Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs

Author(s): Hamid Reza Garshasbi, Sina Soleymani, Seyed Morteza Naghib* and M.R. Mozafari

Volume 30, Issue 26, 2024

Published on: 14 June, 2024

Page: [2027 - 2046] Pages: 20

DOI: 10.2174/0113816128304924240527113111

Price: $65

Abstract

The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.

Next »
[1]
Li M, Li W, Guan Q, et al. Sweat-resistant bioelectronic skin sensor. Device 2023; 1(1): 100006.
[2]
Li M, Li W, Cai W, et al. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater Horiz 2019; 6(4): 703-10.
[http://dx.doi.org/10.1039/C8MH01441H]
[3]
Li W, Liu H, Mi Y, et al. Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals. Friction 2022; 10(1): 80-93.
[http://dx.doi.org/10.1007/s40544-020-0416-x]
[4]
Schwartz M. Smart materials. CRC Press 2008.
[http://dx.doi.org/10.1201/9781420043730]
[5]
Galaev I, Mattiasson B. Smart polymers: Applications in biotechnology and biomedicine. CRC Press 2007.
[http://dx.doi.org/10.1201/9781420008623]
[6]
Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol Pharm 2020; 17(2): acs.molpharmaceut.9b01020.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01020] [PMID: 31877054]
[7]
Chopra H, Gandhi S, Gautam RK, Kamal MA. Bacterial nanocellulose based wound dressings: Current and future prospects. Curr Pharm Des 2022; 28(7): 570-80.
[http://dx.doi.org/10.2174/1381612827666211021162828] [PMID: 34674616]
[8]
Adepu S, Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021; 26(19): 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[9]
Zielińska A, Eder P, Rannier L, et al. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2022; 28(8): 609-18.
[http://dx.doi.org/10.2174/1381612828666211230114755] [PMID: 34967292]
[10]
Bansal KK, Wilen CE, Rosenholm JM. Synthetic polymers in translational nanomedicine: From concept to prospective products. Curr Pharm Des 2023; 29(29): 2277-80.
[http://dx.doi.org/10.2174/0113816128276471231010045123] [PMID: 37828666]
[11]
Deng Z, Yu R, Guo B. Stimuli-responsive conductive hydrogels: Design, properties, and applications. Mater Chem Front 2021; 5(5): 2092-123.
[http://dx.doi.org/10.1039/D0QM00868K]
[12]
Vianey G-BB, Eli O-GB, Guillermina F-F, Enrique M-A, Alejandra A-C, Laura J-A. Multimeric system of RGD-Grafted PMMA- nanoparticles as a targeted drug-delivery system for paclitaxel. Curr Pharm Des 2017; 23(23): 3415-22.
[http://dx.doi.org/10.2174/1381612823666170407143525] [PMID: 28403791]
[13]
Saleem Z, Rehman K, Hamid Akash MS. Role of drug delivery system in improving the bioavailability of resveratrol. Curr Pharm Des 2022; 28: 106.
[14]
Handa M, Singh A, Flora SJS, Shukla R. Stimuli-responsive polymeric nanosystems for therapeutic applications. Curr Pharm Des 2022; 28(11): 910-21.
[http://dx.doi.org/10.2174/1381612827666211208150210] [PMID: 34879797]
[15]
Singh R, Jadhav K, Vaghasiya K, Ray E, Shukla R, Verma RK. New generation smart drug delivery systems for rheumatoid arthritis. Curr Pharm Des 2023; 29(13): 984-1001.
[http://dx.doi.org/10.2174/1381612829666230406102935] [PMID: 37038685]
[16]
Diavati S, Sagris M, Terentes-Printzios D, Vlachopoulos C. Anticoagulation treatment in venous thromboembolism: Options and optimal duration. Curr Pharm Des 2022; 28(4): 296-305.
[http://dx.doi.org/10.2174/1381612827666211111150705] [PMID: 34766887]
[17]
Patel P, Kumar K, Jain VK, Popli H, Yadav AK, Jain K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr Pharm Des 2023; 29(10): 732-47.
[18]
Alshememry AK, El-Tokhy SS, Unsworth LD. Using properties of tumor microenvironments for controlling local, on-demand delivery from biopolymer-based nanocarriers. Curr Pharm Des 2017; 23(35): 5358-91.
[PMID: 28530543]
[19]
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28(9): 711-26.
[http://dx.doi.org/10.2174/1381612828666220328121211] [PMID: 35345993]
[20]
El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13: 100186.
[http://dx.doi.org/10.1016/j.mtbio.2021.100186] [PMID: 34917924]
[21]
Parashar P, Kanoujia J, Kishore A. Progress in polymeric micelles as viable wagons for brain targeting. Curr Pharm Des 2023; 29(2): 116-25.
[http://dx.doi.org/10.2174/1381612829666221223101753] [PMID: 36567302]
[22]
Salatin S, Farhoudi M, Sadigh-Eteghad S, Farjami A. Nanoparticle and stem cell combination therapy for the management of stroke. Curr Pharm Des 2023; 29(1): 15-29.
[http://dx.doi.org/10.2174/1381612829666221213113119] [PMID: 36515043]
[23]
Goh WX, Kok YY, Wong CY. Comparison of cell-based and nanoparticle-based therapeutics in treating atherosclerosis. Curr Pharm Des 2023; 29(35): 2827-40.
[http://dx.doi.org/10.2174/0113816128272185231024115046] [PMID: 37936453]
[24]
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 2019; 25(11): 1312-34.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[25]
Aguilar MR, San Román J. Smart polymers and their applications. Woodhead Publishing 2019.
[http://dx.doi.org/10.1016/B978-0-08-102416-4.00001-6]
[26]
Xu MM, Liu RJ, Yan Q. Biological stimuli-responsive polymer systems: Design, construction and controlled self-assembly. Chin J Polym Sci 2018; 36(3): 347-65.
[http://dx.doi.org/10.1007/s10118-018-2080-4]
[27]
Ghizal R, Fatima GR, Srivastava S. Smart polymers and their applications. Int J Eng Technol Manag Appl Sci 2014; 2: 104-15.
[28]
Saravanakumar K, Ali DM, Kathiresan K, Wang MH. Antimicrobial, anticancer drug carrying properties of biopolymers-based nanocomposites- A mini review. Curr Pharm Des 2019; 24(32): 3859-66.
[http://dx.doi.org/10.2174/1381612825666181120161300] [PMID: 30465496]
[29]
Alimohammadi M, Faramarzi F, Mafi A, et al. Efficacy and safety of atezolizumab monotherapy or combined therapy with chemotherapy in patients with metastatic triple-negative breast cancer: A systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 2023; 29(31): 2461-76.
[http://dx.doi.org/10.2174/0113816128270102231016110637] [PMID: 37921135]
[30]
Pandya M, Chatterjee B, Ganti S. Self-emulsifying drug delivery system for oral anticancer therapy: Constraints and recent development. Curr Pharm Des 2022; 28(31): 2538-53.
[http://dx.doi.org/10.2174/03666220606143443] [PMID: 35670356]
[31]
Katiyar S, Yadav D. Correlation of oxidative stress with melasma: An overview. Curr Pharm Des 2022; 28(3): 225-31.
[http://dx.doi.org/10.2174/1381612827666211104154928] [PMID: 34736377]
[32]
Prakash Jain J, Yenet Ayen W, Kumar N. Self assembling polymers as polymersomes for drug delivery. Curr Pharm Des 2011; 17(1): 65-79.
[http://dx.doi.org/10.2174/138161211795049822] [PMID: 21342115]
[33]
Rahimi Mamaghani K, Naghib SM, Zahedi A, Zeinali Kalkhoran AH, Rahmanian M. Fast synthesis of methacrylated graphene oxide: A graphene-functionalised nanostructure. Micro Nano Lett 2018; 13(2): 195-7.
[http://dx.doi.org/10.1049/mnl.2017.0461]
[34]
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019; 120: 109220.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109220]
[35]
Akram MU, Abbas N, Farman M, et al. Tumor micro-environment sensitive release of doxorubicin through chitosan based polymeric nanoparticles: An in-vitro study. Chemosphere 2023; 313: 137332.
[http://dx.doi.org/10.1016/j.chemosphere.2022.137332] [PMID: 36427576]
[36]
Gupta A, Dhiman A, Sood A, Bharadwaj R, Silverman N, Agrawal G. Dextran/eudragit S-100 based redox sensitive nanoparticles for colorectal cancer therapy. Nanoscale 2023; 15(7): 3273-83.
[http://dx.doi.org/10.1039/D3NR00248A] [PMID: 36723053]
[37]
Chaudhuri A, Sandha KK, Agrawal AK, Gupta PN. Introduction to smart polymers and their application. Smart Polymeric Nano- Constructs in Drug Delivery. Academic Press 2023; pp. 1-46.
[http://dx.doi.org/10.1016/B978-0-323-91248-8.00002-7]
[38]
Kumar N, Sauraj, Kumar A. 21: Environmentally sensitive nanocomposite hydrogels for biomedical applications. Functional Nanocomposite Hydrogels. Elsevier 2023; pp. 517-40.
[http://dx.doi.org/10.1016/B978-0-323-99638-9.00021-6]
[39]
Wang Z, Sun J, Huang X, Lv K, Geng Y. A temperature-sensitive polymer with thinner effect as a rheology modifier in deepwater water-based drilling fluids. J Mol Liq 2024; 393: 123536.
[http://dx.doi.org/10.1016/j.molliq.2023.123536]
[40]
Song Z, Hu J, Liu P, Sun Y. Synthesis and performance evaluation of alginate-coated temperature-sensitive polymer gel microspheres. Gels 2023; 9(6): 480.
[http://dx.doi.org/10.3390/gels9060480] [PMID: 37367150]
[41]
Zhu X, Wang X, Zhou G, et al. Temperature-sensitive polymer-based iron complexes: Construction, characterization and properties in dye degradation by activated H2O2. J Inorg Organomet Polym Mater 2023; 33(10): 3237-46.
[http://dx.doi.org/10.1007/s10904-023-02752-3]
[42]
Shen Y, Zhu Y, Gao Z, et al. Nano-SiO2 grafted with temperature-sensitive polymer as plugging agent for water-based drilling fluids. Arab J Sci Eng 2023; 48(7): 9401-11.
[http://dx.doi.org/10.1007/s13369-022-07486-x]
[43]
Yu S, Reddy O, Abaci A, et al. Novel BODIPY-based photobase generators for photoinduced polymerization. ACS Appl Mater Interfaces 2023; 15(38): 45281-9.
[http://dx.doi.org/10.1021/acsami.3c09326] [PMID: 37708358]
[44]
Li J, Zhu Y, Chang L. Study on the preparation and color-changing properties of smart fabric based on temperature-sensitive/light-sensitive dual-response. Mater Res Express 2023; 10(4): 045702.
[http://dx.doi.org/10.1088/2053-1591/accb2c]
[45]
Noon A, Hammoud F, Graff B, et al. Photoinitiation mechanisms of novel phenothiazine-based oxime and oxime esters acting as visible light sensitive type I and multicomponent photoinitiators. Adv Mater Technol 2023; 8(16): 2300205.
[http://dx.doi.org/10.1002/admt.202300205]
[46]
Jeong BH, Park J, Kim D, Lee J, Jung IH, Park HJ. Visible light-sensitive artificial photonic synapse. Adv Opt Mater 2024; 12(4): 2301652.
[http://dx.doi.org/10.1002/adom.202301652]
[47]
Xing J, Yang B, Dang W, Li J, Bai B. Preparation of photo/electro-sensitive hydrogel and its adsorption/desorption behavior to acid fuchsine. Water Air Soil Pollut 2020; 231(5): 231.
[http://dx.doi.org/10.1007/s11270-020-04582-2]
[48]
Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr Polym 2022; 283: 119177.
[http://dx.doi.org/10.1016/j.carbpol.2022.119177] [PMID: 35153022]
[49]
Shen B, Peng W, Su B, et al. Elastic–electric coefficient-sensitive hydrogel sensors toward sweat detection. Anal Chem 2022; 94(3): 1910-7.
[http://dx.doi.org/10.1021/acs.analchem.1c05363] [PMID: 35006670]
[50]
Yang Y, He Z, Jiao P, Ren H. Bioinspired soft robotics: How do we learn from creatures? IEEE Rev Biomed Eng 2022.
[PMID: 36166519]
[51]
Zhang Z, Wang Y, Zhu X, Li Y, Gu H. Notice of retraction: preparation and electromechanical performance analysis of self-healing electrostrictive polymer. 2020 IEEE 3rd International Conference on Dielectrics (ICD). IEEE, 2020: pp. 321-324.
[52]
Song X, Song Y, Cui X, et al. Intrinsic healable mechanochromic materials via incorporation of spiropyran mechanophore into polymer main chain. Polymer 2022; 250: 124878.
[http://dx.doi.org/10.1016/j.polymer.2022.124878]
[53]
Zhou Y, Lv W, Peng X, et al. Simulated microgravity attenuates skin wound healing by inhibiting dermal fibroblast migration via F-actin/YAP signaling pathway. J Cell Physiol 2023; 238(12): 2751-64.
[http://dx.doi.org/10.1002/jcp.31126] [PMID: 37795566]
[54]
Greco F, Mattoli V. Introduction to active smart materials for biomedical applications BT - Piezoelectric nanomaterials for biomedical applications. Springer Berlin Heidelberg, Berlin. Heidelberg 2012; pp. 1-27.
[http://dx.doi.org/10.1007/978-3-642-28044-3_1]
[55]
Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012; 7(1): 9.
[http://dx.doi.org/10.1007/s13758-011-0009-3] [PMID: 22589052]
[56]
Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 2017; 64: 114-53.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.005]
[57]
Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers the all-in-one talents. Polym Chem 2014; 5(1): 25-36.
[http://dx.doi.org/10.1039/C3PY00880K]
[58]
Thakur VK, Thakur MK. Handbook of polymers for pharmaceutical technologies. Wiley Online Library 2015.
[59]
Mahajan A, Aggarwal G. Smart polymers: Innovations in novel drug delivery. Int JDrug Develop Res 2011; 3: 16-30.
[60]
Mathew AP, Uthaman S, Cho KH, Cho CS, Park IK. Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol 2018; 110: 17-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.113] [PMID: 29169942]
[61]
Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite hydrogels-a promising approach towards enhanced bioavailability and controlled drug delivery. Curr Pharm Des 2024; 30(1): 48-62.
[http://dx.doi.org/10.2174/0113816128283466231219071151] [PMID: 38155469]
[62]
Alka , Verma A, Mishra N, et al. Polymeric gel scaffolds and biomimetic environments for wound healing. Curr Pharm Des 2023; 29(40): 3221-39.
[http://dx.doi.org/10.2174/1381612829666230816100631] [PMID: 37584354]
[63]
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated polymeric hydrogels for biomedical applications: A review. Curr Pharm Des 2023; 29(40): 3172-86.
[http://dx.doi.org/10.2174/1381612829666230825100859] [PMID: 37622704]
[64]
Sithole MN, Mndlovu H, du Toit LC, et al. Advances in stimuli-responsive hydrogels for tissue engineering and regenerative medicine applications: A review towards improving structural design for 3D printing. Curr Pharm Des 2023; 29(40): 3187-205.
[http://dx.doi.org/10.2174/0113816128246888230920060802] [PMID: 37779402]
[65]
Jiang Z, Song Z, Cao C, et al. Multiple natural polymers in drug and gene delivery systems. Curr Med Chem 2024; 31(13): 1691-715.
[http://dx.doi.org/10.2174/0929867330666230316094540] [PMID: 36927424]
[66]
Deen G, Loh X. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels 2018; 4(1): 13.
[http://dx.doi.org/10.3390/gels4010013] [PMID: 30674789]
[67]
Marques AC, Costa PJ, Velho S, Amaral MH. Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discov Today 2021; 26(10): 2397-405.
[http://dx.doi.org/10.1016/j.drudis.2021.04.012] [PMID: 33892147]
[68]
Pattanashetti NA, Heggannavar GB, Kariduraganavar MY. Smart biopolymers and their biomedical applications. Procedia Manuf 2017; 12: 263-79.
[http://dx.doi.org/10.1016/j.promfg.2017.08.030]
[69]
Aguilar MR, Elvira C, Gallardo A, Vazquez B, Román JS. Smart polymers and their applications as biomaterials. Topics Tissue Eng 2007; 3: 1-27.
[70]
Hu J, Lu J. Smart polymers for textile applications. Woodhead Publishing 2014; pp. 437-75.
[http://dx.doi.org/10.1533/9780857097026.2.4377]
[71]
Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem 2017; 8(1): 127-43.
[http://dx.doi.org/10.1039/C6PY01585A]
[72]
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart hydrogels synthetic stimuli-responsive antitumor drug release systems. Int J Nanomed 2020; 15: 4541-72.
[http://dx.doi.org/10.2147/IJN.S248987] [PMID: 32617004]
[73]
Hong M, Chen EYX. Future directions for sustainable polymers. Trends Chem 2019; 1(2): 148-51.
[http://dx.doi.org/10.1016/j.trechm.2019.03.004]
[74]
Namazi H. Polymers in our daily life. Bioimpacts 2017; 7(2): 73-4.
[http://dx.doi.org/10.15171/bi.2017.09] [PMID: 28752070]
[75]
Chen W, Ma M, Lai Q, Zhang Y, Liu Z. DPP-Cu2+ complexes gated mesoporous silica nanoparticles for ph and redox dual stimuli-responsive drug delivery. Curr Med Chem 2023; 30(28): 3249-60.
[http://dx.doi.org/10.2174/0929867329666221011110504] [PMID: 36221869]
[76]
Suhail M, Chiu IH, Liu JY, et al. Fabrication and in vitro evaluation of carbopol/polyvinyl alcohol-based ph-sensitive hydrogels for controlled drug delivery. Curr Pharm Des 2023; 29(31): 2489-500.
[http://dx.doi.org/10.2174/0113816128268132231016061548] [PMID: 37881070]
[77]
Dou J, Yu S, Reddy O, Zhang Y. Novel ABA block copolymers: Preparation, temperature sensitivity, and drug release. RSC Advances 2022; 13(1): 129-39.
[http://dx.doi.org/10.1039/D2RA05831F] [PMID: 36605663]
[78]
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH-sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021; 32(4): 1455-84.
[http://dx.doi.org/10.1002/pat.5230]
[79]
Xie Y, Tuguntaev RG, Mao C, et al. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophys Rep 2020; 6(5): 193-210.
[http://dx.doi.org/10.1007/s41048-020-00117-8] [PMID: 37288306]
[80]
Shymborska Y, Budkowski A, Raczkowska J, et al. Switching it Up: The promise of stimuli-responsive polymer systems in biomedical science. Chem Rec 2024; 24(2): e202300217.
[http://dx.doi.org/10.1002/tcr.202300217] [PMID: 37668274]
[81]
Song P, Song N, Li L, Wu M, Lu Z, Zhao X. Angiopep-2-modified carboxymethyl chitosan-based pH/reduction dual-stimuli-responsive nanogels for enhanced targeting glioblastoma. Biomacromolecules 2021; 22(7): 2921-34.
[http://dx.doi.org/10.1021/acs.biomac.1c00314] [PMID: 34180218]
[82]
Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: A review. Polym Plast Technol Eng 2011; 50(14): 1475-86.
[http://dx.doi.org/10.1080/03602559.2011.593082]
[83]
Nurpeissova ZA, Alimkhanova SG, Mangazbayeva RA, Shaikhutdinov YM, Mun GA, Khutoryanskiy VV. Redox- and glucose-responsive hydrogels from poly(vinyl alcohol) and 4-mercaptophenylboronic acid. Eur Polym J 2015; 69: 132-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.06.003]
[84]
Ilic-Stojanovic S, Nikolic L, Nikolic V, Petrovic S, Stankovic M, Mladenovic-Ranisavljevic I. Stimuli-sensitive hydrogels for pharmaceutical and medical applications. Facta Universit Series: Phys Chem Technol 2011; 9(1): 37-56.
[http://dx.doi.org/10.2298/FUPCT1101037I]
[85]
Ebara M, Kotsuchibashi Y, Narain R, et al. Smart biomaterials. Springer 2014.
[http://dx.doi.org/10.1007/978-4-431-54400-5]
[86]
Chaterji S, Kwon IK, Park K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog Polym Sci 2007; 32(8-9): 1083-122.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.018] [PMID: 18670584]
[87]
Gharehdaghi Z, Rahimi R, Naghib SM, Molaabasi F. Cu (II)-porphyrin metal–organic framework/graphene oxide: Synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 2021; 26(6): 689-704.
[http://dx.doi.org/10.1007/s00775-021-01887-3] [PMID: 34420089]
[88]
Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[89]
Gooneh-Farahani S, Naghib SM, Naimi-Jamal MR. A novel and inexpensive method based on modified ionic gelation for ph-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency. Fibers Polym 2020; 21(9): 1917-26.
[http://dx.doi.org/10.1007/s12221-020-1095-y]
[90]
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review. Expert Opin Drug Deliv 2019; 16(1): 79-99.
[http://dx.doi.org/10.1080/17425247.2019.1556257] [PMID: 30514124]
[91]
Garshasbi H, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front Bioeng Biotechnol 2023; 10: 1126774.
[http://dx.doi.org/10.3389/fbioe.2022.1126774] [PMID: 36698640]
[92]
Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11: 1104126.
[http://dx.doi.org/10.3389/fbioe.2023.1104126] [PMID: 36911200]
[93]
Knipe JM, Peppas NA. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 2014; 1(1): 57-65.
[http://dx.doi.org/10.1093/rb/rbu006] [PMID: 26816625]
[94]
Gonsalves K, Halberstadt C, Laurencin CT, Nair L. Biomedical nanostructures. John Wiley & Sons 2007.
[http://dx.doi.org/10.1002/9780470185834]
[95]
Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018; 99: 117-33.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.004]
[96]
Kulkarni RV, Biswanath S. Electrically responsive smart hydrogels in drug delivery: A review. J Appl Biomater Biomech 2007; 5(3): 125-39.
[PMID: 20799182]
[97]
Uman S, Dhand A, Burdick JA. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J Appl Polym Sci 2020; 137(25): 48668.
[http://dx.doi.org/10.1002/app.48668]
[98]
Mellati A, Akhtari J. Injectable hydrogels: A review of injectability mechanisms and biomedical applications. Res Mol Med 2019; 6: 1-14.
[http://dx.doi.org/10.18502/rmm.v6i4.4799]
[99]
Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 2017; 12(8): 1521-41.
[http://dx.doi.org/10.1038/nprot.2017.053] [PMID: 28683063]
[100]
Le TMD, Jung BK, Li Y, et al. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater Sci 2019; 7(10): 4195-207.
[http://dx.doi.org/10.1039/C9BM00992B] [PMID: 31386700]
[101]
Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018; 22(1): 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6] [PMID: 30275970]
[102]
Khan S, Minhas M, Aqeel M, et al. RETRACTED: Poly (N-vinylcaprolactam-grafted-sodium alginate) based injectable ph/thermo responsive in situ forming depot hydrogels for prolonged controlled anticancer drug delivery; In vitro, in vivo characterization and toxicity evaluation. Pharmaceutics 2022; 14(5): 1050.
[http://dx.doi.org/10.3390/pharmaceutics14051050] [PMID: 35631636]
[103]
Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin- functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20(1): 91.
[http://dx.doi.org/10.1186/s12951-022-01290-3] [PMID: 35193612]
[104]
Hoang HT, Jo SH, Phan QT, et al. Dual pH-/thermo-responsive chitosan-based hydrogels prepared using “click” chemistry for colon-targeted drug delivery applications. Carbohydr Polym 2021; 260: 117812.
[http://dx.doi.org/10.1016/j.carbpol.2021.117812] [PMID: 33712157]
[105]
Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Carrera Espinoza MJ. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J Ind Eng Chem 2021; 102: 1-16.
[http://dx.doi.org/10.1016/j.jiec.2021.06.004]
[106]
Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids Surf A Physicochem Eng Asp 2021; 623: 126719.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126719]
[107]
Howaili F, Özliseli E, Küçüktürkmen B, Razavi SM, Sadeghizadeh M, Rosenholm JM. Stimuli-responsive, plasmonic nanogel for dual delivery of curcumin and photothermal therapy for cancer treatment. Front Chem 2021; 8: 602941.
[http://dx.doi.org/10.3389/fchem.2020.602941] [PMID: 33585400]
[108]
Zhuang J, Zhou L, Tang W, et al. Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. Mater Sci Eng C 2021; 118: 111361.
[http://dx.doi.org/10.1016/j.msec.2020.111361] [PMID: 33254980]
[109]
Wang J, Huang N, Peng Q, Cheng X, Li W. Temperature/pH dual-responsive and luminescent drug carrier based on PNIPAM- MAA/lanthanide-polyoxometalates for controlled drug delivery and imaging in HeLa cells. Mater Chem Phys 2020; 239: 121994.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121994]
[110]
Lee JS, Nah H, Moon HJ, Lee SJ, Heo DN, Kwon IK. Controllable delivery system: A temperature and pH-responsive injectable hydrogel from succinylated chitosan. Appl Surf Sci 2020; 528: 146812.
[http://dx.doi.org/10.1016/j.apsusc.2020.146812]
[111]
Lin X, Ma Q, Su J, et al. Dual-responsive alginate hydrogels for controlled release of therapeutics. Molecules 2019; 24(11): 2089.
[http://dx.doi.org/10.3390/molecules24112089] [PMID: 31159343]
[112]
Stamou A, Iatrou H, Tsitsilianis C. NIPAm-based modification of poly(L-lysine): A pH-dependent LCST-type thermo-responsive biodegradable polymer. Polymers 2022; 14(4): 802.
[http://dx.doi.org/10.3390/polym14040802] [PMID: 35215715]
[113]
Fan SY, Hao YN, Zhang WX, et al. Poly (ionic liquid)-gated CuCo2S4 for pH-/thermo-triggered drug release and photoacoustic imaging. ACS Appl Mater Interfaces 2020; 12(8): 9000-7.
[http://dx.doi.org/10.1021/acsami.9b21292] [PMID: 32013385]
[114]
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Comput Methods Programs Biomed 2020; 184: 105303.
[http://dx.doi.org/10.1016/j.cmpb.2019.105303] [PMID: 31901633]
[115]
Laurano R, Boffito M, Abrami M, et al. Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds. Bioact Mater 2021; 6(9): 3013-24.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.003] [PMID: 34258478]
[116]
King JL, Maturavongsadit P, Hingtgen SD, Benhabbour SR. Injectable pH thermo-responsive hydrogel scaffold for tumoricidal neural stem cell therapy for glioblastoma multiforme. Pharmaceutics 2022; 14(10): 2243.
[http://dx.doi.org/10.3390/pharmaceutics14102243] [PMID: 36297678]
[117]
Metawea ORM, Abdelmoneem MA, Haiba NS, et al. A novel ‘smart’ PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202: 111694.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111694] [PMID: 33740633]
[118]
Boffito M, Torchio A, Tonda-Turo C, et al. Hybrid injectable sol-gel systems based on thermo-sensitive polyurethane hydrogels carrying pH-sensitive mesoporous silica nanoparticles for the controlled and triggered release of therapeutic agents. Front Bioeng Biotechnol 2020; 8: 384.
[http://dx.doi.org/10.3389/fbioe.2020.00384] [PMID: 32509740]
[119]
Maturavongsadit P, Paravyan G, Shrivastava R, Benhabbour SR. Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia 2020; 12: 100681.
[http://dx.doi.org/10.1016/j.mtla.2020.100681]
[120]
Abdelaty MSA. Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). J Polym Res 2021; 28(6): 213.
[http://dx.doi.org/10.1007/s10965-021-02574-2]
[121]
Hu Y, Xiong Y, Tao R, et al. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing. Biomat Translat 2022; 3(3): 188-200.
[http://dx.doi.org/10.12336/biomatertransl.2022.03.003] [PMID: 36654776]
[122]
d’Aquino AI, Maikawa CL, Nguyen LT, et al. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med 2023; 4(11): 101292.
[http://dx.doi.org/10.1016/j.xcrm.2023.101292] [PMID: 37992687]
[123]
Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact Mater 2022; 17: 1-17.
[http://dx.doi.org/10.1016/j.bioactmat.2022.01.004] [PMID: 35386439]
[124]
Zhu Y, Wang L, Li Y, et al. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8(19): 5415-26.
[http://dx.doi.org/10.1039/D0BM01004A] [PMID: 32996920]
[125]
Chatterjee S, Hui PC, Siu WS, et al. Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2021; 168: 163-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.035] [PMID: 33309656]
[126]
Su X, Luo Y, Tian Z, et al. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater Horiz 2020; 7(10): 2651-61.
[http://dx.doi.org/10.1039/D0MH01344G]
[127]
Chatterjee S, Hui PC, Wat E, Kan C, Leung PC, Wang W. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym 2020; 236: 116074.
[http://dx.doi.org/10.1016/j.carbpol.2020.116074] [PMID: 32172887]
[128]
Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 2020; 12(10): 12010-7.
[http://dx.doi.org/10.1021/acsami.9b21713] [PMID: 32053341]
[129]
Gulfam M, Jo SH, Jo SW, Vu TT, Park SH, Lim KT. Highly porous and injectable hydrogels derived from cartilage acellularized matrix exhibit reduction and NIR light dual-responsive drug release properties for application in antitumor therapy. NPG Asia Mater 2022; 14(1): 8.
[http://dx.doi.org/10.1038/s41427-021-00354-4]
[130]
Guo T, Wang W, Song J, Jin Y, Xiao H. Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydr Polym 2021; 253: 117188.
[http://dx.doi.org/10.1016/j.carbpol.2020.117188] [PMID: 33278966]
[131]
Song F, Gong J, Tao Y, Cheng Y, Lu J, Wang H. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int J Biol Macromol 2021; 176: 448-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.104] [PMID: 33607138]
[132]
Li W, Guan Q, Li M, Saiz E, Hou X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog Polym Sci 2023; 140: 101665.
[http://dx.doi.org/10.1016/j.progpolymsci.2023.101665]
[133]
Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Novel dual-responsive semi-interpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res A 2019; 107(10): 2327-39.
[http://dx.doi.org/10.1002/jbm.a.36741] [PMID: 31161657]
[134]
Chen Y, Kang S, Yu J, Wang Y, Zhu J, Hu Z. Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed Mater 2019; 92: 179-87.
[http://dx.doi.org/10.1016/j.jmbbm.2019.01.017] [PMID: 30735979]
[135]
Khan S, Akhtar N, Minhas MU, Badshah SF. pH/thermo-dual responsive tunable in situ cross-linkable depot injectable hydrogels based on poly(n-isopropylacrylamide)/carboxymethyl chitosan with potential of controlled localized and systemic drug delivery. AAPS PharmSciTech 2019; 20(3): 119.
[http://dx.doi.org/10.1208/s12249-019-1328-9] [PMID: 30790143]
[136]
Wang F, Zhang Q, Li X, et al. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. Int J Biol Macromol 2019; 134: 413-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.049] [PMID: 31078600]
[137]
Szymusiak R. Magnocellular nuclei of the basal forebrain: Substrates of sleep and arousal regulation. Sleep 1995; 18(6): 478-500.
[138]
Chen X, Yuan P, Liu Z, Bai Y, Zhou Y. Dual responsive hydrogels based on functionalized mesoporous silica nanoparticles as an injectable platform for tumor therapy and tissue regeneration. J Mater Chem B Mater Biol Med 2017; 5(30): 5968-73.
[http://dx.doi.org/10.1039/C7TB01225J] [PMID: 32264353]
[139]
Pang X, Liang S, Wang T, et al. Engineering thermo-ph dual responsive hydrogel for enhanced tumor accumulation, penetration, and chemo-protein combination therapy. Int J Nanomed 2020; 15: 4739-52.
[http://dx.doi.org/10.2147/IJN.S253990] [PMID: 32753862]
[140]
Curcio M, Diaz-Gomez L, Cirillo G, Concheiro A, Iemma F, Alvarez-Lorenzo C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm 2017; 117: 324-32.
[http://dx.doi.org/10.1016/j.ejpb.2017.05.002] [PMID: 28478161]
[141]
Lin JT, Ye QB, Yang QJ, Wang GH. Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin. Colloids Surf B Biointerfaces 2019; 180: 93-101.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.023] [PMID: 31035057]
[142]
Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. J Biomater Sci Polym Ed 2021; 32(3): 385-404.
[http://dx.doi.org/10.1080/09205063.2020.1837504] [PMID: 33054642]
[143]
Peng N, Ding X, Wang Z, et al. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydr Polym 2019; 204: 32-41.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.084] [PMID: 30366540]
[144]
Salimi F, Dilmaghani KA, Alizadeh E, Akbarzadeh A, Davaran S. Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite. Artif Cells Nanomed Biotechnol 2018; 46(5): 949-58.
[http://dx.doi.org/10.1080/21691401.2017.1349777] [PMID: 28687054]
[145]
Qu Y, Chu B, Wei X, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J Control Release 2019; 296: 93-106.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.016] [PMID: 30664976]
[146]
Zhou T, Li J, Jia X, Zhao X, Liu P. pH/reduction dual-responsive oxidized alginate-doxorubicin (mPEG-OAL-DOX/Cys) prodrug nanohydrogels: Effect of complexation with cyclodextrins. Langmuir 2018; 34(1): 416-24.
[http://dx.doi.org/10.1021/acs.langmuir.7b03990] [PMID: 29237263]
[147]
Zhang H, Pei M, Liu P. pH-activated surface charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX delivery. Int J Biol Macromol 2020; 150: 1104-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.116] [PMID: 31747574]
[148]
Xu W, Wang J, Li Q, et al. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem B Mater Biol Med 2021; 9(38): 8031-7.
[http://dx.doi.org/10.1039/D1TB00788B] [PMID: 34486010]
[149]
Qiu Y, Bai J, Feng Y, Shi X, Zhao X. Use of pH-active catechol-bearing polymeric nanogels with glutathione-responsive dissociation to codeliver bortezomib and doxorubicin for the synergistic therapy of cancer. ACS Appl Mater Interfaces 2021; 13(31): 36926-37.
[http://dx.doi.org/10.1021/acsami.1c10328] [PMID: 34319074]
[150]
Zhang Y, Dosta P, Conde J, Oliva N, Wang M, Artzi N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv Healthc Mater 2020; 9(4): 1901101.
[http://dx.doi.org/10.1002/adhm.201901101] [PMID: 31957227]
[151]
Wang H, Dai T, Zhou S, et al. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci Rep 2017; 7(1): 40011.
[http://dx.doi.org/10.1038/srep40011] [PMID: 28071743]
[152]
Indulekha S, Arunkumar P, Bahadur D, Srivastava R. Dual responsive magnetic composite nanogels for thermo-chemotherapy. Colloids Surf B Biointerfaces 2017; 155: 304-13.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.035] [PMID: 28448900]
[153]
Najafipour A, Gharieh A, Fassihi A, Sadeghi-Aliabadi H, Mahdavian AR. MTX-loaded dual thermoresponsive and pH-responsive magnetic hydrogel nanocomposite particles for combined controlled drug delivery and hyperthermia therapy of cancer. Mol Pharm 2021; 18(1): 275-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00910] [PMID: 33300343]
[154]
Kang JH, Turabee MH, Lee DS, Kwon YJ, Ko YT. Temperature and pH-responsive in situ hydrogels of gelatin derivatives to prevent the reoccurrence of brain tumor. Biomed Pharmacother 2021; 143: 112144.
[http://dx.doi.org/10.1016/j.biopha.2021.112144] [PMID: 34509823]
[155]
Bardajee GR, Khamooshi N, Nasri S, Vancaeyzeele C. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. Int J Biol Macromol 2020; 153: 180-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.329] [PMID: 32135252]
[156]
Yan H, Jiang Q, Wang J, et al. A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly(acrylic acid) and β-cyclodextrin dimer. Polymer 2021; 221: 123617.
[http://dx.doi.org/10.1016/j.polymer.2021.123617]
[157]
Zhou Y, Cui Y, Wang L-Q. A Dual-sensitive hydrogel based on poly (lactide-co-glycolide)-polyethylene glycol-poly (lactide-co-glycolide) block copolymers for 3D printing. Int J Bioprint 2021; 7: 22.
[158]
Tang L, Huang J, Zhang H, Yang T, Mo Z, Qu J. Multi-stimuli responsive hydrogels with shape memory and self-healing properties for information encryption. Eur Polym J 2020; 140: 110061.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110061]
[159]
Narupai B, Smith PT, Nelson A. 4D printing of multi-stimuli responsive protein-based hydrogels for autonomous shape transformations. Adv Funct Mater 2021; 31(23): 2011012.
[http://dx.doi.org/10.1002/adfm.202011012]
[160]
Komatsu S, Tago M, Ando Y, Asoh TA, Kikuchi A. Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release. J Control Release 2021; 331: 1-6.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.011] [PMID: 33434598]
[161]
Huang Y, Tang Z, Peng S, et al. pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. React Funct Polym 2020; 149: 104532.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104532]
[162]
Sheng YJ, Chen Y, Qiu JF, Yang X, Zhang RL, Sun YL. Adhesive hydrogels for bioelectronics. Biomed Eng Commun 2023; 2(3): 16.
[http://dx.doi.org/10.53388/BMEC2023016]
[163]
Luo CH, Sun XX, Wang F, Wei N, Luo FL. Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery. J Polym Res 2019; 26(12): 280.
[http://dx.doi.org/10.1007/s10965-019-1976-1]
[164]
Chen Z, Liu J, Chen Y, Zheng X, Liu H, Li H. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators. ACS Appl Mater Interfaces 2021; 13(1): 1353-66.
[http://dx.doi.org/10.1021/acsami.0c16719] [PMID: 33351585]
[165]
Cho K, Kang D, Lee H, Koh WG. Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns. Chem Eng J 2022; 427: 130879.
[http://dx.doi.org/10.1016/j.cej.2021.130879]
[166]
Gull N, Khan SM, Zahid Butt MT, et al. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: A preclinical study. RSC Adv 2019; 9(53): 31078-91.
[http://dx.doi.org/10.1039/C9RA05025F] [PMID: 35529386]
[167]
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart hydrogels for bone reconstruction via modulating the microenvironment. Research 2023; 6: 0089.
[http://dx.doi.org/10.34133/research.0089] [PMID: 36996343]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy