Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Chitosan/Bioglass Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: An Overview of Promising Biomaterials

Author(s): Khashayar Khodaverdi, Seyed Morteza Naghib* and M.R. Mozafari

Volume 28, Issue 18, 2024

Published on: 24 June, 2024

Page: [1437 - 1451] Pages: 15

DOI: 10.2174/0113852728314706240529052535

Price: $65

Abstract

Bioactive glass (BG) shows great potential as a biomaterial for bone regeneration. Chitosan enhances the biological characteristics of BG. Chitosan is the sole commonly utilized natural polysaccharide that may be chemically altered for various purposes and roles. Composite materials formed by combining chitosan bioactive glass (BG) nanoparticles and microparticles are used in this context. Integrating bioactive glasses enhances the mechanical characteristics, bioactivity, and regenerative capacity of the end product. Research indicates that chitosan/BG composites enhance angiogenesis, cell adhesion, and proliferation. Bioglass improves biomineralization and boosts bone extracellular matrix formation by osteoblasts. The current findings demonstrate that the chitosan-glass nanofiber composites can enhance both antibacterial capabilities and bone conductivity. This review examines novel techniques for creating chitosan-based materials for engineering purposes, as well as upcoming difficulties and outlooks.

Graphical Abstract

[1]
Shi, C.; Hou, X.; Zhao, D.; Wang, H.; Guo, R.; Zhou, Y. Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. J. Mech. Behav. Biomed. Mater., 2022, 126, 105062.
[http://dx.doi.org/10.1016/j.jmbbm.2021.105062] [PMID: 34963101]
[2]
Kim, I.S.; Yang, W.S.; Kim, C.H. Physiological properties, functions, and trends in the matrix metalloproteinase inhibitors in inflammation-mediated human diseases. Curr. Med. Chem., 2023, 30(18), 2075-2112.
[http://dx.doi.org/10.2174/0929867329666220823112731] [PMID: 36017851]
[3]
Farooq, S.; Munawar, M.A.; Ngaini, Z. Mono-metallic, bi-metallic and tri-metallic biogenic nanoparticles derived from garlic and ginger with their applications. Curr. Org. Chem., 2023, 27(14), 1202-1214.
[http://dx.doi.org/10.2174/1385272827666230915103130]
[4]
Sharma, S.; Singh, K.; Singh, S. Synthetic strategies for Quinoline based derivatives as potential bioactive heterocycles. Curr. Org. Synth., 2023, 20(6), 606-629.
[http://dx.doi.org/10.2174/1570179420666221004143910] [PMID: 36200204]
[5]
Shahrajabian, M.H.; Kuang, Y.; Cui, H.; Fu, L.; Sun, W. Metabolic changes of active components of important medicinal plants on the basis of traditional chinese medicine under different environmental stresses. Curr. Org. Chem., 2023, 27(9), 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[6]
Hussen, N.H.; Hasan, A.H.; Muhammed, G.O.; Yassin, A.Y.; Salih, R.R.; Esmail, P.A.; Alanazi, M.M.; Jamalis, J. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies. Curr. Org. Chem., 2023, 27(4), 363-377.
[http://dx.doi.org/10.2174/1385272827666230423144150]
[7]
Sharma, A.S.; Salahuddin, A.; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Tyagi, S.; Yar, M.S.; Ahsan, M.J. Recent updates on synthesis, biological activity, and structure-activity relationship of 1,3,4-Oxadiazole-quinoline hybrids: A review. Curr. Org. Synth., 2023, 20(7), 758-787.
[http://dx.doi.org/10.2174/1570179420666221004142659] [PMID: 36200203]
[8]
Kalar, P.L.; Agrawal, S.; Kushwaha, S.; Gayen, S.; Das, K. Recent developments on synthesis of organofluorine compounds using green approaches. Curr. Org. Chem., 2023, 27(3), 190-205.
[http://dx.doi.org/10.2174/1385272827666230516100739]
[9]
Vukajlovic, D.; Parker, J.; Bretcanu, O.; Novakovic, K. Chitosan based polymer/bioglass composites for tissue engineering applications. Mater. Sci. Eng. C, 2019, 96, 955-967.
[http://dx.doi.org/10.1016/j.msec.2018.12.026] [PMID: 30606607]
[10]
Jodati, H.; Yılmaz, B.; Evis, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram. Int., 2020, 46(10), 15725-15739.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.192]
[11]
Singh, A.K.; Sundram, S.; Malviya, R. Human-derived biomaterials for biomedical and tissue engineering applications. Curr. Pharm. Des., 2023, 29(8), 584-603.
[http://dx.doi.org/10.2174/1381612829666230320103412] [PMID: 36959154]
[12]
Malviya, R.; Singh, A.K. Graft copolymers of polysaccharide: Synthesis methodology and biomedical applications in tissue engineering. Curr. Pharm. Biotechnol., 2023, 24(4), 510-531.
[http://dx.doi.org/10.2174/1389201023666220815091806] [PMID: 36043716]
[13]
Lin, X.; Gong, X.; Ruan, Q.; Xu, W.; Zhang, C.; Zhao, K. Antimicrobial application of chitosan derivatives and their nanocomposites. Curr. Med. Chem., 2023, 30(15), 1736-1755.
[http://dx.doi.org/10.2174/0929867329666220803114729] [PMID: 35927801]
[14]
Pourhaghgouy, M.; Zamanian, A.; Shahrezaee, M.; Masouleh, M.P. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater. Sci. Eng. C, 2016, 58, 180-186.
[http://dx.doi.org/10.1016/j.msec.2015.07.065] [PMID: 26478301]
[15]
Kankariya, Y.; Chatterjee, B. Biomedical application of chitosan and chitosan derivatives: A comprehensive review. Curr. Pharm. Des., 2023, 29(17), 1311-1325.
[http://dx.doi.org/10.2174/1381612829666230524153002] [PMID: 37226781]
[16]
Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr. Med. Chem., 2023, 30(4), 372-389.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[17]
Chen, P.; Lin, A.; Lin, Y.; Seki, Y.; Stokes, A.; Peyras, J.; Olevsky, E.; Meyers, M.; McKittrick, J. Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater., 2008, 1(3), 208-226.
[http://dx.doi.org/10.1016/j.jmbbm.2008.02.003] [PMID: 19627786]
[18]
Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol., 2019, 133, 817-830.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.107] [PMID: 31002908]
[19]
Rahmanian, M. seyfoori, A.; Dehghan, M.M.; Eini, L.; Naghib, S.M.; Gholami, H.; Farzad Mohajeri, S.; Mamaghani, K.R.; Majidzadeh-A, K. Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J. Taiwan Inst. Chem. Eng., 2019, 101, 214-220.
[http://dx.doi.org/10.1016/j.jtice.2019.04.028]
[20]
Kalantari, E.; Naghib, S.M.; Iravani, N.J.; Esmaeili, R.; Naimi-Jamal, M.R.; Mozafari, M. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies. Mater. Sci. Eng. C, 2019, 105, 109912.
[http://dx.doi.org/10.1016/j.msec.2019.109912] [PMID: 31546348]
[21]
Kalantari, E.; Naghib, S.M.; Naimi-Jamal, M.R.; Aliahmadi, A.; Iravani, N.J.; Mozafari, M. Nanostructured monticellite for tissue engineering applications - Part I: Microstructural and physicochemical characteristics. Ceram. Int., 2018, 44(11), 12731-12738.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.076]
[22]
Kalantari, E.; Naghib, S.M.; Iravani, N.J.; Aliahmadi, A.; Naimi-Jamal, M.R.; Mozafari, M. Nanostructured monticellite for tissue engineering applications – Part II: Molecular and biological characteristics. Ceram. Int., 2018, 44(12), 14704-14711.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.098]
[23]
Ghazali, H.S.; Askari, E.; Ghazali, Z.S.; Naghib, S.M.; Braschler, T. Lithography-based 3D printed hydrogels: From bioresin designing to biomedical application. Colloid Interface Sci. Commun., 2022, 50, 100667.
[http://dx.doi.org/10.1016/j.colcom.2022.100667]
[24]
Oudadesse, H.; Najem, S.; Mosbahi, S.; Rocton, N.; Refifi, J.; El Feki, H.; Lefeuvre, B. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. J. Biomed. Mater. Res. A, 2021, 109(5), 590-599.
[http://dx.doi.org/10.1002/jbm.a.37043] [PMID: 32588539]
[25]
Clavijo, S.; Membrives, F.; Quiroga, G.; Boccaccini, A.R.; Santillán, M.J. Electrophoretic deposition of chitosan/Bioglass® and chitosan/bioglass®/TiO2 composite coatings for bioimplants. Ceram. Int., 2016, 42(12), 14206-14213.
[http://dx.doi.org/10.1016/j.ceramint.2016.05.178]
[26]
Maji, K.; Dasgupta, S.; Pramanik, K.; Bissoyi, A. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int. J. Biomater., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/9825659] [PMID: 26884764]
[27]
Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol., 2010, 70(13), 1764-1776.
[http://dx.doi.org/10.1016/j.compscitech.2010.06.002]
[28]
El-Sayed, S.A.M.; Mabrouk, M.; Khallaf, M.E.; Abd El-Hady, B.M.; El-Meliegy, E.; Shehata, M.R. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J. Drug Deliv. Sci. Technol., 2020, 57, 101757.
[http://dx.doi.org/10.1016/j.jddst.2020.101757]
[29]
Parvizifard, M.; Karbasi, S. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. Int. J. Biol. Macromol., 2020, 152, 645-662.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.266] [PMID: 32109478]
[30]
Molaei, A.; Yari, M.; Afshar, M.R. Modification of electrophoretic deposition of chitosan–bioactive glass–hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram. Int., 2015, 41(10), 14537-14544.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.170]
[31]
Ishikawa, K.; Miyamoto, Y.; Yuasa, T.; Ito, A.; Nagayama, M.; Suzuki, K. Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials, 2002, 23(2), 423-428.
[http://dx.doi.org/10.1016/S0142-9612(01)00121-1] [PMID: 11761162]
[32]
Li, X.; Wang, X.; He, D.; Shi, J. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem., 2008, 18(34), 4103-4109.
[http://dx.doi.org/10.1039/b805114c]
[33]
Hoppe, A.; Mouriño, V.; Boccaccini, A.R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci., 2013, 1(3), 254-256.
[http://dx.doi.org/10.1039/C2BM00116K] [PMID: 32481850]
[34]
Abdelfattah, M.I.; Nasry, S.A.; Mostafa, A.A. Characterization and cytotoxicity analysis of a ciprofloxacin loaded chitosan/bioglass scaffold on cultured human periodontal ligament stem cells: A preliminary report. Open Access Maced. J. Med. Sci., 2016, 4(3), 461-467.
[http://dx.doi.org/10.3889/oamjms.2016.052] [PMID: 27703576]
[35]
Khoshakhlagh, P.; Rabiee, S.M.; Kiaee, G.; Heidari, P.; Miri, A.K.; Moradi, R.; Moztarzadeh, F.; Ravarian, R. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydr. Polym., 2017, 157, 1261-1271.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.003] [PMID: 27987831]
[36]
Nazemi, K.; Moztarzadeh, F.; Jalali, N.; Asgari, S.; Mozafari, M. Synthesis and characterization of poly(lactic-co-glycolic) acid nanoparticles-loaded chitosan/bioactive glass scaffolds as a localized delivery system in the bone defects. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/898930] [PMID: 24949477]
[37]
Lemos, E.M.; Patrício, P.S.M.M. Pereira, 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: An evaluation of the porous structure and mechanical properties. Quim. Nova, 2016, 39, 462-466.
[38]
El-Kady, A.M.; Kamel, N.A.; Elnashar, M.M.; Farag, M.M. Production of bioactive glass/chitosan scaffolds by freeze-gelation for optimized vancomycin delivery: Effectiveness of glass presence on controlling the drug release kinetics. J. Drug Deliv. Sci. Technol., 2021, 66, 102779.
[http://dx.doi.org/10.1016/j.jddst.2021.102779]
[39]
Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[40]
Li, Q.; Dunn, E.; Grandmaison, E.; Goosen, M.F. Applications and properties of chitosan, Applications of Chitan and Chitosan; CRC Press: Boca Raton, Florida, 2020, pp. 3-29.
[http://dx.doi.org/10.1201/9781003072812-2]
[41]
Brasselet, C.; Pierre, G.; Dubessay, P.; Dols-Lafargue, M.; Coulon, J.; Maupeu, J.; Vallet-Courbin, A.; de Baynast, H.; Doco, T.; Michaud, P.; Delattre, C. Modification of chitosan for the generation of functional derivatives. Appl. Sci. (Basel), 2019, 9(7), 1321.
[http://dx.doi.org/10.3390/app9071321]
[42]
Sogias, I.A.; Khutoryanskiy, V.V.; Williams, A.C. Exploring the factors affecting the solubility of chitosan in water. Macromol. Chem. Phys., 2010, 211(4), 426-433.
[http://dx.doi.org/10.1002/macp.200900385]
[43]
Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers (Basel), 2021, 13(19), 3256.
[http://dx.doi.org/10.3390/polym13193256] [PMID: 34641071]
[44]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[45]
Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential biopolymer for wound management. Int. J. Biol. Macromol., 2017, 102, 380-383.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.047] [PMID: 28412341]
[46]
Kim, S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/1708172]
[47]
Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm., 2012, 81(3), 463-469.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[48]
Ibrahim, H.; El-Zairy, E. Chitosan as a Biomaterial - Structure, Properties, and Electrospun Nanofibers; IntechOpen: London, 2015, 1(1), 81-101.
[49]
Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol., 2019, 7, 243.
[http://dx.doi.org/10.3389/fbioe.2019.00243] [PMID: 31612131]
[50]
Sergi, R.; Bellucci, D.; Salvatori, R.; Cannillo, V. Chitosan-based bioactive glass gauze: Microstructural properties, in vitro bioactivity, and biological tests. Materials (Basel), 2020, 13(12), 2819.
[http://dx.doi.org/10.3390/ma13122819] [PMID: 32585873]
[51]
Harini, G.; Bharathi, R.; Sankaranarayanan, A.; Abinaya, S.; Selvamurugan, N. Nanoceramics-reinforced chitosan scaffolds for bone tissue engineering. Mater. Adv., 2023, 4(3907), 3928.
[http://dx.doi.org/10.1039/D3MA00422H]
[52]
Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm., 2013, 455(1-2), 219-228.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[53]
Bodnar, M.; Hartmann, J.F.; Borbely, J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules, 2005, 6(5), 2521-2527.
[http://dx.doi.org/10.1021/bm0502258] [PMID: 16153088]
[54]
Nivethaa, E.; Martin, C.A.; Frank-Kamenetskaya, O.V.; Kalkura, S.N. Chitosan and chitosan based nanocomposites for applications as a drug delivery carrier: A review Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature; Springer Link: Berlin, Heidelberg, 2020, pp. 23-37.
[http://dx.doi.org/10.1007/978-3-030-21614-6_2]
[55]
Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 2015, 13(3), 1133-1174.
[http://dx.doi.org/10.3390/md13031133] [PMID: 25738328]
[56]
Roberts, G.A.; Roberts, G.A. Structure of chitin and chitosan. Chitin Chemistry; Springer Link: Berlin, Heidelberg, 1992, pp. 1-53.
[57]
Ferreira, P.G.; Ferreira, V.F.; da Silva, F.C.; Freitas, C.S.; Pereira, P.R.; Paschoalin, V.M.F. Chitosans and nanochitosans: Recent advances in skin protection, regeneration, and repair. Pharmaceutics, 2022, 14(6), 1307.
[http://dx.doi.org/10.3390/pharmaceutics14061307] [PMID: 35745879]
[58]
Hong, Y.; Chen, X.; Jing, X.; Fan, H.; Gu, Z.; Zhang, X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv. Funct. Mater., 2010, 20(9), 1503-1510.
[http://dx.doi.org/10.1002/adfm.200901627]
[59]
Cannio, M.; Bellucci, D.; Roether, J.A.; Boccaccini, D.N.; Cannillo, V. Bioactive glass applications: A literature review of human clinical trials. Materials (Basel), 2021, 14(18), 5440.
[http://dx.doi.org/10.3390/ma14185440] [PMID: 34576662]
[60]
Jones, J.R.; Brauer, D.S.; Hupa, L.; Greenspan, D.C. Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glass Sci., 2016, 7(4), 423-434.
[http://dx.doi.org/10.1111/ijag.12252]
[61]
Tangri, S.; Hasan, N.; Kaur, J. Fauziya; Mohammad; Maan, S.; Kesharwani, P.; Ahmad, F.J. Drug loaded bioglass nanoparticles and their coating for efficient tissue and bone regeneration. J. Non-Cryst. Solids, 2023, 616, 122469.
[http://dx.doi.org/10.1016/j.jnoncrysol.2023.122469]
[62]
Ali, S.; Farooq, I.; Iqbal, K. A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent. J., 2014, 26(1), 1-5.
[http://dx.doi.org/10.1016/j.sdentj.2013.12.001] [PMID: 24526822]
[63]
Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A, 2014, 102(1), 254-274.
[http://dx.doi.org/10.1002/jbm.a.34690] [PMID: 23468256]
[64]
Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med., 2006, 17(11), 967-978.
[http://dx.doi.org/10.1007/s10856-006-0432-z] [PMID: 17122907]
[65]
Jones, J.R. Review of bioactive glass: From Hench to Hybrids. Acta Biomater., 2013, 9(1), 4457-4486.
[http://dx.doi.org/10.1016/j.actbio.2012.08.023] [PMID: 22922331]
[66]
Krishnan, V.; Lakshmi, T. Bioglass: A novel biocompatible innovation. J. Adv. Pharm. Technol. Res., 2013, 4(2), 78-83.
[http://dx.doi.org/10.4103/2231-4040.111523] [PMID: 23833747]
[67]
Bellucci, D.; Sola, A.; Salvatori, R.; Anesi, A.; Chiarini, L.; Cannillo, V. Sol–gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds. Mater. Sci. Eng. C, 2014, 43, 573-586.
[http://dx.doi.org/10.1016/j.msec.2014.07.037] [PMID: 25175252]
[68]
Bellucci, D.; Cannillo, V. A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature. Mater. Lett., 2018, 213, 67-70.
[http://dx.doi.org/10.1016/j.matlet.2017.11.020]
[69]
Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363-373.
[http://dx.doi.org/10.1016/j.cis.2017.03.008] [PMID: 28364954]
[70]
Vogel, W.; Höland, W. The development of bioglass ceramics for medical applications. Angew. Chem. Int. Ed. Engl., 1987, 26(6), 527-544.
[http://dx.doi.org/10.1002/anie.198705271]
[71]
Liu, Y.Z.; Li, Y.; Yu, X.B.; Liu, L.N.; Zhu, Z.A.; Guo, Y.P. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass. Mater. Sci. Eng. C, 2014, 41, 196-205.
[http://dx.doi.org/10.1016/j.msec.2014.04.037] [PMID: 24907752]
[72]
Fu, Q.; Saiz, E.; Rahaman, M.N.; Tomsia, A.P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater. Sci. Eng. C, 2011, 31(7), 1245-1256.
[http://dx.doi.org/10.1016/j.msec.2011.04.022] [PMID: 21912447]
[73]
Vichery, C.; Nedelec, J.M. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials (Basel), 2016, 9(4), 288.
[http://dx.doi.org/10.3390/ma9040288] [PMID: 28773412]
[74]
Ferreira, S.A.; Young, G.; Jones, J.R.; Rankin, S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Mater. Sci. Eng. C, 2021, 118, 111393.
[http://dx.doi.org/10.1016/j.msec.2020.111393] [PMID: 33254998]
[75]
Rizwan, M.; Hamdi, M.; Basirun, W.J. Bioglass® 45S5‐based composites for bone tissue engineering and functional applications. J. Biomed. Mater. Res. A, 2017, 105(11), 3197-3223.
[http://dx.doi.org/10.1002/jbm.a.36156] [PMID: 28686004]
[76]
Chen, Q.; Mohn, D.; Stark, W.J. Optimization of Bioglass® scaffold fabrication process. J. Am. Ceram. Soc., 2011, 94(12), 4184-4190.
[http://dx.doi.org/10.1111/j.1551-2916.2011.04766.x]
[77]
Allan, I.; Newman, H.; Wilson, M. Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials, 2001, 22(12), 1683-1687.
[http://dx.doi.org/10.1016/S0142-9612(00)00330-6] [PMID: 11374470]
[78]
Zhang, D.; Leppäranta, O.; Munukka, E.; Ylänen, H.; Viljanen, M.K.; Eerola, E.; Hupa, M.; Hupa, L. Antibacterial effects and dissolution behavior of six bioactive glasses. J. Biomed. Mater. Res. A, 2010, 93A(2), 475-483.
[http://dx.doi.org/10.1002/jbm.a.32564] [PMID: 19582832]
[79]
Nayak, J.P.; Kumar, S.; Bera, J. Sol–gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization. J. Non-Cryst. Solids, 2010, 356(28-30), 1447-1451.
[http://dx.doi.org/10.1016/j.jnoncrysol.2010.04.041]
[80]
Yan, X.; Yu, C.; Zhou, X.; Tang, J.; Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed., 2004, 43(44), 5980-5984.
[http://dx.doi.org/10.1002/anie.200460598] [PMID: 15547911]
[81]
Ravarian, R.; Moztarzadeh, F.; Hashjin, M.S.; Rabiee, S.M.; Khoshakhlagh, P.; Tahriri, M. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram. Int., 2010, 36(1), 291-297.
[http://dx.doi.org/10.1016/j.ceramint.2009.09.016]
[82]
Faure, J.; Drevet, R.; Lemelle, A.; Ben Jaber, N.; Tara, A.; El Btaouri, H.; Benhayoune, H. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater. Sci. Eng. C, 2015, 47, 407-412.
[http://dx.doi.org/10.1016/j.msec.2014.11.045] [PMID: 25492213]
[83]
Maximov, M.; Maximov, O.C.; Craciun, L.; Ficai, D.; Ficai, A.; Andronescu, E. Bioactive glass-An extensive study of the preparation and coating methods. Coatings, 2021, 11(11), 1386.
[http://dx.doi.org/10.3390/coatings11111386]
[84]
Snyder, K.L.; Holmes, H.R.; VanWagner, M.J.; Hartman, N.J.; Rajachar, R.M. Development of vapor deposited silica sol–gel particles for use as a bioactive materials system. J. Biomed. Mater. Res. A, 2013, 101A(6), 1682-1693.
[http://dx.doi.org/10.1002/jbm.a.34471] [PMID: 23585242]
[85]
Arfa, B.A.E.B. Novel Robocasting and rotary evaporator routes for the preparation of sol-gel derived glass & glass ceramic scaffolds; Universidade de Aveiro: Portugal, 2019.
[86]
Cacciotti, I.; Lombardi, M.; Bianco, A.; Ravaglioli, A.; Montanaro, L. Sol–gel derived 45S5 bioglass: Synthesis, microstructural evolution and thermal behaviour. J. Mater. Sci. Mater. Med., 2012, 23(8), 1849-1866.
[http://dx.doi.org/10.1007/s10856-012-4667-6] [PMID: 22580755]
[87]
Singh, B.N.; Pramanik, K. Development of novel silk fibroin/polyvinyl alcohol/sol–gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Biofabrication, 2017, 9(1), 015028.
[http://dx.doi.org/10.1088/1758-5090/aa644f] [PMID: 28332482]
[88]
Seitz, J.M.; Collier, K.; Wulf, E.; Bormann, D.; Bach, F.W. Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment. Adv. Eng. Mater., 2011, 13(9), B313-B323.
[http://dx.doi.org/10.1002/adem.201080144]
[89]
Kermani, F.; Sadidi, H.; Ahmadabadi, A.; Hoseini, S.J.; Tavousi, S.H.; Rezapanah, A.; Nazarnezhad, S.; Hosseini, S.A.; Mollazadeh, S.; Kargozar, S. Modified sol–gel synthesis of mesoporous borate bioactive glasses for potential use in wound healing. Bioengineering (Basel), 2022, 9(9), 442.
[http://dx.doi.org/10.3390/bioengineering9090442] [PMID: 36134988]
[90]
Schitea, R.I.; Nitu, A.; Ciobota, A.A.; Munteanu, A.L.; David, I.M.; Miu, D.; Raileanu, M.; Bacalum, M.; Busuioc, C. Pulsed laser deposition derived bioactive glass-ceramic coatings for enhancing the biocompatibility of scaffolding materials. Materials (Basel), 2020, 13(11), 2615.
[http://dx.doi.org/10.3390/ma13112615] [PMID: 32521699]
[91]
Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15), 2907-2915.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.017] [PMID: 16448693]
[92]
Bohner, M.; Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials, 2009, 30(12), 2175-2179.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.008] [PMID: 19176246]
[93]
Zhang, D.; Hupa, M.; Aro, H.T.; Hupa, L. Influence of fluid circulation on in vitro reactivity of bioactive glass particles. Mater. Chem. Phys., 2008, 111(2-3), 497-502.
[http://dx.doi.org/10.1016/j.matchemphys.2008.04.055]
[94]
Mosaddad, S.A.; Yazdanian, M.; Tebyanian, H.; Tahmasebi, E.; Yazdanian, A.; Seifalian, A.; Tavakolizadeh, M. Fabrication and properties of developed collagen/strontium-doped Bioglass scaffolds for bone tissue engineering. J. Mater. Res. Technol., 2020, 9(6), 14799-14817.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.065]
[95]
Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11), 2414-2425.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.025] [PMID: 16336997]
[96]
Hench, L.L. Chronology of bioactive glass development and clinical applications. New J. Glass Ceramics, 2013, 03(02), 67-73.
[http://dx.doi.org/10.4236/njgc.2013.32011]
[97]
Huang, C.L.; Fang, W.; Huang, B.R.; Wang, Y.H.; Dong, G.C.; Lee, T.M. Bioactive glass as a nanoporous drug delivery system for teicoplanin. Appl. Sci. (Basel), 2020, 10(7), 2595.
[http://dx.doi.org/10.3390/app10072595]
[98]
Wu, C.; Chang, J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release, 2014, 193, 282-295.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.026] [PMID: 24780264]
[99]
Negut, I.; Floroian, L.; Ristoscu, C.; Mihailescu, C.N.; Mirza Rosca, J.C.; Tozar, T.; Badea, M.; Grumezescu, V.; Hapenciuc, C.; Mihailescu, I.N. Functional bioglass-Biopolymer double nanostructure for natural antimicrobial drug extracts delivery. Nanomaterials (Basel), 2020, 10(2), 385.
[http://dx.doi.org/10.3390/nano10020385] [PMID: 32098412]
[100]
Zarghami, V.; Ghorbani, M.; Pooshang Bagheri, K.; Shokrgozar, M.A. Prolongation of bactericidal efficiency of chitosan - Bioactive glass coating by drug controlled release. Prog. Org. Coat., 2020, 139, 105440.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105440]
[101]
Sergi, R.; Bellucci, D.; Cannillo, V. A review of bioactive glass/natural polymer composites: State of the art. Materials (Basel), 2020, 13(23), 5560.
[http://dx.doi.org/10.3390/ma13235560] [PMID: 33291305]
[102]
Albanna, M.Z.; Bou-Akl, T.H.; Blowytsky, O.; Walters, H.L., III; Matthew, H.W.T. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications. J. Mech. Behav. Biomed. Mater., 2013, 20, 217-226.
[http://dx.doi.org/10.1016/j.jmbbm.2012.09.012] [PMID: 23465267]
[103]
Caridade, S.G.; Merino, E.G.; Alves, N.M.; de Zea Bermudez, V.; Boccaccini, A.R.; Mano, J.F. Chitosan membranes containing micro or nano-size bioactive glass particles: Evolution of biomineralization followed by in situ dynamic mechanical analysis. J. Mech. Behav. Biomed. Mater., 2013, 20, 173-183.
[104]
Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27), 5474-5491.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[105]
Shekaran, A.; García, A.J. Extracellular matrix‐mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. A, 2011, 96A(1), 261-272.
[http://dx.doi.org/10.1002/jbm.a.32979] [PMID: 21105174]
[106]
Houaoui, A.; Szczodra, A.; Lallukka, M.; El-Guermah, L.; Agniel, R.; Pauthe, E.; Massera, J.; Boissiere, M. New generation of hybrid materials based on gelatin and bioactive glass particles for bone tissue regeneration. Biomolecules, 2021, 11(3), 444.
[http://dx.doi.org/10.3390/biom11030444] [PMID: 33802745]
[107]
Cohn, N.; Bradtmüller, H.; Zanotto, E.; von Marttens, A.; Covarrubias, C. Novel organic-inorganic nanocomposite hybrids based on bioactive glass nanoparticles and their enhanced osteoinductive properties. Biomolecules, 2024, 14(4), 482.
[http://dx.doi.org/10.3390/biom14040482] [PMID: 38672498]
[108]
Cui, X.; Huang, W.; Zhang, Y.; Huang, C.; Yu, Z.; Wang, L.; Liu, W.; Wang, T.; Zhou, J.; Wang, H.; Zhou, N.; Wang, D.; Pan, H.; Rahaman, M.N. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. Mater. Sci. Eng. C, 2017, 73, 585-595.
[http://dx.doi.org/10.1016/j.msec.2016.12.101] [PMID: 28183648]
[109]
Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater., 2012, 8(11), 4173-4180.
[http://dx.doi.org/10.1016/j.actbio.2012.06.040] [PMID: 22771458]
[110]
Valerio, P.; Pereira, M.M.; Goes, A.M.; Leite, M.F. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials, 2004, 25(15), 2941-2948.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.086] [PMID: 14967526]
[111]
Silver, I.A.; Deas, J.; Erecińska, M. Interactions of bioactive glasses with osteoblasts in vitro: Effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 2001, 22(2), 175-185.
[http://dx.doi.org/10.1016/S0142-9612(00)00173-3] [PMID: 11101161]
[112]
Raboh, A.S.A.; El-khooly, M.S.; Hassaan, M.Y. Bioactivity and drug release study of dexamethasone loaded bioglass/Chitosan composites for biomedical applications. J. Inorg. Organomet. Polym. Mater., 2021, 31(7), 2779-2790.
[http://dx.doi.org/10.1007/s10904-021-01936-z]
[113]
Martins, T.; Moreira, C.D.; Costa-Júnior, E.S.; Pereira, M.M. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker. Biomed. Glasses, 2018, 1(1), 45-56.
[114]
Xianmiao, C.; Yubao, L.; Yi, Z.; Li, Z.; Jidong, L.; Huanan, W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng. C, 2009, 29(1), 29-35.
[http://dx.doi.org/10.1016/j.msec.2008.05.008]
[115]
Bottino, M.C.; Thomas, V.; Janowski, G.M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater., 2011, 7(1), 216-224.
[http://dx.doi.org/10.1016/j.actbio.2010.08.019] [PMID: 20801241]
[116]
Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci., 2007, 52(8), 1263-1334.
[http://dx.doi.org/10.1016/j.pmatsci.2007.06.001]
[117]
Prodana, M.; Ionita, D.; Stoian, A.B.; Demetrescu, I.; Mihai, G.V.; Enăchescu, M. The design and characterization of new chitosan, bioglass and ZnO-based coatings on Ti-Zr-Ta-Ag. Coatings, 2023, 13(3), 493.
[http://dx.doi.org/10.3390/coatings13030493]
[118]
Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today, 2013, 16(12), 496-504.
[http://dx.doi.org/10.1016/j.mattod.2013.11.017]
[119]
Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A critical review on polymeric biomaterials for biomedical applications. Polymers (Basel), 2021, 13(17), 3015.
[http://dx.doi.org/10.3390/polym13173015] [PMID: 34503054]
[120]
Dizon, J.R.C.; Espera, A.H., Jr; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf., 2018, 20, 44-67.
[http://dx.doi.org/10.1016/j.addma.2017.12.002]
[121]
Dukle, A.; Murugan, D.; Nathanael, A.; Rangasamy, L.; Oh, T.H. Can 3D-printed bioactive glasses be the future of bone tissue engineering? Polymers (Basel), 2022, 14(8), 1627.
[http://dx.doi.org/10.3390/polym14081627] [PMID: 35458377]
[122]
Yadav, L.R.; Chandran, S.V.; Lavanya, K.; Selvamurugan, N. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 2021, 183, 1925-1938.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.215] [PMID: 34097956]
[123]
Daskalakis, E.; Huang, B.; Vyas, C.; Acar, A.A.; Fallah, A.; Cooper, G.; Weightman, A.; Koc, B.; Blunn, G.; Bartolo, P. Novel 3D bioglass scaffolds for bone tissue regeneration. Polymers (Basel), 2022, 14(3), 445.
[http://dx.doi.org/10.3390/polym14030445] [PMID: 35160435]
[124]
Bidgoli, M.R.; Alemzadeh, I.; Tamjid, E.; Khafaji, M.; Vossoughi, M. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Mater. Sci. Eng. C, 2019, 103, 109688.
[http://dx.doi.org/10.1016/j.msec.2019.04.067] [PMID: 31349405]
[125]
Du, X.; Wei, D.; Huang, L.; Zhu, M.; Zhang, Y.; Zhu, Y. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2019, 103, 109731.
[http://dx.doi.org/10.1016/j.msec.2019.05.016] [PMID: 31349472]
[126]
Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive glasses: Where are we and where are we going? J. Funct. Biomater., 2018, 9(1), 25.
[http://dx.doi.org/10.3390/jfb9010025] [PMID: 29562680]
[127]
Ciołek, L.; Krok-Borkowicz, M.; Gąsiński, A.; Biernat, M.; Antosik, A.; Pamuła, E. Bioactive glasses enriched with strontium or zinc with different degrees of structural order as components of chitosan-based composite scaffolds for bone tissue engineering. Polymers (Basel), 2023, 15(19), 3994.
[http://dx.doi.org/10.3390/polym15193994] [PMID: 37836043]
[128]
Vukajlovic, D.; Bretcanu, O.; Novakovic, K. Fabrication and characterization of two types of bone composites made of chitosan-genipin hydrogel and Bioglass 45S5. Open Ceramics, 2021, 8, 100174.
[http://dx.doi.org/10.1016/j.oceram.2021.100174]
[129]
Uskoković, V.; Abuna, G.; Hampton, J.R.; Geraldeli, S. Tunable release of calcium from chitosan-coated bioglass. Pharmaceutics, 2023, 16(1), 39.
[http://dx.doi.org/10.3390/pharmaceutics16010039] [PMID: 38258050]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy