac, B.; Glickman, M.S.; Pamer, e.g. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife, 2013, 2, e01086.
[http://dx.doi.org/10.7554/eLife.01086] [PMID: 24220507]
[39]
Rastogi, N.; Labrousse, V. Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Antimicrob. Agents Chemother., 1991, 35(3), 462-470.
[http://dx.doi.org/10.1128/AAC.35.3.462] [PMID: 1828135]
[40]
Tobin, D.M.; Roca, F.J.; Oh, S.F.; McFarland, R.; Vickery, T.W.; Ray, J.P.; Ko, D.C.; Zou, Y.; Bang, N.D.; Chau, T.T.H.; Vary, J.C.; Hawn, T.R.; Dunstan, S.J.; Farrar, J.J.; Thwaites, G.E.; King, M.C.; Serhan, C.N.; Ramakrishnan, L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012, 148(3), 434-446.
[http://dx.doi.org/10.1016/j.cell.2011.12.023] [PMID: 22304914]
[41]
Lalvani, A.; Behr, M.A.; Sridhar, S. Innate immunity to TB: A druggable balancing act. Cell, 2012, 148(3), 389-391.
[http://dx.doi.org/10.1016/j.cell.2012.01.026] [PMID: 22304907]
[42]
Sotgiu, G.; Centis, R.; D’ambrosio, L.; Migliori, G.B. Tuberculosis treatment and drug regimens. Cold Spring Harb. Perspect. Med., 2015, 5(5), a017822.
[http://dx.doi.org/10.1101/cshperspect.a017822] [PMID: 25573773]
[43]
Heym, B.; Alzari, P.M.; Honoré, N.; Cole, S.T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol., 1995, 15(2), 235-245.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02238.x] [PMID: 7746145]
[44]
Mdluli, K.; Slayden, R.A.; Zhu, Y.; Ramaswamy, S.; Pan, X.; Mead, D.; Crane, D.D.; Musser, J.M.; Barry, C.E., III Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science, 1998, 280(5369), 1607-1610.
[http://dx.doi.org/10.1126/science.280.5369.1607] [PMID: 9616124]
[45]
Cohen, K.A.; Bishai, W.R.; Pym, A.S. Molecular basis of drug resistance in Mycobacterium tuberculosis. Microbiol. Spectr., 2014, 2(3), 2.3.07.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0036-2013] [PMID: 26103975]
[46]
Youatt, J. A review of the action of isoniazid. Am. Rev. Respir. Dis., 1969, 99(5), 729-749.
[PMID: 4306211]
[47]
Saxena, N.; Srivastava, N.; Shukla, P.; Tripathi, G.K. The drug discovery development for treatment of tuberculosis. J. Drug Deliv. Ther., 2019, 9, 802-819.
[48]
Wimpenny, J.W.T. The uptake and fate of Isoniazid in Mycobacterium tuberculosis var. bovis BCG. J. Gen. Microbiol., 1967, 47(3), 389-403.
[http://dx.doi.org/10.1099/00221287-47-3-389] [PMID: 5340775]
[49]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[50]
Vilchèze, C.; Jacobs, W.R., Jr The mechanism of isoniazid killing: Clarity through the scope of genetics. Annu. Rev. Microbiol., 2007, 61(1), 35-50.
[http://dx.doi.org/10.1146/annurev.micro.61.111606.122346] [PMID: 18035606]
[51]
Rozwarski, D.A.; Grant, G.A.; Barton, D.H.R.; Jacobs, W.R., Jr; Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347), 98-102.
[http://dx.doi.org/10.1126/science.279.5347.98] [PMID: 9417034]
[52]
Adams, R.A.; Leon, G.; Miller, N.M.; Reyes, S.P.; Thantrong, C.H.; Thokkadam, A.M.; Lemma, A.S.; Sivaloganathan, D.M.; Wan, X.; Brynildsen, M.P. Rifamycin antibiotics and the mechanisms of their failure. J. Antibiot., 2021, 74(11), 786-798.
[http://dx.doi.org/10.1038/s41429-021-00462-x] [PMID: 34400805]
[53]
Gale, E.F.; Cundliffe, E.; Reynolds, P.E.; Richmond, M.H.; Waring, M.J. The molecular basis of antibiotic action; London: John Wiley & Sons, 1972.
[54]
Levin, M.E.; Hatfull, G.F. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol. Microbiol., 1993, 8(2), 277-285.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01572.x] [PMID: 8316080]
[55]
Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2(3), 164-168.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[56]
Caws, M.; Duy, P.M.; Tho, D.Q.; Lan, N.T.N.; Hoa, D.V.; Farrar, J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J. Clin. Microbiol., 2006, 44(7), 2333-2337.
[http://dx.doi.org/10.1128/JCM.00330-06] [PMID: 16825345]
[57]
Saito, H.; Tomioka, H.; Sato, K.; Emori, M.; Yamane, T.; Yamashita, K.; Hosoe, K.; Hidaka, T. in vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob. Agents Chemother., 1991, 35(3), 542-547.
[http://dx.doi.org/10.1128/AAC.35.3.542] [PMID: 2039206]
[58]
Gillespie, S.H. Evolution of drug resistance in Mycobacterium tuberculosis: Clinical and molecular perspective. Antimicrob. Agents Chemother., 2002, 46(2), 267-274.
[http://dx.doi.org/10.1128/AAC.46.2.267-274.2002] [PMID: 11796329]
[59]
Phillips, I.; Shannon, K.P. Aminoglycosides and aminocyclitols. In: Antibiotic Chemotherapy, 7th ed; Churchill Livingstone: New York, NY, 1997; pp. 164-201.
[60]
Wolff, M.E. Burgerʼs medicinal chemistry and drug discovery. Am. J. Ther., 1996, 3(8), 608.
[http://dx.doi.org/10.1097/00045391-199608000-00012]
[61]
Finken, M.; Kirschner, P.; Meier, A.; Wrede, A.; Böttger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis : Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol., 1993, 9(6), 1239-1246.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01253.x] [PMID: 7934937]
[62]
McCune, R.M.; Feldmann, F.M.; McDermott, W. Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J. Exp. Med., 1966, 123(3), 469-486.
[http://dx.doi.org/10.1084/jem.123.3.469] [PMID: 4957011]
[63]
Konno, K.; Feldmann, F.M.; McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis., 1967, 95(3), 461-469.
[PMID: 4225184]
[64]
Heifets, L.; Lindholm-Levy, P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis., 1992, 145(5), 1223-1225.
[http://dx.doi.org/10.1164/ajrccm/145.5.1223] [PMID: 1586071]
[65]
Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(3), 540-543.
[http://dx.doi.org/10.1128/AAC.41.3.540] [PMID: 9055989]
[66]
Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 1996, 2(6), 662-667.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[67]
Inderlied, C.B.; Barbara-Burnham, L.; Wu, M.; Young, L.S.; Bermudez, L.E. Activities of the benzoxazinorifamycin KRM 1648 and ethambutol against Mycobacterium avium complex in vitro and in macrophages. Antimicrob. Agents Chemother., 1994, 38(8), 1838-1843.
[http://dx.doi.org/10.1128/AAC.38.8.1838] [PMID: 7986017]
[68]
Belanger, A.E.; Besra, G.S.; Ford, M.E.; Mikusová, K.; Belisle, J.T.; Brennan, P.J.; Inamine, J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA, 1996, 93(21), 11919-11924.
[http://dx.doi.org/10.1073/pnas.93.21.11919] [PMID: 8876238]
[69]
Telenti, A.; Philipp, W.J.; Sreevatsan, S.; Bernasconi, C.; Stockbauer, K.E.; Wieles, B.; Musser, J.M.; Jacobs, W.R., Jr The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med., 1997, 3(5), 567-570.
[http://dx.doi.org/10.1038/nm0597-567] [PMID: 9142129]
[70]
Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; Higashi, J.M.; Ho, C.S.; Hopewell, P.C.; Keshavjee, S.A.; Lienhardt, C.; Menzies, R.; Merrifield, C.; Narita, M.; O’Brien, R.; Peloquin, C.A.; Raftery, A.; Saukkonen, J.; Schaaf, H.S.; Sotgiu, G.; Starke, J.R.; Migliori, G.B.; Vernon, A. Official american thoracic society/centers for disease control and prevention/infectious diseases society of america clinical practice guidelines: Treatment of drug-susceptible tuberculosis. Clin. Infect. Dis., 2016, 63(7), e147-e195.
[http://dx.doi.org/10.1093/cid/ciw376] [PMID: 27516382]
[71]
Berrada, Z.L.; Lin, S.Y.G.; Rodwell, T.C.; Nguyen, D.; Schecter, G.F.; Pham, L.; Janda, J.M.; Elmaraachli, W.; Catanzaro, A.; Desmond, E. Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn. Microbiol. Infect. Dis., 2016, 85(2), 177-181.
[http://dx.doi.org/10.1016/j.diagmicrobio.2016.01.019] [PMID: 27036978]
[72]
Hofmann, S.G. D -Cycloserine for treating anxiety disorders: Making good exposures better and bad exposures worse. Depress. Anxiety, 2014, 31(3), 175-177.
[http://dx.doi.org/10.1002/da.22257] [PMID: 24677604]
[73]
David, H.L.; Takayama, K.; Goldman, D.S. Susceptibility of mycobacterial D-alanyl-D-alanine synthetase to D-cycloserine. Am. Rev. Respir. Dis., 1969, 100(4), 579-581.
[PMID: 4981706]
[74]
Cáceres, N.E.; Harris, N.B.; Wellehan, J.F.; Feng, Z.; Kapur, V.; Barletta, R.G. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol., 1997, 179(16), 5046-5055.
[http://dx.doi.org/10.1128/jb.179.16.5046-5055.1997] [PMID: 9260945]
[75]
Chacon, O.; Feng, Z.; Harris, N.B.; Cáceres, N.E.; Adams, L.G.; Barletta, R.G. Mycobacterium smegmatisD -alanine racemase mutants are not dependent on D -alanine for growth. Antimicrob. Agents Chemother., 2002, 46(1), 47-54.
[http://dx.doi.org/10.1128/AAC.46.2.47-54.2002] [PMID: 11751110]
[76]
Feng, Z.; Barletta, R.G. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother., 2003, 47(1), 283-291.
[http://dx.doi.org/10.1128/AAC.47.1.283-291.2003] [PMID: 12499203]
[77]
Baulard, A.R.; Betts, J.C.; Engohang-Ndong, J.; Quan, S.; McAdam, R.A.; Brennan, P.J.; Locht, C.; Besra, G.S. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem., 2000, 275(36), 28326-28331.
[http://dx.doi.org/10.1074/jbc.M003744200] [PMID: 10869356]
[78]
DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E., III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2000, 97(17), 9677-9682.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[79]
Vannelli, T.A.; Dykman, A.; Ortiz de Montellano, P.R. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J. Biol. Chem., 2002, 277(15), 12824-12829.
[http://dx.doi.org/10.1074/jbc.M110751200] [PMID: 11823459]
[80]
Qian, L.; Ortiz de Montellano, P.R. Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3. Chem. Res. Toxicol., 2006, 19(3), 443-449.
[http://dx.doi.org/10.1021/tx050328b] [PMID: 16544950]
[81]
Johnston, J.P.; Kane, P.O.; Kibby, M.R. The metabolism of ethionamide and its sulphoxide. J. Pharm. Pharmacol., 2011, 19(1), 1-9.
[http://dx.doi.org/10.1111/j.2042-7158.1967.tb07986.x] [PMID: 4382170]
[82]
Vale, N.; Duarte, D.; Correia, A.; Alves, C.; Figueiredo, P.; Santos, H.A. New insights into ethionamide metabolism: Influence of oxidized methionine on its degradation path. RSC Medicinal Chemistry, 2020, 11(12), 1423-1428.
[http://dx.doi.org/10.1039/D0MD00253D] [PMID: 34095849]
[83]
Prema, K.; Gopinathan, K.P. Distribution, induction and purification of a monooxygenase catalyzing sulphoxidation of drugs. Biochem. Pharmacol., 1976, 25(11), 1299-1303.
[http://dx.doi.org/10.1016/0006-2952(76)90093-9] [PMID: 938552]
[84]
Donald, P.R.; Diacon, A.H. Para-aminosalicylic acid: The return of an old friend. Lancet Infect. Dis., 2015, 15(9), 1091-1099.
[http://dx.doi.org/10.1016/S1473-3099(15)00263-7] [PMID: 26277036]
[85]
Heifets, L.B. Antituberculosis Drugs: Antimicrobial activity in vitro. Drug Susceptibility Chemother. Mycobact. Infect., 1991, 13, 57.
[86]
Brown, K.A.; Ratledge, C. The effect of p-aminosalicyclic acid on iron transport and assimilation in mycobacteria. Biochim. Biophys. Acta, Gen. Subj., 1975, 385(2), 207-220.
[http://dx.doi.org/10.1016/0304-4165(75)90349-9] [PMID: 1092357]
[87]
Adilakshmi, T.; Ayling, P.D.; Ratledge, C. Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(2), 264-271.
[http://dx.doi.org/10.1128/JB.182.2.264-271.2000] [PMID: 10629169]
[88]
Ratledge, C. Iron, mycobacteria and tuberculosis. Tuberculosis, 2004, 84(1-2), 110-130.
[http://dx.doi.org/10.1016/j.tube.2003.08.012] [PMID: 14670352]
[89]
Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The folate pathway is a target for resistance to the drug para -aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol., 2004, 53(1), 275-282.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04120.x] [PMID: 15225321]
[90]
Frénois, F.; Baulard, A.R.; Villeret, V. Insights into mechanisms of induction and ligands recognition in the transcriptional repressor EthR from Mycobacterium tuberculosis. Tuberculosis, 2006, 86(2), 110-114.
[http://dx.doi.org/10.1016/j.tube.2005.07.005] [PMID: 16243584]
[91]
Frénois, F.; Engohang-Ndong, J.; Locht, C.; Baulard, A.R.; Villeret, V. Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol. Cell, 2004, 16(2), 301-307.
[http://dx.doi.org/10.1016/j.molcel.2004.09.020] [PMID: 15494316]
[92]
Alahari, A.; Trivelli, X.; Guérardel, Y.; Dover, L.G.; Besra, G.S.; Sacchettini, J.C.; Reynolds, R.C.; Coxon, G.D.; Kremer, L. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS One, 2007, 2(12), e1343.
[http://dx.doi.org/10.1371/journal.pone.0001343] [PMID: 18094751]
[93]
Via, L.E.; Cho, S.N.; Hwang, S.; Bang, H.; Park, S.K.; Kang, H.S.; Jeon, D.; Min, S.Y.; Oh, T.; Kim, Y.; Kim, Y.M.; Rajan, V.; Wong, S.Y.; Shamputa, I.C.; Carroll, M.; Goldfeder, L.; Lee, S.A.; Holland, S.M.; Eum, S.; Lee, H.; Barry, C.E., III Polymorphisms associated with resistance and cross-resistance to aminoglycosides and capreomycin in Mycobacterium tuberculosis isolates from South Korean Patients with drug-resistant tuberculosis. J. Clin. Microbiol., 2010, 48(2), 402-411.
[http://dx.doi.org/10.1128/JCM.01476-09] [PMID: 20032248]
[94]
Georghiou, S.B.; Magana, M.; Garfein, R.S.; Catanzaro, D.G.; Catanzaro, A.; Rodwell, T.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: A systematic review. PLoS One, 2012, 7(3), e33275.
[http://dx.doi.org/10.1371/journal.pone.0033275] [PMID: 22479378]
[95]
Aubry, A.; Pan, X.S.; Fisher, L.M.; Jarlier, V.; Cambau, E. Mycobacterium tuberculosis DNA gyrase: Interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother., 2004, 48(4), 1281-1288.
[http://dx.doi.org/10.1128/AAC.48.4.1281-1288.2004] [PMID: 15047530]
[96]
Cheng, A.F.B.; Yew, W.W.; Chan, E.W.C.; Chin, M.L.; Hui, M.M.M.; Chan, R.C.Y. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother., 2004, 48(2), 596-601.
[http://dx.doi.org/10.1128/AAC.48.2.596-601.2004] [PMID: 14742214]
[97]
Ferrero, L.; Cameron, B.; Manse, B.; Lagneaux, D.; Crouzet, J.; Famechon, A.; Blanche, F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: A primary target of fluoroquinolones. Mol. Microbiol., 1994, 13(4), 641-653.
[http://dx.doi.org/10.1111/j.1365-2958.1994.tb00458.x] [PMID: 7997176]
[98]
Miyazaki, E.; Chaisson, R.E.; Bishai, W.R. Analysis of rifapentine for preventive therapy in the Cornell mouse model of latent tuberculosis. Antimicrob. Agents Chemother., 1999, 43(9), 2126-2130.
[http://dx.doi.org/10.1128/AAC.43.9.2126] [PMID: 10471552]
[99]
Cardeñosa G, O.; Soto-Hernández, J.L. in vitro activity of moxifloxacin(BAY 12-8039) against respiratory tract pathogens from six Latin-American countries. Chemotherapy, 2000, 46(6), 379-382.
[http://dx.doi.org/10.1159/000007317] [PMID: 11053902]
[100]
SampaioJ.SampaioJ.MirandaE.A.SaderH.S.Comparative in vitro activities of moxifloxacin (Bay 12-8039) and other antimicrobial agents against respiratory tract pathogens in Brazil. Brazilian J. Infect. Dis., 1999, 3, 215-219.
[101]
Gillespie, S.H.; Billington, O. Activity of moxifloxacin against mycobacteria. J. Antimicrob. Chemother., 1999, 44(3), 393-395.
[http://dx.doi.org/10.1093/jac/44.3.393] [PMID: 10511409]
[102]
Ji, B.; Lounis, N.; Maslo, C.; Truffot-Pernot, C.; Bonnafous, P.; Grosset, J. in vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(8), 2066-2069.
[http://dx.doi.org/10.1128/AAC.42.8.2066] [PMID: 9687408]
[103]
Woodcock, J.M.; Andrews, J.M.; Boswell, F.J.; Brenwald, N.P.; Wise, R. in vitro activity of BAY 12-8039, a new fluoroquinolone. Antimicrob. Agents Chemother., 1997, 41(1), 101-106.
[http://dx.doi.org/10.1128/AAC.41.1.101] [PMID: 8980763]
[104]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Denneny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568), 1013-1015.
[http://dx.doi.org/10.1038/1791013a0] [PMID: 13430770]
[105]
Gopal, M.; Padayatchi, N.; Metcalfe, J.Z.; O’Donnell, M.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int. J. Tuberc. Dis., 2013, 17, 1001-1007.
[106]
Adams, L.B.; Sinha, I.; Franzblau, S.G.; Krahenbuhl, J.L.; Mehta, R.T. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother., 1999, 43(7), 1638-1643.
[http://dx.doi.org/10.1128/AAC.43.7.1638] [PMID: 10390215]
[107]
Oliva, B.; O’Neill, A.J.; Miller, K.; Stubbings, W.; Chopra, I. Anti-staphylococcal activity and mode of action of clofazimine. J. Antimicrob. Chemother., 2004, 53(3), 435-440.
[http://dx.doi.org/10.1093/jac/dkh114] [PMID: 14762055]
[108]
Field, S.K.; Cowie, R.L. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest, 2003, 124(4), 1482-1486.
[http://dx.doi.org/10.1378/chest.124.4.1482] [PMID: 14555583]
[109]
Reddy, M.V.; Srinivasan, S.; Gangadharam, P.R.J. in vitro and in vivo synergistic effect of isoniazid with streptomycin and clofazimine against Mycobacterium avium complex (MAC). Tuber. Lung Dis., 1994, 75(3), 208-212.
[http://dx.doi.org/10.1016/0962-8479(94)90010-8] [PMID: 7919314]
[110]
Reddy, V.M.; Nadadhur, G.; Daneluzzi, D.; O’Sullivan, J.F.; Gangadharam, P.R. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob. Agents Chemother., 1996, 40(3), 633-636.
[http://dx.doi.org/10.1128/AAC.40.3.633] [PMID: 8851584]
[111]
Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(5), 2979-2981.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[112]
van der Paardt, A.F.; Wilffert, B.; Akkerman, O.W.; de Lange, W.C.M.; van Soolingen, D.; Sinha, B.; van der Werf, T.S.; Kosterink, J.G.W.; Alffenaar, J.W.C. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur. Respir. J., 2015, 46(2), 444-455.
[http://dx.doi.org/10.1183/09031936.00147014] [PMID: 26022960]
[113]
Casal, M.; Gutierrez, J.; Gonzalez, J.; Ruiz, P. in vitro susceptibility of Mycobacterium tuberculosis to a new macrolide antibiotic: RU-28965. Tubercle, 1987, 68(2), 141-143.
[http://dx.doi.org/10.1016/0041-3879(87)90030-4] [PMID: 3116734]
[114]
Watt, B. in-vitro sensitivities and treatment of less common mycobacteria. J. Antimicrob. Chemother., 1997, 39(5), 567-574.
[http://dx.doi.org/10.1093/jac/39.5.567] [PMID: 9184354]
[115]
Brown, B.A.; Wallace, R.J., Jr; Onyi, G.O.; De Rosas, V.; Wallace, R.J., III Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob. Agents Chemother., 1992, 36(1), 180-184.
[http://dx.doi.org/10.1128/AAC.36.1.180] [PMID: 1317144]
[116]
Heifets, L.B. Clarithromycin against Mycobacterium avium complex infections. Tuber. Lung Dis., 1996, 77(1), 19-26.
[http://dx.doi.org/10.1016/S0962-8479(96)90070-2]
[117]
Böttger, E.C. Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol., 1994, 2(10), 416-421.
[http://dx.doi.org/10.1016/0966-842X(94)90622-X] [PMID: 7850212]
[118]
Andini, N.; Nash, K.A. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agents Chemother., 2006, 50(7), 2560-2562.
[http://dx.doi.org/10.1128/AAC.00264-06] [PMID: 16801446]
[119]
Biedenbach, D.J.; Sutton, L.D.; Jones, R.N. Antimicrobial activity of CS-940, a new trifluorinated quinolone. Antimicrob. Agents Chemother., 1995, 39(10), 2325-2330.
[http://dx.doi.org/10.1128/AAC.39.10.2325] [PMID: 8619590]
[120]
Zhao, B.Y.; Pine, R.; Domagala, J.; Drlica, K. Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis: Effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. Antimicrob. Agents Chemother., 1999, 43(3), 661-666.
[http://dx.doi.org/10.1128/AAC.43.3.661] [PMID: 10049284]
[121]
Minias, A.; Żukowska, L.; Lechowicz, E.; Gąsior, F.; Knast, A.; Podlewska, S.; Zygała, D.; Dziadek, J. Early drug development and evaluation of putative antitubercular compounds in the -omics era. Front. Microbiol., 2021, 11, 618168.
[http://dx.doi.org/10.3389/fmicb.2020.618168] [PMID: 33603720]
[122]
Strovel, J.; Sittampalam, S.; Coussens, N.P.; Hughes, M.; Inglese, J.; Kurtz, A.; Andalibi, A.; Patton, L.; Austin, C.; Baltezor, M. Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies. In: Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, 2016.
[123]
Kraljevic, S.; Stambrook, P.J.; Pavelic, K. Accelerating drug discovery. EMBO Rep., 2004, 5(9), 837-842.
[http://dx.doi.org/10.1038/sj.embor.7400236] [PMID: 15470377]
[124]
Khadka, P.; Dummer, J.; Hill, P.C.; Katare, R.; Das, S.C. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv. Transl. Res., 2023, 13(5), 1246-1271.
[http://dx.doi.org/10.1007/s13346-022-01238-y] [PMID: 36131190]
[125]
Nair, A.; Greeny, A.; Nandan, A.; Sah, R.K.; Jose, A.; Dyawanapelly, S.; Junnuthula, V.; K v, A.; Sadanandan, P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J. Nanobiotechnology, 2023, 21(1), 414.
[http://dx.doi.org/10.1186/s12951-023-02156-y] [PMID: 37946240]
[126]
Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220, 68-97.
[http://dx.doi.org/10.1016/j.trsl.2020.03.007] [PMID: 32275897]
[127]
McKee, T.C.; Covington, C.D.; Fuller, R.W.; Bokesch, H.R.; Young, S.; Cardellina, J.H., II; Kadushin, M.R.; Soejarto, D.D.; Stevens, P.F.; Cragg, G.M.; Boyd, M.R. Pyranocoumarins from tropical species of the genus Calophyllum: A chemotaxonomic study of extracts in the National Cancer Institute collection. J. Nat. Prod., 1998, 61(10), 1252-1256.
[http://dx.doi.org/10.1021/np980140a] [PMID: 9784162]
[128]
Xu, Z.Q.; Barrow, W.W.; Suling, W.J.; Westbrook, L.; Barrow, E.; Lin, Y.M.; Flavin, M.T. Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2004, 12(5), 1199-1207.
[http://dx.doi.org/10.1016/j.bmc.2003.11.012] [PMID: 14980631]
[129]
Currens, M.J.; Gulakowski, R.J.; Mariner, J.M.; Moran, R.A.; Buckheit, R.W.J., Jr; Gustafson, K.R.; McMahon, J.B.; Boyd, M.R. Antiviral activity and mechanism of action of calanolide A against the human immunodeficiency virus type-1. J. Pharmacol. Exp. Ther., 1996, 279(2), 645-651.
[PMID: 8930167]
[130]
Dharmaratne, H.; Wanigasekera, W.; Mata-Greenwood, E.; Pezzuto, J. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from Calophyllum cordato-oblongum. Planta Med., 1998, 64(5), 460-461.
[http://dx.doi.org/10.1055/s-2006-957483] [PMID: 9690350]
[131]
Galinis, D.L.; Fuller, R.W.; McKee, T.C.; Cardellina, J.H., II; Gulakowski, R.J.; McMahon, J.B.; Boyd, M.R. Structure-activity modifications of the HIV-1 inhibitors (+)-calanolide A and (-)-calanolide B. J. Med. Chem., 1996, 39(22), 4507-4510.
[http://dx.doi.org/10.1021/jm9602827] [PMID: 8893846]
[132]
Asif, M. A review of antimycobacterial drugs in development. Mini Rev. Med. Chem., 2012, 12(13), 1404-1418.
[PMID: 22625412]
[133]
Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Lett., 1998, 8(24), 3475-3478.
[http://dx.doi.org/10.1016/S0960-894X(98)00628-3] [PMID: 9934455]
[134]
Ashtekar, D.R.; Costa-Perira, R.; Nagrajan, K.; Vishvanathan, N.; Bhatt, A.D.; Rittel, W. in vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1993, 37(2), 183-186.
[http://dx.doi.org/10.1128/AAC.37.2.183] [PMID: 8452346]
[135]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[136]
Manjunatha, U.H.; Boshoff, H.; Dowd, C.S.; Zhang, L.; Albert, T.J.; Norton, J.E.; Daniels, L.; Dick, T.; Pang, S.S.; Barry, C.E., III Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2006, 103(2), 431-436.
[http://dx.doi.org/10.1073/pnas.0508392103] [PMID: 16387854]
[137]
Jagannath, C.; Emanuele, M.R.; Hunter, R.L. Activities of poloxamer CRL-1072 against Mycobacterium avium in macrophage culture and in mice. Antimicrob. Agents Chemother., 1999, 43(12), 2898-2903.
[http://dx.doi.org/10.1128/AAC.43.12.2898] [PMID: 10582879]
[138]
Diekema, D.J.; Jones, R.N. Oxazolidinones. Drugs, 2000, 59(1), 7-16.
[http://dx.doi.org/10.2165/00003495-200059010-00002] [PMID: 10718097]
[139]
Corti, G.; Cinelli, R.; Paradisi, F. Clinical and microbiologic efficacy and safety profile of linezolid, a new oxazolidinone antibiotic. Int. J. Antimicrob. Agents, 2000, 16(4), 527-530.
[http://dx.doi.org/10.1016/S0924-8579(00)00290-9] [PMID: 11118873]
[140]
Zurenko, G.E.; Yagi, B.H.; Schaadt, R.D.; Allison, J.W.; Kilburn, J.O.; Glickman, S.E.; Hutchinson, D.K.; Barbachyn, M.R.; Brickner, S.J. in vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother., 1996, 40(4), 839-845.
[http://dx.doi.org/10.1128/AAC.40.4.839] [PMID: 8849237]
[141]
Swaney, S.M.; Aoki, H.; Ganoza, M.C.; Shinabarger, D.L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother., 1998, 42(12), 3251-3255.
[http://dx.doi.org/10.1128/AAC.42.12.3251] [PMID: 9835522]
[142]
Shinabarger, D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin. Investig. Drugs, 1999, 8(8), 1195-1202.
[http://dx.doi.org/10.1517/13543784.8.8.1195] [PMID: 15992144]
[143]
Aoki, H.; Ke, L.; Poppe, S.M.; Poel, T.J.; Weaver, E.A.; Gadwood, R.C.; Thomas, R.C.; Shinabarger, D.L.; Ganoza, M.C. Oxazolidinone antibiotics target the P site on escherichia coli ribosomes. Antimicrob. Agents Chemother., 2002, 46(4), 1080-1085.
[http://dx.doi.org/10.1128/AAC.46.4.1080-1085.2002] [PMID: 11897593]
[144]
Colca, J.R.; McDonald, W.G.; Waldon, D.J.; Thomasco, L.M.; Gadwood, R.C.; Lund, E.T.; Cavey, G.S.; Mathews, W.R.; Adams, L.D.; Cecil, E.T.; Pearson, J.D.; Bock, J.H.; Mott, J.E.; Shinabarger, D.L.; Xiong, L.; Mankin, A.S. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem., 2003, 278(24), 21972-21979.
[http://dx.doi.org/10.1074/jbc.M302109200] [PMID: 12690106]
[145]
Hutchinson, D. Oxazolidinone antibacterial agents: A critical review. Curr. Top. Med. Chem., 2003, 3(9), 1021-1042.
[http://dx.doi.org/10.2174/1568026033452195] [PMID: 12678835]
[146]
Nilius, A.M. Have the oxazolidinones lived up to their billing? Future perspectives for this antibacterial class. Curr. Opin. Investig. Drugs, 2003, 4(2), 149-155.
[PMID: 12669374]
[147]
Barbachyn, M.R.; Hutchinson, D.K.; Brickner, S.J.; Cynamon, M.H.; Kilburn, J.O.; Klemens, S.P.; Glickman, S.E.; Grega, K.C.; Hendges, S.K.; Toops, D.S.; Ford, C.W.; Zurenko, G.E. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J. Med. Chem., 1996, 39(3), 680-685.
[http://dx.doi.org/10.1021/jm950956y] [PMID: 8576910]
[148]
Cynamon, M.H.; Klemens, S.P.; Sharpe, C.A.; Chase, S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother., 1999, 43(5), 1189-1191.
[http://dx.doi.org/10.1128/AAC.43.5.1189] [PMID: 10223934]
[149]
Sun, Z.; Zhang, Y. Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber. Lung Dis., 1999, 79(5), 319-320.
[http://dx.doi.org/10.1054/tuld.1999.0212]
[150]
Groll, A.H.; Walsh, T.J. Aspergillosis BT. In: Atlas of infectious diseases: Fungal infections; Mandell, G.L.; Diamond, R.D., Eds.; Current Medicine Group.: London, 2000; pp. 135-160.
[151]
Cruthers, L.R.; Linkenheimer, W.H.; Maplesden, D.C. Taeniacidal efficacy of SQ 21,704 in dogs by various types of oral administration and in comparison with niclosamide and bunamidine hydrochloride. Am. J. Vet. Res., 1979, 40(5), 676-678.
[PMID: 573081]
[152]
Dickinson, J.M.; Mitchison, D.A. in vitro activity of new rifamycins aganst rifampicin-resistant M. tuberculosis and MAIS-complex mycobacteria. Tubercle, 1987, 68(3), 177-182.
[http://dx.doi.org/10.1016/0041-3879(87)90053-5] [PMID: 2834842]
[153]
Dickinson, J.M.; Mitchison, D.A. in vitro observations on the suitability of new rifamycins for the intermittent chemotherapy of tuberculosis. Tubercle, 1987, 68(3), 183-193.
[http://dx.doi.org/10.1016/0041-3879(87)90054-7] [PMID: 2834843]
[154]
Barman Balfour, J.A.; Lamb, H.M. Moxifloxacin. Drugs, 2000, 59(1), 115-139.
[http://dx.doi.org/10.2165/00003495-200059010-00010] [PMID: 10718103]
[155]
Miyazaki, E.; Miyazaki, M.; Chen, J.M.; Chaisson, R.E.; Bishai, W.R. Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob. Agents Chemother., 1999, 43(1), 85-89.
[http://dx.doi.org/10.1128/AAC.43.1.85] [PMID: 9869570]
[156]
Sullivan, J.T.; Woodruff, M.; Lettieri, J.; Agarwal, V.; Krol, G.J.; Leese, P.T.; Watson, S.; Heller, A.H. Pharmacokinetics of a once- daily oral dose of moxifloxacin (Bay 12-8039), a new enantiomerically pure 8-methoxy quinolone. Antimicrob. Agents Chemother., 1999, 43(11), 2793-2797.
[http://dx.doi.org/10.1128/AAC.43.11.2793] [PMID: 10543767]
[157]
Nakashima, M.; Uematsu, T.; Kosuge, K.; Umemura, K.; Hakusui, H.; Tanaka, M. Pharmacokinetics and tolerance of DU-6859a, a new fluoroquinolone, after single and multiple oral doses in healthy volunteers. Antimicrob. Agents Chemother., 1995, 39(1), 170-174.
[http://dx.doi.org/10.1128/AAC.39.1.170] [PMID: 7695301]
[158]
Milatovic, D.; Schmitz, F.J.; Brisse, S.; Verhoef, J.; Fluit, A.C. in vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates. Antimicrob. Agents Chemother., 2000, 44(4), 1102-1107.
[http://dx.doi.org/10.1128/AAC.44.4.1102-1107.2000] [PMID: 10722524]
[159]
Onodera, Y.; Uchida, Y.; Tanaka, M.; Sato, K. Dual inhibitory activity of sitafloxacin (DU-6859a) against DNA gyrase and topoisomerase IV of Streptococcus pneumoniae. J. Antimicrob. Chemother., 1999, 44(4), 533-536.
[http://dx.doi.org/10.1093/jac/44.4.533] [PMID: 10588315]
[160]
Tomioka, H.; Sato, K.; Akaki, T.; Kajitani, H.; Kawahara, S.; Sakatani, M. Comparative in vitro antimicrobial activities of the newly synthesized quinolone HSR-903, sitafloxacin (DU-6859a), gatifloxacin (AM-1155), and levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Antimicrob. Agents Chemother., 1999, 43(12), 3001-3004.
[http://dx.doi.org/10.1128/AAC.43.12.3001] [PMID: 10582897]
[161]
Saito, H.; Tomioka, H.; Sato, K.; Dekio, S. in vitro and in vivo antimycobacterial activities of a new quinolone, DU-6859a. Antimicrob. Agents Chemother., 1994, 38(12), 2877-2882.
[http://dx.doi.org/10.1128/AAC.38.12.2877] [PMID: 7695276]
[162]
Houston, A.K.; Jones, R.N. Postantibiotic effect of DU-6859a and levofloxacin as compared with ofloxacin. Diagn. Microbiol. Infect. Dis., 1994, 18(1), 57-59.
[http://dx.doi.org/10.1016/0732-8893(94)90134-1] [PMID: 8026158]
[163]
Allen, A.; Bygate, E.; Oliver, S.; Johnson, M.; Ward, C.; Cheon, A.J.; Choo, Y.S.; Kim, I.C. Pharmacokinetics and tolerability of gemifloxacin (SB-265805) after administration of single oral doses to healthy volunteers. Antimicrob. Agents Chemother., 2000, 44(6), 1604-1608.
[http://dx.doi.org/10.1128/AAC.44.6.1604-1608.2000] [PMID: 10817716]
[164]
Ruiz-Serrano, M.J.; Alcalá, L.; Martínez, L.; Díaz, M.; Marín, M.; González-Abad, M.J.; Bouza, E. in vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob. Agents Chemother., 2000, 44(9), 2567-2568.
[http://dx.doi.org/10.1128/AAC.44.9.2567-2568.2000] [PMID: 10952620]
[165]
Takahata, M.; Mitsuyama, J.; Yamashiro, Y.; Yonezawa, M.; Araki, H.; Todo, Y.; Minami, S.; Watanabe, Y.; Narita, H. in vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/AAC.43.5.1077] [PMID: 10223917]
[166]
Bruzzese, T.; Rimaroli, C.; Bonabello, A.; Mozzi, G.; Ajay, S.; Cooverj, N.D. Pharmacokinetics and tissue distribution of rifametane, a new 3-azinomethyl-rifamycin derivative, in several animal species. Arzneimittelforschung, 2000, 50(1), 60-71.
[PMID: 10683718]
[167]
Strippoli, V.; Bruzzese, T.; Galli, R.; Simonetti, N.; Tronci, N. The antibacterial activity of a new 3-azinomethyl-rifamycin. Farmaco, Sci., 1988, 43(7-8), 619-625.
[PMID: 3147199]
[168]
Potkar, C.; Gogtay, N.; Gokhale, P.; Kshirsagar, N.A.; Ajay, S.; Cooverji, N.D.; Bruzzese, T.; Phase, I. Phase I pharmacokinetic study of a new 3-azinomethyl-rifamycin (rifametane) as compared to rifampicin. Chemotherapy, 1999, 45(3), 147-153.
[http://dx.doi.org/10.1159/000007176] [PMID: 10224335]
[169]
Kelkar, M.S.; Saraf, A.P.; Bakhle, D.S.; Nazare, V.; Ajay, S.; Hegde, S.; Lal, H.M.; Cooverji, N.D.; Bruzzese, T. Pharmacokinetic profile of a new 3-azinomethyl rifamycin (SPA-S-565) in volunteers as compared with conventional rifampicin. Int. J. Clin. Pharmacol. Res., 1998, 18(3), 137-143.
[PMID: 9825270]
[170]
Roblin, P.M.; Reznik, T.; Kutlin, A.; Hammerschlag, M.R. in vitro activities of rifamycin derivatives ABI-1648 (Rifalazil, KRM-1648), ABI-1657, and ABI-1131 against Chlamydia trachomatis and recent clinical isolates of Chlamydia pneumoniae. Antimicrob. Agents Chemother., 2003, 47(3), 1135-1136.
[http://dx.doi.org/10.1128/AAC.47.3.1135-1136.2003] [PMID: 12604555]
[171]
Tomioka, H. Prospects for development of new antimycobacterial drugs. J. Infect. Chemother., 2000, 6(1), 8-20.
[http://dx.doi.org/10.1007/s101560050043] [PMID: 11810525]
[172]
Dhople, A.M. in vivo susceptibility of Mycobacterium ulcerans to KRM-1648, a new benzoxazinorifamycin, in comparison with rifampicin. Anti-mycobacterial activity of KRM-1648. Arzneimittelforschung, 2001, 51(6), 501-505.
[PMID: 11455683]
[173]
Dhople, A.M. in vitro activity of KRM-1648, either singly or in combination with ofloxacin, against Mycobacterium ulcerans. Int. J. Antimicrob. Agents, 2001, 17(1), 57-61.
[http://dx.doi.org/10.1016/S0924-8579(00)00306-X] [PMID: 11137650]
[174]
Tomioka, H. Prospects for development of new antimycobacterial drugs, with special reference to a new benzoxazinorifamycin, KRM-1648. Arch. Immunol. Ther. Exp. , 2000, 48(3), 183-188.
[PMID: 10912623]
[175]
Yamane, T.; Hashizume, T.; Yamashita, K.; Konishi, E.; Hosoe, K.; Hidaka, T.; Watanabe, K.; Kawaharada, H.; Yamamoto, T.; Kuze, F. Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem. Pharm. Bull., 1993, 41(1), 148-155.
[http://dx.doi.org/10.1248/cpb.41.148] [PMID: 8448815]
[176]
Hidaka, T. Current status and perspectives on the development of rifamycin derivative antibiotics. Kekkaku, 1999, 74(1), 53-61.
[PMID: 10067056]
[177]
Ehlers, S.; Bucke, W.; Leitzke, S.; Fortmann, L.; Smith, D.; Hänsch, H.; Hahn, H.; Bancroff, G.; Müller, R. Liposomal amikacin for treatment of M. avium infections in clinically relevant experimental settings. Zentralbl. Bakteriol., 1996, 284(2-3), 218-231.
[http://dx.doi.org/10.1016/S0934-8840(96)80097-1] [PMID: 8837382]
[178]
Whitehead, T.C.; Lovering, A.M.; Cropley, I.M.; Wade, P.; Davidson, R.N. Kinetics and toxicity of liposomal and conventional amikacin in a patient with multidrug-resistant tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis., 1998, 17(11), 794-797.
[http://dx.doi.org/10.1007/s100960050189] [PMID: 9923523]
[179]
Held, H.R.; Landi, S. Binding of toxic metabolites of isoniazid by aconiazide. J. Pharm. Sci., 1980, 69(11), 1284-1287.
[http://dx.doi.org/10.1002/jps.2600691114] [PMID: 7452457]
[180]
Peloquin, C.A.; James, G.T.; Craig, L.D.; Kim, M.; McCarthy, E.A.; Iklé, D.; Iseman, M.D. Pharmacokinetic evaluation of aconiazide, a potentially less toxic isoniazid prodrug. Pharmacotherapy, 1994, 14(4), 415-423.
[http://dx.doi.org/10.1002/j.1875-9114.1994.tb02831.x] [PMID: 7937278]
[181]
Dlugovitzky, D.; Bottasso, O.; Dominino, J.C.; Valentini, E.; Hartopp, R.; Singh, M.; Stanford, C.; Stanford, J. Clinical and serological studies of tuberculosis patients in Argentina receiving immunotherapy with Mycobacterium vaccae (SRL 172). Respir. Med., 1999, 93(8), 557-562.
[http://dx.doi.org/10.1016/S0954-6111(99)90155-5] [PMID: 10542989]
[182]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[183]
Cole, S.T.; Alzari, P.M. Microbiology. TB--a new target, a new drug. Science, 2005, 307(5707), 214-215.
[http://dx.doi.org/10.1126/science.1108379] [PMID: 15653490]
[184]
Chauhan, L.S.; Arora, V.K. Management of pediatric tuberculosis under the revised national tuberculosis control program (RNTCP). Indian Pediatr., 2004, 41(9), 901-905.
[PMID: 15475631]
[185]
Zingue, D.; Weber, P.; Soltani, F.; Raoult, D.; Drancourt, M. Automatic microscopic detection of mycobacteria in sputum: A proof-of-concept. Sci. Rep., 2018, 8(1), 11308.
[http://dx.doi.org/10.1038/s41598-018-29660-8] [PMID: 30054578]
[186]
Kenaope, L.; Ferreira, H.; Seedat, F.; Otwombe, K.; Martinson, N.A.; Variava, E. Sputum culture and drug sensitivity testing outcome among X-pert Mycobacterium tuberculosis/rifampicin-positive, rifampicin-resistant sputum: A retrospective study — Not all rifampicin resistance is multi-drug resistant. J. Glob. Antimicrob. Resist., 2020, 21, 434-438.
[http://dx.doi.org/10.1016/j.jgar.2019.11.008] [PMID: 31733411]
[187]
Mukherjee, S.; Perveen, S.; Negi, A.; Sharma, R. Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics. Tuberculosis, 2023, 140, 102340.
[http://dx.doi.org/10.1016/j.tube.2023.102340] [PMID: 37031646]
[188]
Mitchison, D.A. The origins of DOT. Int J Tuberc Lung Dis, 1998, 2(10), 863-865.
[189]
Mitchison, D.A. The action of antituberculosis drugs in short- course chemotherapy. Tubercle, 1985, 66(3), 219-225.
[http://dx.doi.org/10.1016/0041-3879(85)90040-6] [PMID: 3931319]
[190]
Farmer, P.; Bayona, J.; Becerra, M.; Furin, J.; Henry, C.; Hiatt, H.; Kim, J.Y.; Mitnick, C.; Nardell, E.; Shin, S. The dilemma of MDR-TB in the global era. Int. J. Tuberc. Dis., 1998, 2, 869-876.
[191]
Pablos-Méndez, A.; Raviglione, M.C.; Laszlo, A.; Binkin, N.; Rieder, H.L.; Bustreo, F.; Cohn, D.L.; Lambregts-van Weezenbeek, C.S.; Kim, S.J.; Chaulet, P.; Nunn, P. Global surveillance for antituberculosis-drug resistance, 1994-1997. World Health Organization-International union against tuberculosis and lung disease working group on anti-tuberculosis drug resistance surveillance. N. Engl. J. Med., 1998, 338(23), 1641-1649.
[PMID: 9614254]
[192]
Chan-Tack, K.M. Antituberculosis-Drug resistance. N. Engl. J. Med., 1998, 339(15), 1079-1080.
[http://dx.doi.org/10.1056/NEJM199810083391511] [PMID: 9766993]
[193]
Sharma, A.K.; Khuller, G.K. DNA vaccines: Future strategies and relevance to intracellular pathogens. Immunol. Cell Biol., 2001, 79(6), 537-546.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01044.x] [PMID: 11903613]
[194]
Loddenkemper, R.; Sagebiel, D.; Brendel, A. Strategies against multidrug-resistant tuberculosis. Eur. Respir. J., 2002, 20(Suppl. 36), 66S-77s.
[http://dx.doi.org/10.1183/09031936.02.00401302] [PMID: 12168749]
[195]
Deretic, V.; Fratti, R.A. Mycobacterium tuberculosis phagosome. Mol. Microbiol., 1999, 31(6), 1603-1609.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01279.x] [PMID: 10209735]
[196]
Russell, D.G. Highlighting the parallels between human and bovine tuberculosis. J. Vet. Med. Educ., 2003, 30(2), 140-142.
[http://dx.doi.org/10.3138/jvme.30.2.140] [PMID: 12970858]
[197]
Roth, A.; Schaberg, T.; Mauch, H. Molecular diagnosis of tuberculosis: Current clinical validity and future perspectives. Eur. Respir. J., 1997, 10(8), 1877-1891.
[http://dx.doi.org/10.1183/09031936.97.10081877] [PMID: 9272935]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy