Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

FAT4 Mutation is Related to Tumor Mutation Burden and Favorable Prognosis in Gastric Cancer

Author(s): Qingqing Li, Yuxin Chu*, Yi Yao and Qibin Song*

Volume 25, Issue 5, 2024

Published on: 14 June, 2024

Page: [380 - 389] Pages: 10

DOI: 10.2174/0113892029300694240612081006

Price: $65

Abstract

Objective: This study aimed to investigate the frequently mutated genes in Gastric Cancer (GC), assess their association with Tumor Mutation Burden (TMB) and the patients’ survival, and identify the potential biomarkers for tailored therapy.

Methods: Simple somatic mutation data of GC were collected from the TCGA and ICGC databases. The high-frequency mutated genes were identified from both datasets. The samples were initially dichotomized into wild-type and mutation groups based on the status of overlapping genes. TMB difference between the two groups was evaluated by the Mann-Whitney U-test. Survival difference between the two groups was compared by the Kaplan-Meier method with a log-rank test. The prognostic value of the target gene was assessed by the Cox proportional hazards model. The signaling pathways involved in FAT4 mutation were identified by Gene Set Enrichment Analysis (GSEA). The fractions of different tumor-infiltrating immune cells were calculated by the CIBERSORT algorithm.

Results: 21 overlapping genes with frequent mutation were identified in both datasets. Mutation of these genes was significantly associated with higher TMB (P<0.05) in GC. The survival of the FAT4 mutation group was superior to the wild-type group. FAT4 mutation was also identified as an independent favorable prognostic factor for the GC patients. GSEA indicated that FAT4 mutation activated the signaling pathways involved in energy metabolism. Finally, CD4 memory-activated T cells, follicular helper T cells, and gamma delta T cells were significantly more enriched, while naïve B cells and regulatory T cells (Tregs) were significantly less enriched in the FAT4 mutation group (P<0.05).

Conclusion: FAT4 mutation is relevant to TMB and favorable prognosis in GC, which may become a useful biomarker for immunotherapy of GC patients.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Mao, C.; Ma, L.; Huang, Y.; Yang, X.; Huang, H.; Cai, W.; Sitrakiniaina, A.; Gu, R.; Xue, X.; Shen, X. Immunogenomic landscape and immune-related gene-based prognostic signature in asian gastric cancer. Front. Oncol., 2021, 11, 750768.
[http://dx.doi.org/10.3389/fonc.2021.750768] [PMID: 34804939]
[3]
Klebanov, N.; Artomov, M.; Goggins, W.B.; Daly, E.; Daly, M.J.; Tsao, H. Burden of unique and low prevalence somatic mutations correlates with cancer survival. Sci. Rep., 2019, 9(1), 4848.
[http://dx.doi.org/10.1038/s41598-019-41015-5] [PMID: 30890735]
[4]
Wang, X.; Li, M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol., 2019, 20(1), 4.
[http://dx.doi.org/10.1186/s12865-018-0285-5] [PMID: 30634925]
[5]
Xu, Z.; Xiang, L.; Wang, R.; Xiong, Y.; Zhou, H.; Gu, H.; Wang, J.; Peng, L. Bioinformatic analysis of immune significance of RYR2 mutation in breast cancer. BioMed Res. Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/8072796] [PMID: 34888385]
[6]
Zhang, L.; Li, B.; Peng, Y.; Wu, F.; Li, Q.; Lin, Z.; Xie, S.; Xiao, L.; Lin, X.; Ou, Z.; Cai, T.; Rong, H.; Fan, S.; Li, J. The prognostic value of TMB and the relationship between TMB and immune infiltration in head and neck squamous cell carcinoma: A gene expression-based study. Oral Oncol., 2020, 110, 104943.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104943] [PMID: 32919362]
[7]
Pan, X.; Ji, X.; Zhang, R.; Zhou, Z.; Zhong, Y.; Peng, W.; Sun, N.; Xu, X.; Xia, L.; Li, P.; Lu, J.; Tu, J. Landscape of somatic mutations in gastric cancer assessed using next-generation sequencing analysis. Oncol. Lett., 2018, 16(4), 4863-4870.
[http://dx.doi.org/10.3892/ol.2018.9314] [PMID: 30250552]
[8]
Wang, K.; Yuen, S.T.; Xu, J.; Lee, S.P.; Yan, H.H.N.; Shi, S.T.; Siu, H.C.; Deng, S.; Chu, K.M.; Law, S.; Chan, K.H.; Chan, A.S.Y.; Tsui, W.Y.; Ho, S.L.; Chan, A.K.W.; Man, J.L.K.; Foglizzo, V.; Ng, M.K.; Chan, A.S.; Ching, Y.P.; Cheng, G.H.W.; Xie, T.; Fernandez, J.; Li, V.S.W.; Clevers, H.; Rejto, P.A.; Mao, M.; Leung, S.Y. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet., 2014, 46(6), 573-582.
[http://dx.doi.org/10.1038/ng.2983] [PMID: 24816253]
[9]
Holbrook, J.D.; Parker, J.S.; Gallagher, K.T.; Halsey, W.S.; Hughes, A.M.; Weigman, V.J.; Lebowitz, P.F.; Kumar, R. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J. Transl. Med., 2011, 9(1), 119.
[http://dx.doi.org/10.1186/1479-5876-9-119] [PMID: 21781349]
[10]
Ishiuchi, T.; Misaki, K.; Yonemura, S.; Takeichi, M.; Tanoue, T. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J. Cell Biol., 2009, 185(6), 959-967.
[http://dx.doi.org/10.1083/jcb.200811030] [PMID: 19506035]
[11]
Zang, Z.J.; Cutcutache, I.; Poon, S.L.; Zhang, S.L.; McPherson, J.R.; Tao, J.; Rajasegaran, V.; Heng, H.L.; Deng, N.; Gan, A.; Lim, K.H.; Ong, C.K.; Huang, D.; Chin, S.Y.; Tan, I.B.; Ng, C.C.Y.; Yu, W.; Wu, Y.; Lee, M.; Wu, J.; Poh, D.; Wan, W.K.; Rha, S.Y.; So, J.; Salto-Tellez, M.; Yeoh, K.G.; Wong, W.K.; Zhu, Y.J.; Futreal, P.A.; Pang, B.; Ruan, Y.; Hillmer, A.M.; Bertrand, D.; Nagarajan, N.; Rozen, S.; Teh, B.T.; Tan, P. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet., 2012, 44(5), 570-574.
[http://dx.doi.org/10.1038/ng.2246] [PMID: 22484628]
[12]
Wei, R.; Xiao, Y.; Song, Y.; Yuan, H.; Luo, J.; Xu, W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 112.
[http://dx.doi.org/10.1186/s13046-019-1043-0] [PMID: 30832706]
[13]
Tavassoly, I.; Goldfarb, J.; Iyengar, R. Systems biology primer: The basic methods and approaches. Essays Biochem., 2018, 62(4), 487-500.
[http://dx.doi.org/10.1042/EBC20180003] [PMID: 30287586]
[14]
Chandrasegaran, S.; Scanlan, R.L.; Clark, P.; Pease, L.; Wordsworth, J.; Shanley, D.P. Systems biology of ageing. Subcell. Biochem., 2023, 102, 415-424.
[http://dx.doi.org/10.1007/978-3-031-21410-3_16] [PMID: 36600142]
[15]
Stenzinger, A.; Endris, V.; Budczies, J.; Merkelbach-Bruse, S.; Kazdal, D.; Dietmaier, W.; Pfarr, N.; Siebolts, U.; Hummel, M.; Herold, S.; Andreas, J.; Zoche, M.; Tögel, L.; Rempel, E.; Maas, J.; Merino, D.; Stewart, M.; Zaoui, K.; Schlesner, M.; Glimm, H.; Fröhling, S.; Allen, J.; Horst, D.; Baretton, G.; Wickenhauser, C.; Tiemann, M.; Evert, M.; Moch, H.; Kirchner, T.; Büttner, R.; Schirmacher, P.; Jung, A.; Haller, F.; Weichert, W.; Dietel, M. Harmonization and standardization of panel-based tumor mutational burden measurement: Real-world results and recommendations of the quality in pathology study. J. Thorac. Oncol., 2020, 15(7), 1177-1189.
[http://dx.doi.org/10.1016/j.jtho.2020.01.023] [PMID: 32119917]
[16]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[17]
Li, W.; Zhou, K.; Li, M.; Hu, Q.; Wei, W.; Liu, L.; Zhao, Q. Identification of SCN7A as the key gene associated with tumor mutation burden in gastric cancer. BMC Gastroenterol., 2022, 22(1), 45.
[http://dx.doi.org/10.1186/s12876-022-02112-4] [PMID: 35123417]
[18]
Deng, S.; Gu, H.; Chen, Z.; Liu, Y.; Zhang, Q.; Chen, D.; Yi, S. PTCH1 mutation as a potential predictive biomarker for immune checkpoint inhibitors in gastrointestinal cancer. Carcinogenesis, 2024, 45(5), 351-357.
[http://dx.doi.org/10.1093/carcin/bgae007] [PMID: 38310539]
[19]
Zhang, F.; Li, X.; Chen, H.; Guo, J.; Xiong, Z.; Yin, S.; Jin, L.; Chen, X.; Luo, D.; Tang, H.; Mao, C.; Lian, L. Mutation of MUC16 is associated with tumor mutational burden and lymph node metastasis in patients with gastric cancer. Front. Med., 2022, 9, 836892.
[http://dx.doi.org/10.3389/fmed.2022.836892] [PMID: 35211490]
[20]
Katoh, M. Function and cancer genomics of FAT family genes. Int. J. Oncol., 2012, 41(6), 1913-1918.
[http://dx.doi.org/10.3892/ijo.2012.1669] [PMID: 23076869]
[21]
Rauch, T.A.; Wang, Z.; Wu, X.; Kernstine, K.H.; Riggs, A.D.; Pfeifer, G.P. DNA methylation biomarkers for lung cancer. Tumour Biol., 2012, 33(2), 287-296.
[http://dx.doi.org/10.1007/s13277-011-0282-2] [PMID: 22143938]
[22]
Furukawa, T.; Sakamoto, H.; Takeuchi, S.; Ameri, M.; Kuboki, Y.; Yamamoto, T.; Hatori, T.; Yamamoto, M.; Sugiyama, M.; Ohike, N.; Yamaguchi, H.; Shimizu, M.; Shibata, N.; Shimizu, K.; Shiratori, K. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas. Sci. Rep., 2015, 5(1), 8829.
[http://dx.doi.org/10.1038/srep08829] [PMID: 25743105]
[23]
Lin, Y.; Wu, Z.; Guo, W.; Li, J. Gene mutations in gastric cancer: A review of recent next-generation sequencing studies. Tumour Biol., 2015, 36(10), 7385-7394.
[http://dx.doi.org/10.1007/s13277-015-4002-1] [PMID: 26364057]
[24]
Ma, W.; Li, W.; Xu, L.; Liu, L.; Xia, Y.; Yang, L.; Da, M. Identification of a gene prognostic model of gastric cancer based on analysis of tumor mutation burden. Pathol. Oncol. Res., 2021, 27, 1609852.
[http://dx.doi.org/10.3389/pore.2021.1609852] [PMID: 34566519]
[25]
Merino, D.M.; McShane, L.M.; Fabrizio, D.; Funari, V.; Chen, S.J.; White, J.R.; Wenz, P.; Baden, J.; Barrett, J.C.; Chaudhary, R.; Chen, L.; Chen, W.S.; Cheng, J.H.; Cyanam, D.; Dickey, J.S.; Gupta, V.; Hellmann, M.; Helman, E.; Li, Y.; Maas, J.; Papin, A.; Patidar, R.; Quinn, K.J.; Rizvi, N.; Tae, H.; Ward, C.; Xie, M.; Zehir, A.; Zhao, C.; Dietel, M.; Stenzinger, A.; Stewart, M.; Allen, J. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer, 2020, 8(1), e000147.
[http://dx.doi.org/10.1136/jitc-2019-000147] [PMID: 32217756]
[26]
Cheng, Y.; Bu, D.; Zhang, Q.; Sun, R.; Lyle, S.; Zhao, G.; Dong, L.; Li, H.; Zhao, Y.; Yu, J.; Hao, X. Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J. Adv. Res., 2023, 51, 121-134.
[http://dx.doi.org/10.1016/j.jare.2022.10.019] [PMID: 36351537]
[27]
Jiang, X.; Liu, Z.; Xia, Y.; Luo, J.; Xu, J.; He, X.; Tao, H. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients. Oncotarget, 2018, 9(4), 5137-5154.
[http://dx.doi.org/10.18632/oncotarget.23702] [PMID: 29435168]
[28]
Jung, H.Y.; Cho, H.; Oh, M.H.; Lee, J.H.; Lee, H.J.; Jang, S.H.; Lee, M.S. Loss of FAT atypical cadherin 4 expression is associated with high pathologic T stage in radically resected gastric cancer. J. Gastric Cancer, 2015, 15(1), 39-45.
[http://dx.doi.org/10.5230/jgc.2015.15.1.39] [PMID: 25861521]
[29]
Malgundkar, S.H.; Burney, I.; Al Moundhri, M.; Al Kalbani, M.; Lakhtakia, R.; Okamoto, A.; Tamimi, Y. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer, 2020, 20(1), 374.
[http://dx.doi.org/10.1186/s12885-020-06900-7] [PMID: 32366234]
[30]
Wang, L.; Li, K.; Wang, C.; Shi, X.; Yang, H. miR-107 regulates growth and metastasis of gastric cancer cells via activation of the PI3K-AKT signaling pathway by down-regulating FAT4. Cancer Med., 2019, 8(11), 5264-5273.
[http://dx.doi.org/10.1002/cam4.2396] [PMID: 31297980]
[31]
Chang, J.J.; Wang, X.Y.; Zhang, W.; Tan, C.; Sheng, W.Q.; Xu, M.D. Comprehensive molecular characterization and identification of prognostic signature in stomach adenocarcinoma on the basis of energy-metabolism-related genes. World J. Gastrointest. Oncol., 2022, 14(2), 478-497.
[http://dx.doi.org/10.4251/wjgo.v14.i2.478] [PMID: 35317313]
[32]
Vahidi, Y.; Faghih, Z.; Talei, A.R.; Doroudchi, M.; Ghaderi, A. Memory CD4+ T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells. Cell Oncol., 2018, 41(1), 1-11.
[http://dx.doi.org/10.1007/s13402-017-0352-6] [PMID: 28994018]
[33]
Zhu, G.; Pei, L.; Li, Y.; Gou, X. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients. Aging, 2020, 12(3), 2132-2141.
[http://dx.doi.org/10.18632/aging.102728] [PMID: 32012118]
[34]
Cannataro, V.L.; Gaffney, S.G.; Townsend, J.P. Effect sizes of somatic mutations in cancer. J. Natl. Cancer Inst., 2018, 110(11), 1171-1177.
[http://dx.doi.org/10.1093/jnci/djy168] [PMID: 30365005]
[35]
Mandell, J.D.; Cannataro, V.L.; Townsend, J.P. Estimation of neutral mutation rates and quantification of somatic variant selection using cancereffectsizeR. Cancer Res., 2023, 83(4), 500-505.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-1508] [PMID: 36469362]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy