Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Multi-functional Acyl Urea Compounds: A Review on Related Patents, Clinical Trials, and Synthetic Approaches

Author(s): Janvi Rohilla, Rakhi Mishra*, Shruti Varshney, Avijit Mazumder, Rupa Mazumder, Arvind Kumar and Amrinder Kaur

Volume 28, Issue 17, 2024

Published on: 11 June, 2024

Page: [1366 - 1379] Pages: 14

DOI: 10.2174/0113852728307286240517054021

Price: $65

Abstract

Acyl ureas are a well-known class of organic compounds that have drawn a lot of attention recently because of their array of chemical properties and possible multi-use in medicine. The article summarizes the synthetic procedures used to produce various Acyl urea synthons and includes instances of clinical trials, patents, and commercialized medications having Acyl urea and N-acyl urea moiety. This extensive study examines and summarizes research on acyl urea derivatives conducted over the last 20 years from a variety of sources, including PubMed, Google Scholar, and Google Websites. When it comes to the discovery of new chemicals, urea derivatives still require attention compared to other acyl compounds. This review paper aims to provide a comprehensive overview of the various synthetic approaches utilized in the design of an array of acyl ureas to accomplish the same goal. This work summarizes information related to several heteroatom-fused acyl urea compounds, which fortunately will be a very useful resource for chemists and scientists who are interested in acyl urea synthesis and its applications in chemistry.

Graphical Abstract

[1]
Varshney, S.; Tiwari, A.; Mishra, R. N-Heterocyclic analogs: A new prospect in cancer therapy. Asian J. Chem., 2023, 35(10), 2323-2335.
[http://dx.doi.org/10.14233/ajchem.2023.28156]
[2]
Liptrot, D.; Alcaraz, L.; Roberts, B. New synthesis of aryl, and heteroaryl N‐acylureas via microwave‐assisted palladium‐catalysed carbonylation. Adv. Synth. Catal., 2010, 352(13), 2183-2188.
[3]
Pouyani, T.; Kuo, J.W.; Harbison, G.S.; Prestwich, G.D. Solid-state NMR of N-acylureas derived from the reaction of hyaluronic acid with isotopically-labeled carbodiimides. J. Am. Chem. Soc., 1992, 114(15), 5972-5976.
[http://dx.doi.org/10.1021/ja00041a010]
[4]
Zhang, J.F.; Xu, J.Y.; Wang, B.L.; Li, Y.X.; Xiong, L.X.; Li, Y.Q.; Ma, Y.; Li, Z.M. Synthesis and insecticidal activities of novel anthranilic diamides containing acyl thiourea and acyl urea. J. Agric. Food Chem., 2012, 60(31), 7565-7572.
[5]
Reynolds, S.E. The cuticle, growth and moulting in insects: The essential background to the action of acylurea insecticides. Pestic. Sci., 1987, 20(2), 131-146.
[http://dx.doi.org/10.1002/ps.2780200207]
[6]
Fisk, T.; Wright, D.J. Comparative studies on acylurea insect growth regulators and neuroactive insecticides for the control of the armyworm Spodoptera exempta walk. Pestic. Sci., 1992, 35(2), 175-182.
[http://dx.doi.org/10.1002/ps.2780350213]
[7]
Zhang, Z.J.; Zeng, Y.; Jiang, Z.Y.; Shu, B.S.; Sethuraman, V.; Zhong, G.H. Design, synthesis, fungicidal property and QSAR studies of novel β‐carbolines containing urea, benzoylthiourea and benzoylurea for the control of rice sheath blight. Pest Manag. Sci., 2018, 74(7), 1736-1746.
[http://dx.doi.org/10.1002/ps.4873] [PMID: 29384254]
[8]
Guo-Xiang, S.U.; Qiao, W.A.; Li-Jing, M.I.; Liang, H.A.; Xing-Hai, L.I. Synthesis, crystal structure, fungicidal activities and molecular docking of acyl urea derivatives containing 2-chloronicotine. Motif. Chin. J. Chem., 2022, 41(2), 2202114-2202122.
[9]
Singh, A.K.; Chawla, R.; Yadav, L.D. In situ slow release of isocyanates: synthesis and organocatalytic application of N-acylureas. Tetrahedron Lett., 2013, 54(37), 5099-5102.
[10]
An, K.; Qin, Q.; Yu, S.; Xue, M.; Wang, Z.; Lin, Q.; Ma, Y.; Yan, G.; Mo, S.; Chen, Y.; Zhang, L.; Zhong, J.; Qi, Z.; Xia, J. Combination of N,N′‐dicyclohexyl‐ N‐arachidonic acylurea and tacrolimus prolongs cardiac allograft survival in mice. Immunol. Cell Biol., 2020, 98(5), 382-396.
[http://dx.doi.org/10.1111/imcb.12327] [PMID: 32162358]
[11]
Subramanian, S.; Shankarganesh, K. Insect hormones (as pesticides). In: Ecofriendly pest management for food security; Academic Press, 2016; pp. 613-650.
[12]
Ziarati, P.; Tajik, S.; Sawicka, B.; Rodriguez, C.L.; Vambol, V.; Vambol, S. Detoxification of lead and cadmium in pharmaceutical effluent by home-made food wastes. Adv. Biology Earth Sci., 2023, 8(2)
[13]
Acevedo, O.; Ambrose, Z.; Flaherty, P.T.; Aamer, H.; Jain, P.; Sambasivarao, S.V. Identification of HIV inhibitors guided by free energy perturbation calculations. Curr. Pharm. Des., 2012, 18(9), 1199-1216.
[http://dx.doi.org/10.2174/138161212799436421] [PMID: 22316150]
[14]
Siman, P.; Blatt, O.; Moyal, T.; Danieli, T.; Lebendiker, M.; Lashuel, H.A.; Friedler, A.; Brik, A. Chemical synthesis and expression of the HIV‐1 Rev protein. ChemBioChem, 2011, 12(7), 1097-1104.
[http://dx.doi.org/10.1002/cbic.201100033]
[15]
Jiang, J.D.; Roboz, J.; Weisz, I.; Deng, L.; Ma, L.; Holland, J.F.; Bekesi, G.J. Synthesis, cancericidal and antimicrotubular activities of 3-(haloacetamido)-benzoylureas. Anticancer Drug Des., 1998, 13(7), 735-747.
[16]
Solinas, A.; Faure, H.; Roudaut, H.; Traiffort, E.; Schoenfelder, A.; Mann, A.; Manetti, F.; Taddei, M.; Ruat, M. Acylthiourea, acylurea, and acyl guanidine derivatives with potent hedgehog inhibiting activity. J. Med. Chem., 2012, 55(4), 1559-1571.
[17]
Asghar, F.; Badshah, A.; Hussain, R.A.; Sohail, M.; Akbar, K.; Butler, I.S. Synthesis, structural characterization, DNA binding and antioxidant potency of new ferrocene incorporated acyl ureas. J. Organomet. Chem., 2015, 797(797), 131-139.
[http://dx.doi.org/10.1016/j.jorganchem.2015.08.010]
[18]
Kaderli, S.; Scapozza, L.; Gurny, R.; Möller, M. Synthesis and characterization of high molecular weight hyaluronic acid grafted with antioxidants. Archive ouverte UNIGE, 2014.
[19]
Amrahov, N.R.; Mammadova, R.B.; Allahverdiyeva, S.N.; Aliyev, E.I.; Alizada, S.R.; Aghazada, G.A.; Ojagverdiyeva, S.Y. Effect of indole-3- butyric acid on the antioxidant enzymes, no and chlorophyll content of agdash- 3 and ap-317 genotypes of upland cotton (Gossypium hirsutum L.). Adv. Biolog. Earth Sci., 2023, 8(2)
[20]
Arbuzov, B.A.; Fedotova, N.R.; Zobova, N.N.; Nazyrova, A.Z.; Anan’ev, E.V.; Gorbunov, S.M. Synthesis, antiinflammatory, and analgesic activity of N-acylurea. Pharm. Chem. J., 1989, 23(6), 479-481.
[http://dx.doi.org/10.1007/BF01145802]
[21]
Gong, H.; Yang, M.; Xiao, Z.; Doweyko, A.M.; Cunningham, M.; Wang, J.; Habte, S.; Holloway, D.; Burke, C.; Shuster, D.; Gao, L. Discovery of acylurea isosteres of 2-acylaminothiadiazole in the azaxanthene series of glucocorticoid receptor agonists. Bioorg. Med. Chem. Lett., 2014, 24(15), 3268-3273.
[22]
Eftekhari, A.; Hasanzadeh, A.; Khalilov, R.; Hosainzadegan, H.; Ahmadian, E.; Eghbal, M.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat. Environ. Sci. Pollut. Res. Int., 2020, 27(5), 4969-4975.
[http://dx.doi.org/10.1007/s11356-019-07232-1] [PMID: 31845254]
[23]
Abdelhamid, A.A.; Elsaghiera, A.M.M.; Aref, S.A.; Gad, M.A.; Ahmed, N.A.; Abdel-Raheem, S.A.A. Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 2021, 10(4), 371-376.
[http://dx.doi.org/10.5267/j.ccl.2021.6.001]
[24]
Zhang, Q.; Cheng, Y.; Zheng, C.; Bai, P.; Yang, J.; Lu, X. Design, synthesis, and insecticidal activity of novel doramectin derivatives containing acylurea and acylthiourea based on hydrogen bonding. J. Agric. Food Chem., 2020, 68(21), 5806-5815.
[http://dx.doi.org/10.1021/acs.jafc.0c00230] [PMID: 32356977]
[25]
Kumari, M. The molecular target and mode of action of the acylurea insecticide, diflubenzuron; Kansas State University, 2015.
[26]
Clarke, B.S.; Jewess, P.J. The inhibition of chitin synthesis in Spodoptera littoralis larvae by flufenoxuron, teflubenzuron and diflubenzuron. Pestic. Sci., 1990, 28(4), 377-388.
[http://dx.doi.org/10.1002/ps.2780280405]
[27]
Furlong, M.J.; Wright, D.J. Examination of stability of resistance and cross‐resistance patterns to acylurea insect growth regulators in field populations of the diamondback moth, Plutella xylostella, from Malaysia. Pestic. Sci., 1994, 42(4), 315-326.
[http://dx.doi.org/10.1002/ps.2780420409]
[28]
Arora, M.S.; Salokhe, S.G.; Mukherjee, S.N. Effect of sub-lethal concentrations of lufenuron on growth, development, and reproductive performance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Int. J. Appl. Biol, 2012, 3, 111-122.
[29]
Kumari, M. The molecular target and mode of action of the acylurea insecticide, diflubenzuron; Kansas State University, 2015.
[30]
Ahmed, A.; Shafique, I.; Saeed, A.; Shabir, G.; Saleem, A.; Taslimi, P.; Tok, T.T.; Kirici, M.; Üç, E.M.; Hashmi, M.Z. Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis, and molecular docking studies. Eur. J. Med. Chem., 2022, 1(6), 100082.
[31]
Kaiser, C.R.; Pinheiro, A.C.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.S.V. Formation of N-acyl-N,N′-dicyclohexylureas from DCC and arenecarboxylic acids in the presence of hydroxybenzotriazole in CH2Cl2 at room temperature. J. Chem. Res., 2008, 2008(8), 468-472.
[http://dx.doi.org/10.3184/030823408X333418]
[32]
Devineni, S.R.; Golla, M.; Chamarthi, N.R.; Meriga, B.; Saddala, M.S.; Asupathri, U.R. 2-Amino-2,3-dihydro-1H-2λ5-[1,3,2]diazaphospholo[4,5-b]pyridin-2-one-based urea and thiourea derivatives: Synthesis, molecular docking study and evaluation of anti-inflammatory and antimicrobial activities. Med. Chem. Res., 2016, 25(4), 751-768.
[http://dx.doi.org/10.1007/s00044-016-1518-x]
[33]
Suvannasara, P.; Juntapram, K.; Praphairaksit, N.; Siralertmukul, K.; Muangsin, N. Mucoadhesive 4-carboxybenzenesulfonamide-chitosan with antibacterial properties. Carbohydr. Polym., 2013, 94(1), 244-252.
[34]
Theodoridis, G. Fluorine-containing agrochemicals: An overview of recent developments. Adv. Fluor. Sci., 2006, 2, 121-175.
[http://dx.doi.org/10.1016/S1872-0358(06)02004-5]
[35]
Ong, K.T.; Perdu, J.; De Backer, J.; Bozec, E.; Collignon, P.; Emmerich, J.; Fauret, A.L.; Fiessinger, J.N.; Germain, D.P.; Georgesco, G.; Hulot, J.S. Effect of celiprolol on prevention of cardiovascular events in vascular ehlers-danlos syndrome: A prospective randomised, open, blinded-endpoints trial. Lancet, 2010, 376(9751), 1476-1484.
[http://dx.doi.org/10.1016/S0140-6736(10)60960-9]
[36]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-1188.
[37]
Howe, A.Y.; Venkatraman, S. The discovery and development of boceprevir: A novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease. J. Clin. Transl., 2013, 1(1), 22.
[38]
Jitta, S.R. Recent advances in nanoformulation development of Ritonavir, a key protease inhibitor used in the treatment of HIV-AIDS. Expert Opin. Drug Deliv., 2022, 19(9), 1133-1148.
[39]
Lange, K.W. Clinical pharmacology of dopamine agonists in Parkinson’s disease. Drugs Aging, 1998, 13(5), 381-389.
[http://dx.doi.org/10.2165/00002512-199813050-00004] [PMID: 9829165]
[40]
Citrome, L. Cariprazine for the treatment of schizophrenia: A review of this dopamine D3-preferring D3/D2 receptor partial agonist. Clin. Schizophr. Relat. Psychoses, 2016, 10(2), 109-119.
[41]
Durham, P.L.; Vause, C.V. Calcitonin gene-related peptide (CGRP) receptor antagonists in the treatment of migraine. CNS Drugs, 2010, 24(7), 539-548.
[http://dx.doi.org/10.2165/11534920-000000000-00000] [PMID: 20433208]
[42]
Wenzel, S.E.; Kamada, A.K. Zileuton: The first 5-lipoxygenase inhibitor for the treatment of asthma. Ann. Pharmacother., 1996, 30(7-8), 858-864.
[http://dx.doi.org/10.1177/106002809603000725] [PMID: 8826571]
[43]
Realini, N.; Solorzano, C.; Pagliuca, C.; Pizzirani, D.; Armirotti, A.; Luciani, R.; Costi, M.P.; Bandiera, T.; Piomelli, D. Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci. Rep., 2013, 3(1), 1035.
[http://dx.doi.org/10.1038/srep01035]
[44]
Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor activity of lenvatinib (e7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/638747] [PMID: 25295214]
[45]
Johnson, D.S.; Stiff, C.; Lazerwith, S.E.; Kesten, S.R.; Fay, L.K.; Morris, M.; Beidler, D.; Liimatta, M.B.; Smith, S.E.; Dudley, D.T.; Sadagopan, N. Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Med. Chem. Lett., 2011, 2(2), 91-96.
[46]
Kaur, R.; Sidhu, P.; Singh, S. What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials. J. Pharmacol. Pharmacother., 2016, 7(3), 120-126.
[http://dx.doi.org/10.4103/0976-500X.189661] [PMID: 27651707]
[47]
Keith, J.M.; Jones, W.M.; Tichenor, M.; Liu, J.; Seierstad, M.; Palmer, J.A.; Webb, M.; Karbarz, M.; Scott, B.P.; Wilson, S.J.; Luo, L. Preclinical characterization of the FAAH inhibitor JNJ-42165279. ACS Med. Chem. Lett., 2015, 6(12), 1204-1208.
[48]
Hammock, B.D.; McReynolds, C.B.; Wagner, K.; Buckpitt, A.; Cortes-Puch, I.; Croston, G.; Lee, K.S.; Yang, J.; Schmidt, W.K.; Hwang, S.H. Movement to the clinic of soluble epoxide hydrolase inhibitor EC5026 as an analgesic for neuropathic pain and for use as a nonaddictive opioid alternative. J. Med. Chem., 2021, 64(4), 1856-1872.
[49]
Reisdorf, W.C.; Xie, Q.; Zeng, X.; Xie, W.; Rajpal, N.; Hoang, B.; Burgert, M.E.; Kumar, V.; Hurle, M.R.; Rajpal, D.K.; O’Donnell, S. Preclinical evaluation of EPHX2 inhibition as a novel treatment for inflammatory bowel disease. PLoS One, 2019, 14(4), 4-e0215033.
[50]
Hesselink, K.J.M. Bimoclomol and arimoclomol: HSP-co-inducers for the treatment of protein misfolding disorders, neuropathy, and neuropathic pain. J. Pain Relief, 2016, 6, 2167-0846.
[51]
Michael, F. Use of acyl urea compounds for controlling endoparasites and ectoparasites of warm-blooded animals. US Patent 005135953A, 1985.
[52]
Martin, H.D.E.S. Preparations containing urea or thiourea derivatives for use as molluscicides. US Patent 3546344A, 1970.
[53]
Anderl, J.; Modautal, W.S.; Hueffelsheim, C.M. Amatoxin-conjugates with improved linkers. US Patent 9399681B2, 2011.
[54]
Ralph, A. Acyl ureas and process for the preparation thereof. US Patent 2090594A, 1936.
[55]
Christopher, J. Anisotropic copoly (Imide Oxetane) coatings and articles of manufacture, copoly (Imide Oxetane) S containing pendant fluorocarbon moieties, oligomers and processes therefor. US Patent 9,822,088B2, 2017.
[56]
Patent Issued for N-acyl urea derivative and composition comprising same for prevention or treatment of cardiovascular disease. USP Patent TO11306073, 2011.
[57]
Milton, L. Substituted acyl derivatives of 1,2,3,4-tetrahydroisoquinoline-3- carboxylic acids. US Patent 4344949A, 1981.
[58]
Jonathan, C.M. Coupling method for peptide synthesis at elevated temperatures. US Patent 10308677B2, 2015.
[59]
Ruat, M.; Faure, H.; Traiffort, E.; Schoenfelder, A.M.; Maurizio, T. N-acyl thiourea and N-acyl urea inhibitors of the hedgehog protein signaling pathway. US Patent 9073835B2, 2019.
[60]
Bialer, M.; Ya-Gen, B.; Shimshoni, J. Acyl-urea derivatives and uses thereof. WO Patent 2009/001356A3, 2008.
[61]
Bialer, M.; Ya-Gen, B.; Shimshoni, J. Avi. Acyl-urea derivatives and uses thereof. WO Patent 2009130422A2, 2008.
[62]
N-acylthiourea and N-acylurea inhibitors of the hedgehog protein signalling pathway. WO Patent 2009130422A2, 2009.
[63]
Acyl-urea derivatives and uses thereof. EP Patent 2185505A2, 2009.
[64]
Brouwer, M.S.; Van Hes, R.; Muis, M. Benzoyl urea derivatives have antitumor activity. EP Patent 0193249A2, 1986.
[65]
N-acyl urea compounds for preparing polyurethanes. EP Patent 1749038A1, 1986.
[66]
Boeters, H.D. N-acylurea and O-acylisourea derivatives of hyaluronic acid. EP Patent 0416250A3, 1990.
[67]
Catalysts comprising cyclic acylurea compounds and oxidation and nitration reactions of organic compounds in the presence of the same. EP Patent 02791966, 1986.
[68]
A curable organic polymer comprising at least one acylurea unit, its preparation, and use. EP Patent 14185105A, 1986.
[69]
Drent, E.; Prillwitz, P.E. Process for the preparation of acyl ureas. EP Patent 0225673B, 1986.
[70]
Bialer, M.; Hadad, S.; Herzig, Y.; Sterling, J.; Lerner, D.; Shirvan, M. Derivatives of valproic acid amide and 2-valproenoic acid amide, method of making and use thereof as anticonvulsant. EP Patent 065917410, 1999.
[71]
Abbasi, S.; Miraki, M.K.; Radfar, I.; Karimi, M.; Heydari, A. Efficient synthesis of n‐acylureas using copper oxide supported on magnetic nanoparticles in deep eutectic solvent. ChemistrySelect, 2018, 3(1), 77-80.
[http://dx.doi.org/10.1002/slct.201702315]
[72]
Owen, A.E.; Preiss, A.; McLuskie, A.; Gao, C.; Peters, G.; Bühl, M.; Kumar, A. Manganese-catalyzed dehydrogenative synthesis of urea derivatives and polyureas. ACS Catal., 2022, 12(12), 6923-6933.
[http://dx.doi.org/10.1021/acscatal.2c00850] [PMID: 37614523]
[73]
Tandon, R.; Tandon, N.; Patil, S.M. Overview on magnetically recyclable ferrite nanoparticles: Synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11(47), 29333-29353.
[http://dx.doi.org/10.1039/D1RA03874E] [PMID: 35479579]
[74]
Shushpanova, T.V.; Bokhan, N.A.; Kuksenok, V.Y.; Shtrykova, V.V.; Shushpanova, O.V.; Udut, V.V. A novel urea derivative anticonvulsant: In vivo biological evaluation, radioreceptor analysis of GABAA receptors and molecular docking studies of enantiomers. Mendeleev Commun., 2023, 33(4), 546-549.
[75]
Zhong, M.; Zhang, Y.; He, X. Synthesis and anticonvulsant activity of ethyl 2,2-dimethyl-1-(2-substitutedhydrazinecarboxamido) cyclopropanecarboxylate derivatives. Chem. Biol. Drug Des., 2014, 84(2), 234-241.
[http://dx.doi.org/10.1111/cbdd.12310] [PMID: 24571574]
[76]
He, X.; Zhong, M.; Yang, J.; Wu, Z.; Xiao, Y.; Guo, H.; Hu, X. Synthesis and anticonvulsant activity of 1‐(2‐(8‐(benzyloxy)quinolin‐2‐yl)‐1‐butyrylcyclopropyl)‐3‐substituted urea derivatives. Chem. Biol. Drug Des., 2012, 79(5), 771-779.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01352.x] [PMID: 22304806]
[77]
Librowski, T.; Kubacka, M.; Meusel, M.; Scolari, S.; Müller, C.E.; Gütschow, M. Evaluation of anticonvulsant and analgesic effects of benzyl-and benzhydryl ureides. Eur. J. Pharmacol., 2007, 559(2-3), 138-149.
[http://dx.doi.org/10.1016/j.ejphar.2006.12.002]
[78]
Gündüz, M.G.; Uğur, S.B.; Güney, F.; Özkul, C.; Krishna, V.S.; Kaya, S.; Sriram, D.; Doğan, Ş.D. 1, 3-Disubstituted urea derivatives: Synthesis, antimicrobial activity evaluation and in silico studies. Bioorg. Chem., 2020, 102, 104104.
[79]
Farshori, N.N.; Ahmad, A.; Khan, A.U.; Rauf, A. A facile, one-pot synthesis, characterization, and antimicrobial activity of o-hydroxy anilide derivatives and 1-substituted-1, 3-dicyclohexylurea analogs of long chain carboxylic acids. Eur. J. Med. Chem., 2011, 46(4), 1433-1438.
[80]
Vaishnav, Y.; Dewangan, D.; Verma, S.; Mishra, A.; Thakur, A.S.; Kashyap, P.; Verma, S.K. PPAR gamma targeted molecular docking and synthesis of some new amide and urea substituted 1, 3, 4‐thiadiazole derivative as antidiabetic compound. J. Heterocycl. Chem., 2020, 57(5), 2213-2224.
[http://dx.doi.org/10.1002/jhet.3941]
[81]
Klabunde, T.; Wendt, K.U.; Kadereit, D.; Brachvogel, V.; Burger, H.J.; Herling, A.W.; Oikonomakos, N.G.; Kosmopoulou, M.N.; Schmoll, D.; Sarubbi, E.; von Roedern, E. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem., 2005, 48(20), 6178-6193.
[82]
Wang, H.; Zhai, Z.W.; Shi, Y.X.; Tan, C.X.; Weng, J.Q.; Han, L.; Li, B.J.; Liu, X.H. Novel trifluoromethylpyrazole acyl urea derivatives: Synthesis, crystal structure, fungicidal activity and docking study. J. Mol. Struct., 2018, 1171(1171), 631-638.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.050]
[83]
Guo, S.; Zhao, W.; Wang, Y.; Zhang, W.; Chen, S.; Wei, P.; Wu, J. Design, synthesis, and mechanism of antiviral acylurea derivatives containing a trifluoromethyl pyridine moiety. J. Agric. Food Chem., 2021, 69(43), 12891-12899.
[84]
Džimbeg, G.; Zorc, B.; Kralj, M.; Ester, K.; Pavelić, K.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: Synthesis, cytostatic and antiviral activity evaluations. Eur. J. Med. Chem., 2008, 43(6), 1180-1187.
[85]
Perković, I.; Tršinar, S.; Žanetić, J.; Kralj, M.; Kleiner, M.I.; Balzarini, J.; Litina, H.D.; Katsori, A.M.; Zorc, B. Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine-synthesis, cytostatic, antiviral and antioxidative studies. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 601-610.
[86]
Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydr. Polym., 2019, 215(215), 108-118.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.067] [PMID: 30981335]
[87]
Abdelazeem, A.H.; El-Din, A.G.; Arab, H.H.; El-Saadi, M.T.; El-Moghazy, S.M.; Amin, N.H. Design, synthesis, and anti-inflammatory/analgesic evaluation of novel di-substituted urea derivatives bearing diaryl-1, 2, 4-triazole with dual COX-2/sEH inhibitory activities. J. Mol. Struct., 2021, 1240, 130565.
[88]
Ranise, A.; Schenone, S.; Bruno, O.; Bondavalli, F.; Filippelli, W.; Falcone, G.; Rivaldi, B. N-Acyl-N-phenyl ureas of piperidine and substituted piperidines endowed with anti-inflammatory and anti-proliferative activities. Il Farmaco, 2001, 56(9), 647-657.
[89]
Mishra, R.; Mazumder, A.; Mazumder, R.; Mishra, P.S.; Chaudhary, P. Docking study and result conclusion of heterocyclic derivatives having urea and acyl moiety. Asian J. Biomed. Pharm. Sci., 2019, 9(67), 13.
[http://dx.doi.org/10.35841/2249-622X.67.19-082]
[90]
Chen, J.N.; Wang, X.F.; Li, T.; Wu, D.W.; Fu, X.B.; Zhang, G.J.; Shen, X.C.; Wang, H.S. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 107(107), 12-25.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.045] [PMID: 26560049]
[91]
Song, D.Q.; Du, N.N.; Wang, Y.M.; He, W.Y.; Jiang, E.Z.; Cheng, S.X.; Wang, Y.X.; Li, Y.H.; Wang, Y.P.; Li, X.; Jiang, J.D. Synthesis and activity evaluation of phenylurea derivatives as potent antitumor agents. Bioorg. Med. Chem., 2009, 17(11), 3873-3878.
[92]
Demchenko, S.A.; Yadlovskyi, O.E.; Yudina, O.V.; Tubaltseva, I.I.; Fedchenkova, Y.A.; Bobkova, L.S.; Demchenko, A.M. Synthesis and anxiolytic activity of 3-aryl-1-(41methoxyphenyl)-1-(6, 7, 8, 9-tetrahydro5H- [1, 2, 4] triazolo [4, 3-a] azepine-3-yl-methyl)-urea derivatives. Pharmacol. Med. Toxicol., 2020, 14(2), 88-96.
[93]
Adil, S.; Khan, A.; Badshah, H.; Asghar, F.; Usman, M.; Badshah, A.; Ali, S. In silico and in vivo investigation of ferrocene‐incorporated acyl ureas and homoleptic cadmium carboxylate derivatives for anticonvulsant, anxiolytic, and sedative potential. Drug Dev. Res., 2018, 79(4), 184-197.
[http://dx.doi.org/10.1002/ddr.21435] [PMID: 29989221]
[94]
Haynes, N.E.; Corbett, W.L.; Bizzarro, F.T.; Guertin, K.R.; Hilliard, D.W.; Holland, G.W.; Kester, R.F.; Mahaney, P.E.; Qi, L.; Spence, C.L.; Tengi, J. Discovery, structure-activity relationships, pharmacokinetics, and efficacy of glucokinase activator (2 R)-3-cyclopentyl-2-(4-methane sulfonyl phenyl)-N-thiazol-2-yl-propionamide (RO0281675). J. Med. Chem., 2010, 53(9), 3618-3625.
[95]
Boehme, W.R.; Siegmund, E.A.; Scharpf, W.G.; Schipper, E. Structure-activity relationships in a series of anticonvulsant bicyclic acylureas. J. Med. Chem., 1962, 5(4), 769-775.
[96]
Qiao, L.; Zhai, Z.W.; Cai, P.P.; Tan, C.X.; Weng, J.Q.; Han, L.; Liu, X.H.; Zhang, Y.G. Synthesis, crystal structure, antifungal activity, and docking study of difluoro methyl pyrazole derivatives. J. Heterocycl. Chem., 2019, 56(9), 2536-2541.
[http://dx.doi.org/10.1002/jhet.3648]
[97]
Thapa, R.; Flores, R.; Cheng, K.H.; Mochona, B.; Sikazwe, D. Design and synthesis of new acyl urea analogs as potential σ1R ligands. Mol., 2023, 28(5), 2319.
[98]
Wang, B.L.; Zhu, H.W.; Ma, Y.; Xiong, L.X.; Li, Y.Q.; Zhao, Y.; Zhang, J.F.; Chen, Y.W.; Zhou, S.; Li, Z.M. Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides. J. Agric. Food Chem., 2013, 61(23), 5483-5493.
[99]
Fan, Y.; Lu, Y.; Chen, X.; Tekwani, B.; Li, X.C.; Shen, Y. Anti-Leishmanial and cytotoxic activities of a series of maleimides: Synthesis, biological evaluation, and structure-activity relationship. Mol., 2018, 23(11), 2878.
[http://dx.doi.org/10.3390/molecules23112878]
[100]
Tenthorey, P.A.; Block, A.J.; Ronfeld, R.A.; McMaster, P.D.; Byrnes, E.W. New antiarrhythmic agents. 6. Quantitative structure-activity relationships of aminoxylidides. J. Med. Chem., 1981, 24(7), 798-806.
[101]
Guo, Z.; Zhu, Y.F.; Gross, T.D.; Tucci, F.C.; Gao, Y.; Moorjani, M.; Connors, P.J.; Rowbottom, M.W.; Chen, Y.; Struthers, R.S.; Xie, Q. Synthesis, and structure-activity relationships of 1-arylmethyl-5-aryl-6-methyluracils as potent gonadotropin-releasing hormone receptor antagonists. J. Med. Chem., 2004, 47(5), 1259-1271.
[102]
Walayat, K. ul Mohsin, A.N.; Aslam, S.; Rasool, N.; Ahmad, M.; Rafiq, A.; Al-Hussain, S.A.; Zaki, M.E.A. Recent advances in the piperazine based antiviral agents: A remarkable heterocycle for antiviral research. Arab. J. Chem., 2023, 16(12), 105292.
[http://dx.doi.org/10.1016/j.arabjc.2023.105292]
[103]
Magri, A.; Reilly, R.; Scalacci, N.; Radi, M.; Hunter, M.; Ripoll, M.; Patel, A.H.; Castagnolo, D. Rethinking the old antiviral drug moroxydine: Discovery of novel analogs as anti-hepatitis C virus (HCV) agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5372-5376.
[104]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization, and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[105]
Chaudhary, R.; Shuaib, M.; Hashim, S.R.; Mishra, P.S. Synthesis, characterization and antitumor potential of cinnamoyl urea derivatives. Asian J. Chem., 2016, 28(2), 410-414.
[http://dx.doi.org/10.14233/ajchem.2016.19403]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy