[2]
Liptrot, D.; Alcaraz, L.; Roberts, B. New synthesis of aryl, and heteroaryl N‐acylureas via microwave‐assisted palladium‐catalysed carbonylation. Adv. Synth. Catal., 2010, 352(13), 2183-2188.
[4]
Zhang, J.F.; Xu, J.Y.; Wang, B.L.; Li, Y.X.; Xiong, L.X.; Li, Y.Q.; Ma, Y.; Li, Z.M. Synthesis and insecticidal activities of novel anthranilic diamides containing acyl thiourea and acyl urea. J. Agric. Food Chem., 2012, 60(31), 7565-7572.
[8]
Guo-Xiang, S.U.; Qiao, W.A.; Li-Jing, M.I.; Liang, H.A.; Xing-Hai, L.I. Synthesis, crystal structure, fungicidal activities and molecular docking of acyl urea derivatives containing 2-chloronicotine. Motif. Chin. J. Chem., 2022, 41(2), 2202114-2202122.
[9]
Singh, A.K.; Chawla, R.; Yadav, L.D. In situ slow release of isocyanates: synthesis and organocatalytic application of N-acylureas. Tetrahedron Lett., 2013, 54(37), 5099-5102.
[11]
Subramanian, S.; Shankarganesh, K. Insect hormones (as pesticides). In: Ecofriendly pest management for food security; Academic Press, 2016; pp. 613-650.
[12]
Ziarati, P.; Tajik, S.; Sawicka, B.; Rodriguez, C.L.; Vambol, V.; Vambol, S. Detoxification of lead and cadmium in pharmaceutical effluent by home-made food wastes. Adv. Biology Earth Sci., 2023, 8(2)
[15]
Jiang, J.D.; Roboz, J.; Weisz, I.; Deng, L.; Ma, L.; Holland, J.F.; Bekesi, G.J. Synthesis, cancericidal and antimicrotubular activities of 3-(haloacetamido)-benzoylureas. Anticancer Drug Des., 1998, 13(7), 735-747.
[16]
Solinas, A.; Faure, H.; Roudaut, H.; Traiffort, E.; Schoenfelder, A.; Mann, A.; Manetti, F.; Taddei, M.; Ruat, M. Acylthiourea, acylurea, and acyl guanidine derivatives with potent hedgehog inhibiting activity. J. Med. Chem., 2012, 55(4), 1559-1571.
[18]
Kaderli, S.; Scapozza, L.; Gurny, R.; Möller, M. Synthesis and characterization of high molecular weight hyaluronic acid grafted with antioxidants. Archive ouverte UNIGE, 2014.
[19]
Amrahov, N.R.; Mammadova, R.B.; Allahverdiyeva, S.N.; Aliyev, E.I.; Alizada, S.R.; Aghazada, G.A.; Ojagverdiyeva, S.Y. Effect of indole-3- butyric acid on the antioxidant enzymes, no and chlorophyll content of agdash- 3 and ap-317 genotypes of upland cotton (Gossypium hirsutum L.). Adv. Biolog. Earth Sci., 2023, 8(2)
[21]
Gong, H.; Yang, M.; Xiao, Z.; Doweyko, A.M.; Cunningham, M.; Wang, J.; Habte, S.; Holloway, D.; Burke, C.; Shuster, D.; Gao, L. Discovery of acylurea isosteres of 2-acylaminothiadiazole in the azaxanthene series of glucocorticoid receptor agonists. Bioorg. Med. Chem. Lett., 2014, 24(15), 3268-3273.
[25]
Kumari, M. The molecular target and mode of action of the acylurea insecticide, diflubenzuron; Kansas State University, 2015.
[28]
Arora, M.S.; Salokhe, S.G.; Mukherjee, S.N. Effect of sub-lethal concentrations of lufenuron on growth, development, and reproductive performance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Int. J. Appl. Biol, 2012, 3, 111-122.
[29]
Kumari, M. The molecular target and mode of action of the acylurea insecticide, diflubenzuron; Kansas State University, 2015.
[30]
Ahmed, A.; Shafique, I.; Saeed, A.; Shabir, G.; Saleem, A.; Taslimi, P.; Tok, T.T.; Kirici, M.; Üç, E.M.; Hashmi, M.Z. Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis, and molecular docking studies. Eur. J. Med. Chem., 2022, 1(6), 100082.
[33]
Suvannasara, P.; Juntapram, K.; Praphairaksit, N.; Siralertmukul, K.; Muangsin, N. Mucoadhesive 4-carboxybenzenesulfonamide-chitosan with antibacterial properties. Carbohydr. Polym., 2013, 94(1), 244-252.
[36]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-1188.
[37]
Howe, A.Y.; Venkatraman, S. The discovery and development of boceprevir: A novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease. J. Clin. Transl., 2013, 1(1), 22.
[38]
Jitta, S.R. Recent advances in nanoformulation development of Ritonavir, a key protease inhibitor used in the treatment of HIV-AIDS. Expert Opin. Drug Deliv., 2022, 19(9), 1133-1148.
[40]
Citrome, L. Cariprazine for the treatment of schizophrenia: A review of this dopamine D3-preferring D3/D2 receptor partial agonist. Clin. Schizophr. Relat. Psychoses, 2016, 10(2), 109-119.
[45]
Johnson, D.S.; Stiff, C.; Lazerwith, S.E.; Kesten, S.R.; Fay, L.K.; Morris, M.; Beidler, D.; Liimatta, M.B.; Smith, S.E.; Dudley, D.T.; Sadagopan, N. Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Med. Chem. Lett., 2011, 2(2), 91-96.
[47]
Keith, J.M.; Jones, W.M.; Tichenor, M.; Liu, J.; Seierstad, M.; Palmer, J.A.; Webb, M.; Karbarz, M.; Scott, B.P.; Wilson, S.J.; Luo, L. Preclinical characterization of the FAAH inhibitor JNJ-42165279. ACS Med. Chem. Lett., 2015, 6(12), 1204-1208.
[48]
Hammock, B.D.; McReynolds, C.B.; Wagner, K.; Buckpitt, A.; Cortes-Puch, I.; Croston, G.; Lee, K.S.; Yang, J.; Schmidt, W.K.; Hwang, S.H. Movement to the clinic of soluble epoxide hydrolase inhibitor EC5026 as an analgesic for neuropathic pain and for use as a nonaddictive opioid alternative. J. Med. Chem., 2021, 64(4), 1856-1872.
[49]
Reisdorf, W.C.; Xie, Q.; Zeng, X.; Xie, W.; Rajpal, N.; Hoang, B.; Burgert, M.E.; Kumar, V.; Hurle, M.R.; Rajpal, D.K.; O’Donnell, S. Preclinical evaluation of EPHX2 inhibition as a novel treatment for inflammatory bowel disease. PLoS One, 2019, 14(4), 4-e0215033.
[50]
Hesselink, K.J.M. Bimoclomol and arimoclomol: HSP-co-inducers for the treatment of protein misfolding disorders, neuropathy, and neuropathic pain. J. Pain Relief, 2016, 6, 2167-0846.
[51]
Michael, F. Use of acyl urea compounds for controlling endoparasites and ectoparasites of warm-blooded animals. US Patent 005135953A, 1985.
[52]
Martin, H.D.E.S. Preparations containing urea or thiourea derivatives for use as molluscicides. US Patent 3546344A, 1970.
[53]
Anderl, J.; Modautal, W.S.; Hueffelsheim, C.M. Amatoxin-conjugates with improved linkers. US Patent 9399681B2, 2011.
[54]
Ralph, A. Acyl ureas and process for the preparation thereof. US Patent 2090594A, 1936.
[55]
Christopher, J. Anisotropic copoly (Imide Oxetane) coatings and articles of manufacture, copoly (Imide Oxetane) S containing pendant fluorocarbon moieties, oligomers and processes therefor. US Patent 9,822,088B2, 2017.
[56]
Patent Issued for N-acyl urea derivative and composition comprising same for prevention or treatment of cardiovascular disease. USP Patent TO11306073, 2011.
[57]
Milton, L. Substituted acyl derivatives of 1,2,3,4-tetrahydroisoquinoline-3- carboxylic acids. US Patent 4344949A, 1981.
[58]
Jonathan, C.M. Coupling method for peptide synthesis at elevated temperatures. US Patent 10308677B2, 2015.
[59]
Ruat, M.; Faure, H.; Traiffort, E.; Schoenfelder, A.M.; Maurizio, T. N-acyl thiourea and N-acyl urea inhibitors of the hedgehog protein signaling pathway. US Patent 9073835B2, 2019.
[60]
Bialer, M.; Ya-Gen, B.; Shimshoni, J. Acyl-urea derivatives and uses thereof. WO Patent 2009/001356A3, 2008.
[61]
Bialer, M.; Ya-Gen, B.; Shimshoni, J. Avi. Acyl-urea derivatives and uses thereof. WO Patent 2009130422A2, 2008.
[62]
N-acylthiourea and N-acylurea inhibitors of the hedgehog protein signalling pathway. WO Patent 2009130422A2, 2009.
[63]
Acyl-urea derivatives and uses thereof. EP Patent 2185505A2, 2009.
[64]
Brouwer, M.S.; Van Hes, R.; Muis, M. Benzoyl urea derivatives have antitumor activity. EP Patent 0193249A2, 1986.
[65]
N-acyl urea compounds for preparing polyurethanes. EP Patent 1749038A1, 1986.
[66]
Boeters, H.D. N-acylurea and O-acylisourea derivatives of hyaluronic acid. EP Patent 0416250A3, 1990.
[67]
Catalysts comprising cyclic acylurea compounds and oxidation and nitration reactions of organic compounds in the presence of the same. EP Patent 02791966, 1986.
[68]
A curable organic polymer comprising at least one acylurea unit, its preparation, and use. EP Patent 14185105A, 1986.
[69]
Drent, E.; Prillwitz, P.E. Process for the preparation of acyl ureas. EP Patent 0225673B, 1986.
[70]
Bialer, M.; Hadad, S.; Herzig, Y.; Sterling, J.; Lerner, D.; Shirvan, M. Derivatives of valproic acid amide and 2-valproenoic acid amide, method of making and use thereof as anticonvulsant. EP Patent 065917410, 1999.
[74]
Shushpanova, T.V.; Bokhan, N.A.; Kuksenok, V.Y.; Shtrykova, V.V.; Shushpanova, O.V.; Udut, V.V. A novel urea derivative anticonvulsant: In vivo biological evaluation, radioreceptor analysis of GABAA receptors and molecular docking studies of enantiomers. Mendeleev Commun., 2023, 33(4), 546-549.
[78]
Gündüz, M.G.; Uğur, S.B.; Güney, F.; Özkul, C.; Krishna, V.S.; Kaya, S.; Sriram, D.; Doğan, Ş.D. 1, 3-Disubstituted urea derivatives: Synthesis, antimicrobial activity evaluation and in silico studies. Bioorg. Chem., 2020, 102, 104104.
[79]
Farshori, N.N.; Ahmad, A.; Khan, A.U.; Rauf, A. A facile, one-pot synthesis, characterization, and antimicrobial activity of o-hydroxy anilide derivatives and 1-substituted-1, 3-dicyclohexylurea analogs of long chain carboxylic acids. Eur. J. Med. Chem., 2011, 46(4), 1433-1438.
[81]
Klabunde, T.; Wendt, K.U.; Kadereit, D.; Brachvogel, V.; Burger, H.J.; Herling, A.W.; Oikonomakos, N.G.; Kosmopoulou, M.N.; Schmoll, D.; Sarubbi, E.; von Roedern, E. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem., 2005, 48(20), 6178-6193.
[83]
Guo, S.; Zhao, W.; Wang, Y.; Zhang, W.; Chen, S.; Wei, P.; Wu, J. Design, synthesis, and mechanism of antiviral acylurea derivatives containing a trifluoromethyl pyridine moiety. J. Agric. Food Chem., 2021, 69(43), 12891-12899.
[84]
Džimbeg, G.; Zorc, B.; Kralj, M.; Ester, K.; Pavelić, K.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: Synthesis, cytostatic and antiviral activity evaluations. Eur. J. Med. Chem., 2008, 43(6), 1180-1187.
[85]
Perković, I.; Tršinar, S.; Žanetić, J.; Kralj, M.; Kleiner, M.I.; Balzarini, J.; Litina, H.D.; Katsori, A.M.; Zorc, B. Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine-synthesis, cytostatic, antiviral and antioxidative studies. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 601-610.
[87]
Abdelazeem, A.H.; El-Din, A.G.; Arab, H.H.; El-Saadi, M.T.; El-Moghazy, S.M.; Amin, N.H. Design, synthesis, and anti-inflammatory/analgesic evaluation of novel di-substituted urea derivatives bearing diaryl-1, 2, 4-triazole with dual COX-2/sEH inhibitory activities. J. Mol. Struct., 2021, 1240, 130565.
[88]
Ranise, A.; Schenone, S.; Bruno, O.; Bondavalli, F.; Filippelli, W.; Falcone, G.; Rivaldi, B. N-Acyl-N-phenyl ureas of piperidine and substituted piperidines endowed with anti-inflammatory and anti-proliferative activities. Il Farmaco, 2001, 56(9), 647-657.
[91]
Song, D.Q.; Du, N.N.; Wang, Y.M.; He, W.Y.; Jiang, E.Z.; Cheng, S.X.; Wang, Y.X.; Li, Y.H.; Wang, Y.P.; Li, X.; Jiang, J.D. Synthesis and activity evaluation of phenylurea derivatives as potent antitumor agents. Bioorg. Med. Chem., 2009, 17(11), 3873-3878.
[92]
Demchenko, S.A.; Yadlovskyi, O.E.; Yudina, O.V.; Tubaltseva, I.I.; Fedchenkova, Y.A.; Bobkova, L.S.; Demchenko, A.M. Synthesis and anxiolytic activity of 3-aryl-1-(41methoxyphenyl)-1-(6, 7, 8, 9-tetrahydro5H- [1, 2, 4] triazolo [4, 3-a] azepine-3-yl-methyl)-urea derivatives. Pharmacol. Med. Toxicol., 2020, 14(2), 88-96.
[94]
Haynes, N.E.; Corbett, W.L.; Bizzarro, F.T.; Guertin, K.R.; Hilliard, D.W.; Holland, G.W.; Kester, R.F.; Mahaney, P.E.; Qi, L.; Spence, C.L.; Tengi, J. Discovery, structure-activity relationships, pharmacokinetics, and efficacy of glucokinase activator (2 R)-3-cyclopentyl-2-(4-methane sulfonyl phenyl)-N-thiazol-2-yl-propionamide (RO0281675). J. Med. Chem., 2010, 53(9), 3618-3625.
[95]
Boehme, W.R.; Siegmund, E.A.; Scharpf, W.G.; Schipper, E. Structure-activity relationships in a series of anticonvulsant bicyclic acylureas. J. Med. Chem., 1962, 5(4), 769-775.
[97]
Thapa, R.; Flores, R.; Cheng, K.H.; Mochona, B.; Sikazwe, D. Design and synthesis of new acyl urea analogs as potential σ1R ligands. Mol., 2023, 28(5), 2319.
[98]
Wang, B.L.; Zhu, H.W.; Ma, Y.; Xiong, L.X.; Li, Y.Q.; Zhao, Y.; Zhang, J.F.; Chen, Y.W.; Zhou, S.; Li, Z.M. Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides. J. Agric. Food Chem., 2013, 61(23), 5483-5493.
[100]
Tenthorey, P.A.; Block, A.J.; Ronfeld, R.A.; McMaster, P.D.; Byrnes, E.W. New antiarrhythmic agents. 6. Quantitative structure-activity relationships of aminoxylidides. J. Med. Chem., 1981, 24(7), 798-806.
[101]
Guo, Z.; Zhu, Y.F.; Gross, T.D.; Tucci, F.C.; Gao, Y.; Moorjani, M.; Connors, P.J.; Rowbottom, M.W.; Chen, Y.; Struthers, R.S.; Xie, Q. Synthesis, and structure-activity relationships of 1-arylmethyl-5-aryl-6-methyluracils as potent gonadotropin-releasing hormone receptor antagonists. J. Med. Chem., 2004, 47(5), 1259-1271.
[103]
Magri, A.; Reilly, R.; Scalacci, N.; Radi, M.; Hunter, M.; Ripoll, M.; Patel, A.H.; Castagnolo, D. Rethinking the old antiviral drug moroxydine: Discovery of novel analogs as anti-hepatitis C virus (HCV) agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5372-5376.
[104]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization, and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.