Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Phytoconstituents-Based Nanotherapeutic Approach for the Effective Management of Joint Inflammatory Condition: Arthritis

Author(s): Jyotsna Kharbanda, Rupa Mazumder*, Snigdha Bhardwaj, Avijit Mazumder, Rakhi Mishra, Rashmi Mishra and Bimlesh Kumar

Volume 25, Issue 10, 2024

Published on: 14 June, 2024

Page: [700 - 714] Pages: 15

DOI: 10.2174/0113894501306516240531053653

Price: $65

Abstract

Arthritis, a prevalent inflammatory joint condition, presents challenges for effective therapeutic interventions, with conventional treatments often limited in efficacy and associated with adverse effects. Recent years have witnessed a growing interest in exploring natural compounds, particularly phytoconstituents, renowned for their anti-inflammatory and joint-protective properties. This review aims to illuminate the potential of employing nanotherapeutic approaches with phytoconstituents for enhanced arthritis management. The integration of nanotechnology with phytoconstituents emerges as a promising strategy, addressing limitations in traditional arthritis treatments. Nanocarriers like liposomes and nanoparticles provide a platform for targeted drug delivery, improving the bioavailability of phytoconstituents. Furthermore, the combined effects of phytoconstituents can be leveraged to target multiple pathways in arthritis pathogenesis, including inflammation, oxidative stress, and cartilage degradation. Key phytoconstituents, such as curcumin, resveratrol, and quercetin, exhibit anti-inflammatory and immunomodulatory properties. Nevertheless, their therapeutic potential is often impeded by challenges like poor solubility, stability, and bioavailability. Nanocarriers offer solutions by enhancing pharmacokinetics and enabling sustained release, thereby boosting overall therapeutic efficacy. The review explores the mechanisms underlying the anti-arthritic effects of phytoconstituents and their nanoformulations, including the modulation of pro-inflammatory cytokines, inhibition of matrix metalloproteinases, and reduction of oxidative stress. In summary, the integration of phytoconstituents with nanotechnology presents a promising avenue for developing targeted and effective arthritis therapies. This comprehensive review serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking innovative approaches to address the intricate challenges associated with arthritis management.

« Previous
[1]
Thakur S, Riyaz B, Patil A, Kaur A, Kapoor B, Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed Pharmacother 2018; 106: 1011-23.
[http://dx.doi.org/10.1016/j.biopha.2018.07.027] [PMID: 30119166]
[2]
Bandyopadhyay SK. Arthritis-a review on two types. J Am Ceram Soc 2018; 92: 1153-77.
[3]
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365(23): 2205-19.
[http://dx.doi.org/10.1056/NEJMra1004965] [PMID: 22150039]
[4]
Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol Int 2021; 41(5): 863-77.
[http://dx.doi.org/10.1007/s00296-020-04731-0] [PMID: 33175207]
[5]
Venkatesh MP, Kumar TP, Pai DR. Targeted drug delivery of Methotrexate in situ gels for the treatment of Rheumatoid Arthritis. Saudi Pharm J 2020; 28(12): 1548-57.
[http://dx.doi.org/10.1016/j.jsps.2020.10.003] [PMID: 33424248]
[6]
Zamanpoor M. The genetic pathogenesis, diagnosis and therapeutic insight of rheumatoid arthritis. Clin Genet 2019; 95(5): 547-57.
[http://dx.doi.org/10.1111/cge.13498] [PMID: 30578544]
[7]
Kroot EJJA, De Jong BAW, Van Leeuwen MA, et al. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 2000; 43(8): 1831-5.
[http://dx.doi.org/10.1002/1529-0131(200008)43:8<1831::AID-ANR19>3.0.CO;2-6] [PMID: 10943873]
[8]
Vallbracht I, Rieber J, Oppermann M, Förger F, Siebert U, Helmke K. Diagnostic and clinical value of anti-cyclic citrullinated peptide antibodies compared with rheumatoid factor isotypes in rheumatoid arthritis. Ann Rheum Dis 2004; 63(9): 1079-84.
[http://dx.doi.org/10.1136/ard.2003.019877] [PMID: 15308516]
[9]
Ben Mrid R, Bouchmaa N, Ainani H, El Fatimy R, Malka G, Mazini L. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis. Biomed Pharmacother 2022; 151: 113126.
[http://dx.doi.org/10.1016/j.biopha.2022.113126] [PMID: 35643074]
[10]
Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed Pharmacother 2019; 112: 108622.
[http://dx.doi.org/10.1016/j.biopha.2019.108622] [PMID: 30797146]
[11]
Aravilli RK, Vikram SL, Kohila V. Phytochemicals as potential antidotes for targeting NF-κB in rheumatoid arthritis. Biotech 2017; 7: 1-1.
[12]
Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis. Arch Pharm Res 2011; 34(11): 1887-97.
[http://dx.doi.org/10.1007/s12272-011-1109-9] [PMID: 22139688]
[13]
Conigliaro P, Chimenti MS, Triggianese P, et al. Autoantibodies in inflammatory arthritis. Autoimmun Rev 2016; 15(7): 673-83.
[http://dx.doi.org/10.1016/j.autrev.2016.03.003] [PMID: 26970491]
[14]
Catrina AI, Joshua V, Klareskog L, Malmström V. Mechanisms involved in triggering rheumatoid arthritis. Immunol Rev 2016; 269(1): 162-74.
[http://dx.doi.org/10.1111/imr.12379] [PMID: 26683152]
[15]
Li P, Schwarz EM, O’Keefe RJ, Ma L, Boyce BF, Xing L. RANK signaling is not required for TNFalpha-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteoclast formation in TNFalpha-mediated inflammatory arthritis. J Bone Miner Res 2004; 19(2): 207-13.
[http://dx.doi.org/10.1359/JBMR.0301233] [PMID: 14969390]
[16]
Romas E, Sims NA, Hards DK, et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol 2002; 161(4): 1419-27.
[http://dx.doi.org/10.1016/S0002-9440(10)64417-3] [PMID: 12368214]
[17]
Arner E. Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2002; 2(3): 322-9.
[http://dx.doi.org/10.1016/S1471-4892(02)00148-0] [PMID: 12020478]
[18]
Rannou F, François M, Corvol MT, Berenbaum F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 2006; 73(1): 29-36.
[http://dx.doi.org/10.1016/j.jbspin.2004.12.013] [PMID: 16087381]
[19]
Eyre D. Articular cartilage and changes in arthritis: Collagen of articular cartilage. Arthritis Res Ther 2001; 4: 1-6.
[20]
Sweeney SE, Firestein GS. Rheumatoid arthritis: Regulation of synovial inflammation. Int J Biochem Cell Biol 2004; 36(3): 372-8.
[http://dx.doi.org/10.1016/S1357-2725(03)00259-0] [PMID: 14687914]
[21]
Falconer J, Murphy AN, Young SP, et al. Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol 2018; 70(7): 984-99.
[http://dx.doi.org/10.1002/art.40504] [PMID: 29579371]
[22]
Boissier MC, Semerano L, Challal S, Saidenberg-Kermanac’h N, Falgarone G. Rheumatoid arthritis: From autoimmunity to synovitis and joint destruction. J Autoimmun 2012; 39(3): 222-8.
[http://dx.doi.org/10.1016/j.jaut.2012.05.021] [PMID: 22704962]
[23]
Miao C, Yang Y, He X, et al. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal 2013; 25(10): 2069-78.
[http://dx.doi.org/10.1016/j.cellsig.2013.04.002] [PMID: 23602936]
[24]
Soliman MS, Abd-Allah FI, Hussain T, Saeed NM, El-Sawy HS. Date seed oil loaded niosomes: Development, optimization and anti-inflammatory effect evaluation on rats. Drug Dev Ind Pharm 2018; 44(7): 1185-97.
[http://dx.doi.org/10.1080/03639045.2018.1438465] [PMID: 29415582]
[25]
Linghang Q, Yiyi X, Guosheng C, et al. Effects of atractylodes oil on inflammatory response and serum metabolites in adjuvant arthritis rats. Biomed Pharmacother 2020; 127: 110130.
[http://dx.doi.org/10.1016/j.biopha.2020.110130] [PMID: 32289576]
[26]
Finckh A, Gilbert B, Hodkinson B, et al. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol 2022; 18(10): 591-602.
[PMID: 36068354]
[27]
Lau CS. Burden of rheumatoid arthritis and forecasted prevalence to 2050. Lancet Rheumatol 2023; 5(10): e567-8.
[http://dx.doi.org/10.1016/S2665-9913(23)00240-0] [PMID: 38251476]
[28]
Alamanos Y, Drosos A. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 2005; 4(3): 130-6.
[http://dx.doi.org/10.1016/j.autrev.2004.09.002] [PMID: 15823498]
[29]
Srivastava S, Singh D, Patel S, Parihar AKS, Singh MR. Novel carters and targeted approaches: Way out for rheumatoid arthritis quandrum. J Drug Deliv Sci Technol 2017; 40: 125-35.
[http://dx.doi.org/10.1016/j.jddst.2017.05.025]
[30]
Akram M, Daniyal M, Sultana S, et al. Traditional and modern management strategies for rheumatoid arthritis. Clin Chim Acta 2021; 512: 142-55.
[http://dx.doi.org/10.1016/j.cca.2020.11.003] [PMID: 33186593]
[31]
Antwi S, Oduro-Mensah D, Asiedu-Larbi J, et al. Prophylactic or therapeutic administration of Holarrhena floribunda hydro ethanol extract suppresses complete Freund’s adjuvant-induced arthritis in Sprague-Dawley rats. J Inflamm 2022; 19(1): 3.
[http://dx.doi.org/10.1186/s12950-022-00301-2] [PMID: 35248062]
[32]
Karimi A, Azar PS, Kadkhodayi M, et al. A comprehensive insight into effects of resveratrol on molecular mechanism in rheumatoid arthritis: A literature systematic review. Int J Rheum Dis 2022; 25(8): 827-43.
[http://dx.doi.org/10.1111/1756-185X.14356] [PMID: 35754354]
[33]
Dhule KD, Nandgude TD. Lipid nano-system based topical drug delivery for management of rheumatoid arthritis: An overview. Adv Pharm Bull 2023; 13(4): 663-77.
[http://dx.doi.org/10.34172/apb.2023.075] [PMID: 38022817]
[34]
Xiao S, Tang Y, Lv Z, Lin Y, Chen L. Nanomedicine – advantages for their use in rheumatoid arthritis theranostics. J Control Release 2019; 316: 302-16.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.008] [PMID: 31715278]
[35]
Choubey J, Patel A, Verma MK. Phytotherapy in the treatment of arthritis: A review. Int J Pharm Sci Res 2013; 4(8): 2853.
[36]
Gupta T. Plant based nanoformulation as an alternative phytotherapeutics to regulate rheumatoid arthritis a review. IPCM 2023; 7: 1-16.
[37]
Dudics S, Langan D, Meka R, et al. Natural products for the treatment of autoimmune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int J Mol Sci 2018; 19(9): 2508.
[http://dx.doi.org/10.3390/ijms19092508] [PMID: 30149545]
[38]
Li T, Zhang A, Miao J, et al. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: A systematic review. RSC Advances 2019; 9(45): 26381-92.
[http://dx.doi.org/10.1039/C9RA04737A] [PMID: 35685403]
[39]
Srivastava P, Tiwari A. The potential role of phytochemical in establishing prophylactic measurements against neurological diseases. Phytopharmaceuticals: Potential Therapeutic Applications. Wiley 2021; pp. 301-13.
[http://dx.doi.org/10.1002/9781119682059.ch16]
[40]
Pan R, Gao XH, Li Y, Xia YF, Dai Y. Anti-arthritic effect of scopoletin, a coumarin compound occurring in Erycibe obtusifolia Benth stems, is associated with decreased angiogenesis in synovium. Fundam Clin Pharmacol 2010; 24(4): 477-90.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00784.x] [PMID: 19845767]
[41]
Javadi F, Ahmadzadeh A, Eghtesadi S, et al. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J Am Coll Nutr 2017; 36(1): 9-15.
[http://dx.doi.org/10.1080/07315724.2016.1140093] [PMID: 27710596]
[42]
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 2018; 62(1): 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[43]
Khojah HM, Ahmed S, Abdel-Rahman MS, Elhakeim EH. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study. Clin Rheumatol 2018; 37(8): 2035-42.
[http://dx.doi.org/10.1007/s10067-018-4080-8] [PMID: 29611086]
[44]
Yun HJ, Yoo WH, Han MK, Lee YR, Kim JS, Lee SI. Epigallocatechin-3-gallate suppresses TNF-α -induced production of MMP-1 and -3 in rheumatoid arthritis synovial fibroblasts. Rheumatol Int 2008; 29(1): 23-9.
[http://dx.doi.org/10.1007/s00296-008-0597-5] [PMID: 18496696]
[45]
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11(8): 714.
[http://dx.doi.org/10.1038/s41419-020-02892-1] [PMID: 32873774]
[46]
Rinkunaite I, Simoliunas E, Alksne M, Dapkute D, Bukelskiene V. Anti-inflammatory effect of different curcumin preparations on adjuvant-induced arthritis in rats. BMC Complement Med Ther 2021; 21(1): 39.
[http://dx.doi.org/10.1186/s12906-021-03207-3] [PMID: 33478498]
[47]
Bhalekar MR, Madgulkar AR, Desale PS, Marium G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm 2017; 43(6): 1003-10.
[http://dx.doi.org/10.1080/03639045.2017.1291666] [PMID: 28161984]
[48]
Karunakaran R, Sadanandan SP. Zingiber Officinale Roscoe: The Antiarthritic Potential of a Popular Spice-Preclinical and Clinical Evidence. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. (2nd ed.). Academic Press 2019; pp. 233-44.
[49]
Khanna D, Sethi G, Ahn K, et al. Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 2007; 7(3): 344-51.
[http://dx.doi.org/10.1016/j.coph.2007.03.002] [PMID: 17475558]
[50]
Bao J, Dai SM. A Chinese herb Tripterygium wilfordii Hook F in the treatment of rheumatoid arthritis: Mechanism, efficacy, and safety. Rheumatol Int 2011; 31(9): 1123-9.
[http://dx.doi.org/10.1007/s00296-011-1841-y] [PMID: 21365177]
[51]
Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci 2019; 237: 116925.
[http://dx.doi.org/10.1016/j.lfs.2019.116925] [PMID: 31610201]
[52]
Huang D, Wu F, Zhang A, Sun H, Wang X. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169: 105667.
[http://dx.doi.org/10.1016/j.phrs.2021.105667] [PMID: 33989762]
[53]
Joshi M, Pathak K, Dhaneshwar S. Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis. Pharmacol Res - Mod Chin Med 2022; 2: 100061.
[http://dx.doi.org/10.1016/j.prmcm.2022.100061]
[54]
Chen S, Yang Y, Feng H, Wang H, Zhao R, Liu H. Baicalein inhibits interleukin-1β-induced proliferation of human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation 2014; 37(1): 163-9.
[http://dx.doi.org/10.1007/s10753-013-9725-9] [PMID: 24005900]
[55]
Yamada T, Sugimoto K. Guggulsterone and its role in chronic diseases. Adv Exp Med Biol 2016; 929: 329-61.
[http://dx.doi.org/10.1007/978-3-319-41342-6_15]
[56]
Jamal M, Imam SS, Aqil M, Amir M, Mir SR, Mujeeb M. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems. Int Immunopharmacol 2015; 29(2): 361-9.
[http://dx.doi.org/10.1016/j.intimp.2015.10.029] [PMID: 26545446]
[57]
Tang M, Xie X, Yang Y, Li F. Ginsenoside compound K- a potential drug for rheumatoid arthritis. Pharmacol Res 2021; 166: 105498.
[http://dx.doi.org/10.1016/j.phrs.2021.105498] [PMID: 33609698]
[58]
Liu X, Wang Z, Qian H, et al. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13: 945129.
[http://dx.doi.org/10.3389/fimmu.2022.945129] [PMID: 35979373]
[59]
Lindler BN, Long KE, Taylor NA, Lei W. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis. Medicines 2020; 7(11): 67.
[http://dx.doi.org/10.3390/medicines7110067] [PMID: 33126603]
[60]
Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583: 119398.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119398] [PMID: 32376441]
[61]
Al-Lawati H, Binkhathlan Z, Lavasanifar A. Nanomedicine for the effective and safe delivery of non-steroidal anti-inflammatory drugs: A review of preclinical research. Eur J Pharm Biopharm 2019; 142: 179-94.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.025] [PMID: 31233861]
[62]
Rahman M, Beg S, Verma A, et al. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol 2016; 69(1): 1-14.
[http://dx.doi.org/10.1111/jphp.12661] [PMID: 27774648]
[63]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[64]
Ali SS, Bhardwaj S, Khan NA, Imam SS, Kala C. Phytoconstituent-loaded nanomedicines for arthritis management. Biomarkers as Targeted Herbal Drug Discovery. (1st ed.). Apple Academic Press 2021; pp. 177-206.
[65]
Singh R, Kumari P, Kumar S. Nanotechnology for enhanced bioactivity of bioactive phytomolecules. Nutrient Delivery 2017; pp. 413-56.
[http://dx.doi.org/10.1016/B978-0-12-804304-2.00011-1]
[66]
Enrico C. Nanotechnology-based drug delivery of natural compounds and phytochemicals for the treatment of cancer and other diseases. Studies in Natural Products Chemistry 2019; 62: 91-123.
[http://dx.doi.org/10.1016/B978-0-444-64185-4.00003-4]
[67]
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv 2022; 4(17): 3479-94.
[http://dx.doi.org/10.1039/D2NA00229A] [PMID: 36134349]
[68]
Anita C, Munira M, Mural Q, Shaily L. Topical nanocarriers for management of Rheumatoid Arthritis: A review. Biomed Pharmacother 2021; 141: 111880.
[http://dx.doi.org/10.1016/j.biopha.2021.111880] [PMID: 34328101]
[69]
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018; 14(7): 2023-50.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[70]
Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174: 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[71]
Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin Arthritis Rheum 2009; 39(3): 182-96.
[http://dx.doi.org/10.1016/j.semarthrit.2008.08.004] [PMID: 18926560]
[72]
Lombardo D, Kiselev MA. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022; 14(3): 543.
[http://dx.doi.org/10.3390/pharmaceutics14030543] [PMID: 35335920]
[73]
Patel D, Patel B, Thakkar H. Lipid based nanocarriers: Promising drug delivery system for topical application. Eur J Lipid Sci Technol 2021; 123(5): 2000264.
[http://dx.doi.org/10.1002/ejlt.202000264]
[74]
MAGHRABY GM. Skin delivery of oestradiol from deformable and traditiona liposomes: Mechanistic studies. J Pharm Pharmacol 1999; 51(10): 1123-34.
[PMID: 10579683]
[75]
Honeywell-Nguyen PL, Arenja S, Bouwstra JA. Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations. Pharm Res 2003; 20(10): 1619-25.
[http://dx.doi.org/10.1023/A:1026191402557] [PMID: 14620517]
[76]
Schaller M, Korting HC. Interaction of liposomes with human skin: The role of the stratum corneum. Adv Drug Deliv Rev 1996; 18(3): 303-9.
[http://dx.doi.org/10.1016/0169-409X(95)00076-J]
[77]
Abo-zeid Y, Diab R, Sanad R, Sakran W. Recent advances in herbal-based nanomedicine for anti-inflammatory purposes. J Adv Pharm Educ Res 2021; 5(4): 387-97.
[78]
Pandey P, Pancholi SS. Nanocarriers: A novel treatment approach for arthritis. Int J Pharm Sci Res 2013; 4(11): 4165.
[79]
Manca ML, Zaru M, Manconi M, et al. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int J Pharm 2013; 455(1-2): 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[80]
Zaki RM, Alfadhel MM, Alossaimi MA, et al. Central composite optimization of glycerosomes for the enhanced oral bioavailability and brain delivery of quetiapine fumarate. Pharmaceuticals 2022; 15(8): 940.
[http://dx.doi.org/10.3390/ph15080940] [PMID: 36015089]
[81]
Manca ML, Cencetti C, Matricardi P, et al. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. Int J Pharm 2016; 511(1): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.009] [PMID: 27418567]
[82]
Naguib MJ, Hassan YR, Abd-Elsalam WH. 3D printed ocusert laden with ultra-fluidic glycerosomes of ganciclovir for the management of ocular cytomegalovirus retinitis. Int J Pharm 2021; 607: 121010.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121010] [PMID: 34391852]
[83]
Naguib MJ, Salah S, Abdel Halim SA, Badr-Eldin SM. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm 2020; 582: 119302.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119302] [PMID: 32276091]
[84]
Zhang K, Zhang Y, Li Z, Li N, Feng N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: Optimization, characterization, and evaluation in vitro and in vivo. Int J Nanomedicine 2017; 12: 3521-32.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[85]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66(2): 227-43.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[86]
Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 2013; 20(1): 338-44.
[http://dx.doi.org/10.1016/j.ultsonch.2012.08.010] [PMID: 22954686]
[87]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[88]
Jasmina H, Džana O, Alisa E, Edina V, Ognjenka R. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods. Proceedings of the International Conference on Medical and Biological Engineering 2017. Springer, Singapore, 15 March 2017, pp. 317-322.
[http://dx.doi.org/10.1007/978-981-10-4166-2_48]
[89]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0] [PMID: 28324579]
[90]
Maleki H, Azadi H, Yousefpoor Y, Doostan M, Doostan M, Farzaei MH. Encapsulation of ginger extract in nanoemulsions: Preparation, characterization and in vivo evaluation in rheumatoid arthritis. J Pharm Sci 2023; 112(6): 1687-97.
[http://dx.doi.org/10.1016/j.xphs.2023.02.003] [PMID: 36773928]
[91]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58(1): 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[92]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[93]
Manconi M, Sinico C, Valenti D, Loy G, Fadda AM. Niosomes as carriers for tretinoin. I. Preparation and properties. Int J Pharm 2002; 234(1-2): 237-48.
[http://dx.doi.org/10.1016/S0378-5173(01)00971-1] [PMID: 11839454]
[94]
Sahin NO. Niosomes as nanocarrier systems. Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht. 2007; pp. 67-81.
[95]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: The state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[96]
Pando D, Gutiérrez G, Coca J, Pazos C. Preparation and characterization of niosomes containing resveratrol. J Food Eng 2013; 117(2): 227-34.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.020]
[97]
Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 2018; 11(4): 301-14.
[http://dx.doi.org/10.1515/abm-2018-0002]
[98]
Bhardwaj S, Bhatia S. Development and characterization of niosomal gel system using Lallementia royaleana Benth. mucilage for the treatment of Rheumatoid Arthritis. Iran J Pharm Res 2020; 19(3): 465-82.
[PMID: 33680045]
[99]
Fernández-García R, Lalatsa A, Statts L, Bolás-Fernández F, Ballesteros MP, Serrano DR. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2020; 573: 118817.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118817] [PMID: 31678520]
[100]
Sachan R, Parashar T, Singh V, et al. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. International Journal of Research and Development in Pharmacy and Life Sciences 2013; 2(2): 309-16.
[101]
Chaudhary H, Kohli K, Kumar V. Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm 2013; 454(1): 367-80.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.031] [PMID: 23871739]
[102]
Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J 2012; 20(4): 355-63.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[103]
Modi CD, Bharadia PD. Transfersomes: New dominants for transdermal drug delivery. Am J Pharm Tech Res 2012; 2(3): 71-91.
[104]
Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. J Drug Deliv Sci Technol 2020; 60: 101921.
[http://dx.doi.org/10.1016/j.jddst.2020.101921]
[105]
Benson HAE. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[106]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[107]
Ekambaram P, Abdul Hasan Sathali A. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm 2011; 3(3): 216-20.
[http://dx.doi.org/10.4103/0975-1483.83765] [PMID: 21897661]
[108]
Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: A review. Nanosci Nanotechnol Res 2017; 4(2): 67-72.
[109]
Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2018; 112: 159-67.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[110]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[111]
Thatipamula R, Palem C, Gannu R, Mudragada S, Yamsani M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru 2011; 19(1): 23-32.
[PMID: 22615636]
[112]
Pradhan M, Singh D, Singh MR. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif Cells Nanomed Biotechnol 2016; 44(1): 392-400.
[http://dx.doi.org/10.3109/21691401.2014.955105] [PMID: 25229831]
[113]
Rajpoot K, Tekade M, Pandey V, Nagaraja S, Youngren-Ortiz SR, Tekade RK. Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead. Drug Delivery Systems A Volume in Advances in Pharmaceutical Product Development and Research. Academic press 2020; pp. 393-454.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00009-0]
[114]
Liu W, Tian R, Hu W, et al. Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 2012; 83(8): 1532-9.
[http://dx.doi.org/10.1016/j.fitote.2012.08.021] [PMID: 22982454]
[115]
Dangre PV, Gilhotra RM, Dhole SN. Formulation and development of solid self micro-emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. J Pharm Investig 2016; 46(7): 633-44.
[http://dx.doi.org/10.1007/s40005-016-0243-2]
[116]
Wu L, Qiao Y, Wang L, et al. A self-microemulsifying drug delivery system (SMEDDS) for a novel medicative compound against depression: A preparation and bioavailability study in rats. AAPS PharmSciTech 2015; 16(5): 1051-8.
[http://dx.doi.org/10.1208/s12249-014-0280-y] [PMID: 25652729]
[117]
Singh D, Tiwary AK, Bedi N. Canagliflozin loaded SMEDDS: Formulation optimization for improved solubility, permeability and pharmacokinetic performance. J Pharm Investig 2019; 49(1): 67-85.
[http://dx.doi.org/10.1007/s40005-018-0385-5]
[118]
Qureshi MJ, Mallikarjun C, Kian WG. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian J Pharm Sci 2015; 10(1): 40-56.
[119]
Patel AR, Vavia PR. Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate. AAPS J 2007; 9(3): E344-52.
[http://dx.doi.org/10.1208/aapsj0903041] [PMID: 18170981]
[120]
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm 2015; 41(9): 1548-57.
[http://dx.doi.org/10.3109/03639045.2014.971031] [PMID: 25308746]
[121]
Detholia K, Patel D, Patel S. Development and optimization of boswellia serrata self-micro emulsifying formulation: An ameliorative effort towards the herbal formulation. IOSR J Pharm 2018; 8(1): 1-8.
[122]
v E, Krishnan K, Bhattacharyya A, R S. Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: A review. J Herb Med 2020; 24: 100412.
[http://dx.doi.org/10.1016/j.hermed.2020.100412]
[123]
Gilani SJ, Bin-Jumah MN, Imam SS, Alshehri S, Jahangir MA, Zafar A. Formulation and optimization of nano lipid based oral delivery systems for arthritis. Coatings 2021; 11(5): 548.
[http://dx.doi.org/10.3390/coatings11050548]
[124]
Dong J, Jiang D, Wang Z, Wu G, Miao L, Huang L. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm 2013; 441(1-2): 285-90.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.031] [PMID: 23194887]
[125]
Sana E, Zeeshan M, Ain QU, et al. Topical delivery of curcumin-loaded transfersomes gel ameliorated rheumatoid arthritis by inhibiting NF-κβ pathway. Nanomedicine 2021; 16(10): 819-37.
[http://dx.doi.org/10.2217/nnm-2020-0316] [PMID: 33900118]
[126]
Kishore N, Raja MD, Kumar CS, et al. Solid lipid nano formulation for improved delivery of aceclofenac and its relevance in rheumatoid arthritis. J Nanopharm Drug Deliv 2014; 2(3): 240-7.
[http://dx.doi.org/10.1166/jnd.2014.1057]
[127]
Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech 2011; 12(3): 1011-8.
[http://dx.doi.org/10.1208/s12249-011-9665-3] [PMID: 21811889]
[128]
Zhang XZ, Zhu HD, Meng SF, Pan XG. Preparation of sinomenine microemulsion and its transdermal absorption. Zhongguo Zhongyao Zazhi 2007; 32(19): 2007-10.
[PMID: 18161292]
[129]
Arora R, Kuhad A, Kaur IP, Chopra K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 2015; 19(7): 940-52.
[http://dx.doi.org/10.1002/ejp.620] [PMID: 25400173]
[130]
Adin SN, Gupta I, Aqil M, Mujeeb M. Baicalin loaded transethosomes for rheumatoid arthritis: Development, characterization, pharmacokinetic and pharmacodynamic evaluation. J Drug Deliv Sci Technol 2023; 81: 104209.
[http://dx.doi.org/10.1016/j.jddst.2023.104209]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy