Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Neurotrophin-3 Rescues Striatal Synaptic Plasticity in Model of Neurodegeneration by PLC Signaling Activation

Author(s): Victor G. Gómez-Pineda, Elizabeth Nieto-Mendoza, Francisco M. Torres-Cruz and Elizabeth Hernández-Echeagaray*

Volume 23, Issue 12, 2024

Published on: 10 June, 2024

Page: [1488 - 1498] Pages: 11

DOI: 10.2174/0118715273298919240531110022

Price: $65

Abstract

Background: Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease (HD) induced by 3-nitropropionic acid (3-NP). In the 3-NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin- 3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NPinduced striatal degeneration in mice in vivo.

Methods: Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways.

Results: Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT-3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery.

Conclusion: Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.

[1]
Blesch A. Neurotrophic factors in neurodegeneration. Brain Pathol 2006; 16(4): 295-303.
[http://dx.doi.org/10.1111/j.1750-3639.2006.00036.x] [PMID: 17107599]
[2]
Hennigan A, O’Callaghan RM, Kelly ÁM. Neurotrophins and their receptors: Roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 2007; 35(2): 424-7.
[http://dx.doi.org/10.1042/BST0350424] [PMID: 17371291]
[3]
Yuen EC, Mobley WC. Therapeutic potential of neurotrophic factors for neurological disorders. Ann Neurol 1996; 40(3): 346-54.
[http://dx.doi.org/10.1002/ana.410400304] [PMID: 8797524]
[4]
Alberch J, Pérez-Navarro E, Canals JM. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res Bull 2002; 57(6): 817-22.
[http://dx.doi.org/10.1016/S0361-9230(01)00775-4] [PMID: 12031278]
[5]
Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001; 293(5529): 493-8.
[http://dx.doi.org/10.1126/science.1059581] [PMID: 11408619]
[6]
Chan DC. Mitochondria: Dynamic organelles in disease, aging, and development. Cell 2006; 125(7): 1241-52.
[http://dx.doi.org/10.1016/j.cell.2006.06.010] [PMID: 16814712]
[7]
Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995; 92(15): 7105-9.
[http://dx.doi.org/10.1073/pnas.92.15.7105] [PMID: 7624378]
[8]
Tabrizi SJ, Cleeter MWJ, Xuereb J, Taanman JW, Cooper JM, Schapira AHV. Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 1999; 45(1): 25-32.
[http://dx.doi.org/10.1002/1531-8249(199901)45:1<25:AID-ART6>3.0.CO;2-E] [PMID: 9894873]
[9]
Seong IS, Ivanova E, Lee JM, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005; 14(19): 2871-80.
[http://dx.doi.org/10.1093/hmg/ddi319] [PMID: 16115812]
[10]
Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Brain Res Rev 2009; 61(1): 33-48.
[http://dx.doi.org/10.1016/j.brainresrev.2009.04.001] [PMID: 19394359]
[11]
Rodríguez E, Rivera I, Astorga S, Mendoza E, García F, Hernández-Echeagaray E. Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci 2010; 6(3): 199-212.
[http://dx.doi.org/10.7150/ijbs.6.199] [PMID: 20440403]
[12]
Hernandez-Echeagaray E, De La Rosa-Lopez G, Mendoza E. The use of the mitochondrial toxin 3-NP to uncover cellular dysfunction in huntington’s disease. Huntington's Disease - Core Concepts and Current Advances 2012.
[13]
Mendoza E, Miranda-Barrientos JA, Vázquez-Roque RA, et al. In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins. Neuroscience 2014; 280: 156-70.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.018] [PMID: 25241069]
[14]
Alston TA, Mela L, Bright HJ. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 1977; 74(9): 3767-71.
[http://dx.doi.org/10.1073/pnas.74.9.3767] [PMID: 269430]
[15]
Coles CJ, Edmondson DE, Singer TP. Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 1979; 254(12): 5161-7.
[http://dx.doi.org/10.1016/S0021-9258(18)50574-3] [PMID: 447637]
[16]
Brouillet E, Condé F, Beal MF, Hantraye P. Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 1999; 59(5): 427-68.
[http://dx.doi.org/10.1016/S0301-0082(99)00005-2] [PMID: 10515664]
[17]
Espíndola S, Vilches-Flores A, Hernández-Echeagaray E. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum. Neurosci Bull 2012; 28(5): 517-31.
[http://dx.doi.org/10.1007/s12264-012-1259-x] [PMID: 22961474]
[18]
Gu S, Huang H, Bi J, Yao Y, Wen T. Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res 2009; 1257: 1-9.
[http://dx.doi.org/10.1016/j.brainres.2008.12.016] [PMID: 19111525]
[19]
Torres-Peraza J, Pezzi S, Canals JM, et al. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-d-aspartate receptors. Neuroscience 2007; 144(2): 462-71.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.038] [PMID: 17081696]
[20]
Je HS, Zhou J, Yang F, Lu B. Distinct mechanisms for neurotrophin-3-induced acute and long-term synaptic potentiation. J Neurosci 2005; 25(50): 11719-29.
[http://dx.doi.org/10.1523/JNEUROSCI.4087-05.2005] [PMID: 16354930]
[21]
Je HS, Yang F, Zhou J, Lu B. Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms. J Cell Biol 2006; 175(6): 1029-42.
[http://dx.doi.org/10.1083/jcb.200603061] [PMID: 17178914]
[22]
Gómez-Pineda VG, Torres-Cruz FM, Vivar-Cortés CI, Hernández-Echeagaray E. Neurotrophin‐3 restores synaptic plasticity in the striatum of a mouse model of Huntington’s disease. CNS Neurosci Ther 2018; 24(4): 353-63.
[http://dx.doi.org/10.1111/cns.12824] [PMID: 29453932]
[23]
Akopian G, Crawford C, Beal MF, et al. Decreased striatal dopamine release underlies increased expression of long-term synaptic potentiation at corticostriatal synapses 24 h after 3-nitropropionic-acid-induced chemical hypoxia. J Neurosci 2008; 28(38): 9585-97.
[http://dx.doi.org/10.1523/JNEUROSCI.5698-07.2008] [PMID: 18799690]
[24]
Roux P, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 2002; 67(3): 203-33.
[http://dx.doi.org/10.1016/S0301-0082(02)00016-3] [PMID: 12169297]
[25]
Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67(20): 3435-47.
[http://dx.doi.org/10.1007/s00018-010-0435-2] [PMID: 20577776]
[26]
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2010; 2: 139.
[http://dx.doi.org/10.3389/fnsyn.2010.00139] [PMID: 21423525]
[27]
Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 2014; 76(Pt C): 639-56.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.005] [PMID: 23602987]
[28]
Begni V, Riva MA, Cattaneo A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin Sci (Lond) 2017; 131(2): 123-38.
[http://dx.doi.org/10.1042/CS20160009] [PMID: 28011898]
[29]
Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996; 273(5277): 959-63.
[http://dx.doi.org/10.1126/science.273.5277.959] [PMID: 8688081]
[30]
Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004; 14(3): 311-7.
[http://dx.doi.org/10.1016/j.conb.2004.04.001] [PMID: 15194111]
[31]
Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 2002; 22(12): 4860-8.
[http://dx.doi.org/10.1523/JNEUROSCI.22-12-04860.2002] [PMID: 12077183]
[32]
Zanassi P, Paolillo M, Feliciello A, Avvedimento EV, Gallo V, Schinelli S. cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J Biol Chem 2001; 276(15): 11487-95.
[http://dx.doi.org/10.1074/jbc.M007631200] [PMID: 11139572]
[33]
Girault J, Valjent E, Caboche J, Hervé D. ERK2: A logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 2007; 7(1): 77-85.
[http://dx.doi.org/10.1016/j.coph.2006.08.012] [PMID: 17085074]
[34]
West AE, Greenberg ME. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol 2011; 3(6): a005744.
[http://dx.doi.org/10.1101/cshperspect.a005744] [PMID: 21555405]
[35]
Hutton SR, Otis JM, Kim EM, Lamsal Y, Stuber GD, Snider WD. ERK/MAPK signaling is required for pathway-specific striatal motor functions. J Neurosci 2017; 37(34): 8102-15.
[http://dx.doi.org/10.1523/JNEUROSCI.0473-17.2017] [PMID: 28733355]
[36]
Wang JZ, Long C, Li KY, Xu HT, Yuan LL, Wu GY. Potent block of potassium channels by MEK inhibitor U0126 in primary cultures and brain slices. Sci Rep 2018; 8(1): 8808.
[http://dx.doi.org/10.1038/s41598-018-27235-1] [PMID: 29892075]
[37]
Gärtner A, Polnau DG, Staiger V, et al. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J Neurosci 2006; 26(13): 3496-504.
[http://dx.doi.org/10.1523/JNEUROSCI.3792-05.2006] [PMID: 16571757]
[38]
Gruart A, Sciarretta C, Valenzuela-Harrington M, Delgado-García JM, Minichiello L. Mutation at the TrkB PLCγ-docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem 2007; 14(1-2): 54-62.
[http://dx.doi.org/10.1101/lm.428307] [PMID: 17272652]
[39]
Yan Z, Shi X, Wang H, Si C, Liu Q, Du Y. Neurotrophin-3 Promotes the Neuronal Differentiation of BMSCs and Improves Cognitive Function in a Rat Model of Alzheimer’s Disease. Front Cell Neurosci 2021; 15: 629356.
[http://dx.doi.org/10.3389/fncel.2021.629356] [PMID: 33642999]
[40]
Edelmann E, Leßmann V, Brigadski T. Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2014; 76(Pt C): 610-27.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.043] [PMID: 23791959]
[41]
He X, Yang F, Xie Z, Lu B. Intracellular Ca(2+) and Ca(2+)/] calmodulin-dependent kinase II mediate acute potentiation of neurotransmitter release by neurotrophin-3. J Cell Biol 2000; 149(4): 783-92.
[http://dx.doi.org/10.1083/jcb.149.4.783] [PMID: 10811820]
[42]
Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215(1): 89-97.
[http://dx.doi.org/10.1006/bbrc.1995.2437] [PMID: 7575630]
[43]
Katona I, Urbán GM, Wallace M, et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 2006; 26(21): 5628-37.
[http://dx.doi.org/10.1523/JNEUROSCI.0309-06.2006] [PMID: 16723519]
[44]
Lei S, McBain CJ. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 2004; 24(9): 2112-21.
[http://dx.doi.org/10.1523/JNEUROSCI.4645-03.2004] [PMID: 14999062]
[45]
Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006; 361(1473): 1545-64.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[46]
Bleasdale JE, Thakur NR, Gremban RS, et al. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther 1990; 255(2): 756-68.
[PMID: 2147038]
[47]
Duncia JV, Santella JB III, Higley CA, et al. MEK inhibitors: The chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett 1998; 8(20): 2839-44.
[http://dx.doi.org/10.1016/S0960-894X(98)00522-8] [PMID: 9873633]
[48]
Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002). J Biol Chem 1994; 269(7): 5241-8.
[http://dx.doi.org/10.1016/S0021-9258(17)37680-9] [PMID: 8106507]
[49]
Lu Y, Sareddy GR, Wang J, et al. Neuron-derived estrogen regulates synaptic plasticity and memory. J Neurosci 2019; 39(15): 2792-809.
[http://dx.doi.org/10.1523/JNEUROSCI.1970-18.2019] [PMID: 30728170]
[50]
Sánchez-Castillo C, Cuartero MI, Fernández-Rodrigo A, et al. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition. Sci Adv 2022; 8(47): eabq8109.
[http://dx.doi.org/10.1126/sciadv.abq8109] [PMID: 36417513]
[51]
Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010; 58(7): 951-61.
[http://dx.doi.org/10.1016/j.neuropharm.2010.01.008] [PMID: 20096294]
[52]
Mathur BN, Lovinger DM. Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front Pharmacol 2012; 3: 66.
[http://dx.doi.org/10.3389/fphar.2012.00066] [PMID: 22529814]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy