Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Exploring Innovative Approaches in Type-2 Diabetes Management: A Comprehensive Review on Nano-carriers and Transdermal Drug Delivery

Author(s): Nitasha Chauhan, Mohit Kumar, Karan Kumar, Shruti Chopra and Amit Bhatia*

Volume 30, Issue 22, 2024

Published on: 06 June, 2024

Page: [1725 - 1745] Pages: 21

DOI: 10.2174/0113816128313325240513113840

Price: $65

Abstract

Diabetes is a chronic metabolic disorder characterized by elevated blood sugar levels and encompasses various types like type 1, type 2, gestational, and prediabetes. This review delves into the intricacies of type-2 diabetes mellitus and its ideal management. Presently, a spectrum of herbal and synthetic drugs is employed for type-2 diabetes mellitus management. We gathered information about diabetes mellitus from articles published up to 2024 and listed in PubMed, Web of Science, Elsevier, Google Scholar, and similar databases. The keywords used in our search included “diabetes”, “herbal drugs”, “nano-carriers”, “transdermal drug delivery”, etc. By carefully analyzing the research on type-2 diabetes-mellitus, it was found that there is an increase in diabetes-based research, which can be demonstrated by contemplating the PubMed search engine results using transdermal delivery for type-2 diabetes-mellitus as a keyword. The oral consumption of these drugs is associated with numerous side effects, including obesity, pancreatic cancer, and hormonal imbalances. To surmount these challenges, the utilization of nano-carriers and transdermal drug delivery systems emerges as a promising avenue aiming to enhance the therapeutic efficacy of drugs. Nano-carriers represent a revolutionary approach, integrating cutting-edge technologies, inventive strategies, and methodologies to deliver active molecules in concentrations that are both safe and effective, thereby eliciting the desired pharmacological response. This review critically examines the constraints associated with traditional oral administration of anti-diabetic drugs and underscores the manifold initiatives undertaken to revolutionize drug delivery. This review focuses on the limitations associated with the conventional oral administration of anti-diabetic drugs and the many initiatives made so far for the effective and safe delivery of drugs using innovative constituents and techniques.

[1]
Nabhan GP. Rooting out the causes of disease: Why diabetes is so common among desert dwellers. Food and Culture. Routledge 2018; pp. 450-61.
[2]
Raj R, Shams R, Pandey VK, Dash KK, Singh P, Bashir O. Barley phytochemicals and health promoting benefits: A comprehensive review. J Agric Food Res. 2023; 14: p. 100677.
[3]
Cosnier S, Le Goff A, Holzinger M. Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem Commun 2014; 38: 19-23.
[http://dx.doi.org/10.1016/j.elecom.2013.09.021]
[4]
Sur T, Das A, Bashar S, Tarafdar S, Sarkar B, Madhu NR. Biochemical assay for measuring diabetes mellitus. Advances in Diabetes Research and Management. Springer 2023; pp. 1-20.
[http://dx.doi.org/10.1007/978-981-19-0027-3_1]
[5]
Jwad SM. Types of diabetes and their effect on the immune system. J Adv Pharm Pr 2022; 4: 21-30.
[6]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[7]
HR A. Peripheral neutrophil count and its association with diabetic kidney disease in diabetic patients. Eur J Cardiovasc Med 2023; 13(4): 299-305.
[8]
Simos YV, Spyrou K, Patila M, et al. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16(1): 62-76.
[http://dx.doi.org/10.1016/j.ajps.2020.05.001] [PMID: 33613730]
[9]
Wong WF, Ang KP, Sethi G, Looi CY. Recent advancement of medical patch for transdermal drug delivery. Medicina 2023; 59(4): 778.
[http://dx.doi.org/10.3390/medicina59040778] [PMID: 37109736]
[10]
Ng LC, Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian J Pharm Sci 2020; 15(1): 13-25.
[http://dx.doi.org/10.1016/j.ajps.2019.04.006] [PMID: 32175015]
[11]
Rathod S. Novel insights into the immunotherapy-based treatment strategy for autoimmune type 1 diabetes. Diabetology 2022; 3(1): 79-96.
[http://dx.doi.org/10.3390/diabetology3010007]
[12]
Maiti S, Laha B, Kumari L. Gellan micro-carriers for pH-responsive sustained oral delivery of glipizide. Farmacia 2015; 63(6): 913-21.
[13]
Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of type 1 diabetes and gut microbiota role. Int J Mol Sci 2022; 23(23): 14650.
[http://dx.doi.org/10.3390/ijms232314650] [PMID: 36498975]
[14]
Tabasi M, Shirali S. Viruses and diabetes: A long history. Int J Pharm Res Allied Sci 2016; 5(2): 258-69.
[15]
Dewangan H, Tiwari RK, Sharma V, Shukla SS, Satapathy T, Pandey R. Past and future of in-vitro and in-vivo animal models for diabetes: A review. Indian J Pharm Educ Res 2017; 51(4s): s522-30.
[http://dx.doi.org/10.5530/ijper.51.4s.79]
[16]
Serbis A, Giapros V, Kotanidou EP, Galli-Tsinopoulou A, Siomou E. Diagnosis, treatment and prevention of type 2 diabetes mellitus in children and adolescents. World J Diabetes 2021; 12(4): 344-65.
[http://dx.doi.org/10.4239/wjd.v12.i4.344] [PMID: 33889284]
[17]
Goff LM. Ethnicity and type 2 diabetes in the UK. Diabet Med 2019; 36(8): 927-38.
[http://dx.doi.org/10.1111/dme.13895] [PMID: 30614072]
[18]
S Roriz-Filho J, Sá-Roriz TM, Rosset I, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 2009; 1792(5): 432-43.
[http://dx.doi.org/10.1016/j.bbadis.2008.12.003] [PMID: 19135149]
[19]
Sagar AM, Baghel DS, Singh S, Singh A, Chaudhary AK, Chopra S. An survey on obesity stigma and its assessment with update: A review. Plant Arch 2019; 19(2): 2153-61.
[20]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[21]
Jian F, Lai W, Furness S, et al. Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances. Cochrane Libr 2013; 2013(4): CD007859.
[http://dx.doi.org/10.1002/14651858.CD007859.pub3] [PMID: 23633347]
[22]
Zand A, Ibrahim K, Patham B. Prediabetes: Why should we care? Methodist DeBakey Cardiovasc J 2018; 14(4): 289-97.
[http://dx.doi.org/10.14797/mdcj-14-4-289] [PMID: 30788015]
[23]
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017; 128: 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[24]
Jarald E, Joshi SB, Jain D. Diabetes and herbal medicines. IJPT 2008; 7: 97-106.
[25]
Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front Pharmacol 2017; 8: 436.
[http://dx.doi.org/10.3389/fphar.2017.00436] [PMID: 28729836]
[26]
Ahrén B. GLP-1 for type 2 diabetes. Exp Cell Res 2011; 317(9): 1239-45.
[http://dx.doi.org/10.1016/j.yexcr.2011.01.010] [PMID: 21237153]
[27]
Banerjee M, Khursheed R, Yadav AK, et al. A systematic review on synthetic drugs and phytopharmaceuticals used to manage diabetes. Curr Diabetes Rev 2020; 16(4): 340-56.
[http://dx.doi.org/10.2174/1573399815666190822165141] [PMID: 31438829]
[28]
Organization WH. Traditional medicine: Growing needs and potential. World Health Organization 2002.
[29]
Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007; 40(3): 163-73.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[30]
Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/712092] [PMID: 23841105]
[31]
Xie W, Du L. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines. Diabetes Obes Metab 2011; 13(4): 289-301.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01336.x] [PMID: 21205111]
[32]
Aswar PB, Kuchekar BS. Phytochemical, microscopic, antidiabetic, biochemical and histopathological evaluation of Momordica charantia fruits. Int J Pharm Pharm Sci 2012; 4(1): 325-31.
[33]
Abo-Ghanema II, Saleh RM. Some physiological effects of Momordica charantia and Trigonella foenum-graecum extracts in diabetic rats as compared with cidophage®. Int J Anim Vet Sci 2012; 6(4): 222-30.
[34]
Babu SN, Govindarajan S, Noor A. Aloe vera and its two bioactive constituents in alleviation of diabetes-proteomic & mechanistic insights. J Ethnopharmacol 2021; 280: 114445.
[http://dx.doi.org/10.1016/j.jep.2021.114445] [PMID: 34303804]
[35]
Farooq M, Ul Ain I, Aysha Iftikhar Z, et al. Investigating the therapeutic potential of aqueous extraction of curry plant (Murraya koenigi) leaves supplementation for the regulation of blood glucose level in type 2 diabetes mellitus in female human subjects. Pak J Pharm Sci 2023; 36(2(Special)): 601-5.
[PMID: 37548196]
[36]
Lyoussi B, Laaroussi H, Cherkaoui-Tangi K, Hano C, Morel N. Hypoglycemic and hypotensive effects of Calycotome villosa subsp. intermedia seeds in meriones shawi rats: In vivo, ex vivo, and in vitro investigations. Evid Based Complement Alternat Med . 2023; 2023: p. 3081102.
[37]
Xie C, Gao W, Li X, Luo S, Wu D, Chye FY. Garlic (Allium sativum L.) polysaccharide ameliorates type 2 diabetes mellitus (T2DM) via the regulation of hepatic glycogen metabolism. NFS J 2023; 31: 19-27.
[http://dx.doi.org/10.1016/j.nfs.2023.02.004]
[38]
Khatija A, Marikkar N. Biochemical study on the anti-hyperglycemic effects of coconut testa (Cocos nucifera L.) and red kidney bean (Phaseolus vulgaris) seed coat in streptozotocin-induced diabetic rats. J Food Chem Nanotechnol 2022; 8(1): 6-12.
[39]
Nakaziba R, Lubega A, Ogwal-Okeng J, Alele PE. Phytochemical analysis, acute toxicity, as well as antihyperglycemic and antidiabetic activities of Corchorus olitorius L. leaf extracts. ScientificWorldJournal 2022; 2022: 1-7.
[http://dx.doi.org/10.1155/2022/1376817] [PMID: 35898284]
[40]
Ganga S, Madasu KR, Sharma J, Dutta S. Anti diabetic activity of ethanolic extract of ocimum dry leaves powder in stz induced rats. J Cardiovasc Dis Res 2023; 13(5)
[41]
Bais N, Choudhary GP, Dubey N. Antidiabetic activity of heart wood of pterocarpus marsupium roxb. In alloxan induced diabetic rats. Int J Adv Sci Res 2021; 12(02): 154-8.
[42]
Mishal A, Saravanan R, Atchitha SS, et al. Effect of Gymnema sylvestre leaf extract on Streptozotocin induced diabetic rats. J Pharmacogn Phytochem 2020; 9(4): 20-3.
[http://dx.doi.org/10.22271/phyto.2020.v9.i4a.11663]
[43]
Dey P, Singh J, Suluvoy JK, Dilip KJ, Nayak J. Utilization of Swertia chirayita plant extracts for management of diabetes and associated disorders: Present status, future prospects and limitations. Nat Prod Bioprospect 2020; 10(6): 431-43.
[http://dx.doi.org/10.1007/s13659-020-00277-7] [PMID: 33118125]
[44]
Altaee EH, Karim AJ, Dakheel MM. Assessment of anti-diabetic activity of Vinca rosea extract on induced diabetic mice. Indian J Forensic Med Toxicol 2020; 14(4): 2311-8.
[45]
Pottathil S, Nain P, Morsy MA, et al. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants 2020; 9(11): 1609.
[http://dx.doi.org/10.3390/plants9111609] [PMID: 33228177]
[46]
Al-Attar AM, Alsalmi FA. Effect of Olea europaea leaves extract on Streptozotocin induced diabetes in male albino rats. Saudi J Biol Sci 2019; 26(1): 118-28.
[http://dx.doi.org/10.1016/j.sjbs.2017.03.002] [PMID: 30622415]
[47]
Gad-Elkareem MAM, Abdelgadir EH, Badawy OM, Kadri A. Potential antidiabetic effect of ethanolic and aqueous-ethanolic extracts of Ricinus communis leaves on Streptozotocin-induced diabetes in rats. PeerJ 2019; 7: e6441.
[http://dx.doi.org/10.7717/peerj.6441] [PMID: 30805250]
[48]
Momin YH, Yeligar VC. The antidiabetic and antioxidant activity of Coccinea grandis voigt stem extract in Streptozotocin induced diabetic rats. J Drug Deliv Ther 2019; 9(4-A): 390-5.
[http://dx.doi.org/10.22270/jddt.v9i4-A.3438]
[49]
Khamchan A, Paseephol T, Hanchang W. Protective effect of wax apple (Syzygium samarangense (Blume) Merr. & L.M. Perry) against Streptozotocin-induced pancreatic ß-cell damage in diabetic rats. Biomed Pharmacother 2018; 108: 634-45.
[http://dx.doi.org/10.1016/j.biopha.2018.09.072] [PMID: 30245463]
[50]
Florence NT, Benoit MZ, Jonas K, et al. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on Streptozotocin-induced diabetic rats. J Ethnopharmacol 2014; 151(2): 784-90.
[http://dx.doi.org/10.1016/j.jep.2013.09.021] [PMID: 24076471]
[51]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[52]
Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 2012; 142(1): 65-71.
[http://dx.doi.org/10.1016/j.jep.2012.04.014] [PMID: 22855943]
[53]
Moqbel FS, Naik PR, Najma HM, Selvaraj S. Antidiabetic properties of Hibiscus rosa sinensis L. leaf extract fractions on non-obese diabetic (NOD) mouse. Indian J Exp Biol 2011; 49(1): 24-9.
[54]
Salaramoli S, Mehri S, Yarmohammadi F, Hashemy SI, Hosseinzadeh H. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. Iran J Basic Med Sci 2022; 25(6): 664-74.
[PMID: 35949312]
[55]
Shari FH, Ramadhan HH, Mohammed RN, Al Bahadily DCH. Hypolipidemic and antioxidant effects of fenugreek-Nigella sativa combination on diabetic patients in Iraq. Syst Rev Pharm 2020; 11(6)
[56]
Somani R, Kasture S, Singhai AK. Antidiabetic potential of Butea monosperma in rats. Fitoterapia 2006; 77(2): 86-90.
[http://dx.doi.org/10.1016/j.fitote.2005.11.003] [PMID: 16376023]
[57]
Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug delivery system in the treatment of diabetes mellitus. Front Bioeng Biotechnol 2020; 8: 880.
[http://dx.doi.org/10.3389/fbioe.2020.00880] [PMID: 32850735]
[58]
Doyle-Delgado K, Chamberlain JJ, Shubrook JH, Skolnik N, Trujillo J. Pharmacologic approaches to glycemic treatment of type 2 diabetes: Synopsis of the 2020 American Diabetes Association’s Standards of Medical Care in Diabetes Clinical Guideline. Ann Intern Med 2020; 173(10): 813-21.
[http://dx.doi.org/10.7326/M20-2470] [PMID: 32866414]
[59]
Horakova O, Kroupova P, Bardova K, et al. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci Rep 2019; 9(1): 6156.
[http://dx.doi.org/10.1038/s41598-019-42531-0] [PMID: 30992489]
[60]
Abdel-Moneim AMH, Lutfi MF, Alsharidah AS, et al. Short-term treatment of metformin and glipizide on oxidative stress, lipid profile and renal function in a rat model with diabetes mellitus. Appl Sci 2022; 12(4): 2019.
[http://dx.doi.org/10.3390/app12042019]
[61]
Grytsai O, Myrgorodska I, Rocchi S, Ronco C, Benhida R. Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224: 113726.
[http://dx.doi.org/10.1016/j.ejmech.2021.113726] [PMID: 34364161]
[62]
Mathu R, Abarnadevika A, Ariharasivakumar G. A study of biguanides in the care of type II diabetes mellitus. J Pharm Sci Drug Discov 2021; 1(1): 1-9.
[63]
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The mechanism of action of biguanides: New answers to a complex question. Cancers 2022; 14(13): 3220.
[http://dx.doi.org/10.3390/cancers14133220] [PMID: 35804992]
[64]
Shrestha D, Shrestha P, Sharma S, et al. National consensus statement on the management of type 2 diabetes mellitus in Nepal. J Diabetes Endocrinol Assoc Nepal 2019; 3(1): 38-57.
[http://dx.doi.org/10.3126/jdean.v3i1.24072]
[65]
Lv Y, Cao Y, Li P, et al. Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for targeted tumor therapy. Adv Healthc Mater 2017; 6(18): 1700354.
[http://dx.doi.org/10.1002/adhm.201700354] [PMID: 28671341]
[66]
Hirst JA, Farmer AJ, Dyar A, Lung TWC, Stevens RJ. Estimating the effect of sulfonylurea on HbA1c in diabetes: A systematic review and meta-analysis. Diabetologia 2013; 56(5): 973-84.
[http://dx.doi.org/10.1007/s00125-013-2856-6] [PMID: 23494446]
[67]
Timmons J. Sulfonylureas and meglitinides. Diabetes Drug Notes. Wiley Online Library 2022; pp. 49-66.
[68]
Sheikh A, Anolik J, Maurer AH. Update on serum glucose and metabolic management of clinical nuclear medicine studies: Current Status and proposed future directions. Seminars in Nuclear Medicine. Elsevier 2019; pp. 411-21.
[http://dx.doi.org/10.1053/j.semnuclmed.2019.06.001]
[69]
Black C, McIntyre L, Mesa-Perez J, Royle P, Thomas S, Waugh N. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev 2003; (2): CD004654.
[PMID: 17443551]
[70]
Kashtoh H, Baek KH. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants 2022; 11(20): 2722.
[http://dx.doi.org/10.3390/plants11202722] [PMID: 36297746]
[71]
Fallah Z, Tajbakhsh M, Alikhani M, et al. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3- triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022; 1255: 132469.
[http://dx.doi.org/10.1016/j.molstruc.2022.132469]
[72]
Alssema M, Ruijgrok C, Blaak EE, et al. Effects of alpha-glucosidase-inhibiting drugs on acute postprandial glucose and insulin responses: A systematic review and meta-analysis. Nutr Diabetes 2021; 11(1): 11.
[http://dx.doi.org/10.1038/s41387-021-00152-5] [PMID: 33658478]
[73]
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev 2022; 21(4): 1049-79.
[http://dx.doi.org/10.1007/s11101-021-09773-1] [PMID: 34421444]
[74]
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577-85.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[75]
Yu Y, Li J, Song B, et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials 2022; 280: 121312.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121312] [PMID: 34896861]
[76]
Jose C, Pradhan A, Shabaraya AR. A review on drug related problems in type 2 DM with combination of sulfonylureas and biguanides. Int J Res Rev 2021; 8(6): 271-6.
[http://dx.doi.org/10.52403/ijrr.20210633]
[77]
Tentolouris N, Voulgari C, Katsilambros N. A review of nateglinide in the management of patients with type 2 diabetes. Vasc Health Risk Manag 2007; 3(6): 797-807.
[PMID: 18200800]
[78]
Thakkar S, More N, Sharma D, Kapusetti G, Kalia K, Misra M. Fast dissolving electrospun polymeric films of anti-diabetic drug repaglinide: Formulation and evaluation. Drug Dev Ind Pharm 2019; 45(12): 1921-30.
[http://dx.doi.org/10.1080/03639045.2019.1680994] [PMID: 31625774]
[79]
Skochko OV, Kaidashev IP. Effect of pioglitazone on insulin resistance, progression of atherosclerosis and clinical course of coronary heart disease. Wiad Lek 2017; 70(5): 881-90.
[PMID: 29203734]
[80]
Tai H, Wang MY, Zhao YP, et al. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy. Medicine 2016; 95(33): e4541.
[http://dx.doi.org/10.1097/MD.0000000000004541] [PMID: 27537577]
[81]
Madhukar DS, Laxman GK, Shivaji GP, Vasant HM, Kailas IS, Dnyaneshwar JM. Review on antidiabetic drugs (ALLOPATHY). WJPPS 2022; 11(8): 178-90.
[82]
Bennett JJ, Murphy PV. Flow chemistry based catalytic hydrogenation for improving the synthesis of 1-deoxynojirimycin (DNJ) from an l-sorbose derived precursor. Carbohydr Res 2023; 529: 108845.
[http://dx.doi.org/10.1016/j.carres.2023.108845] [PMID: 37210941]
[83]
Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017; 60(2): 215-25.
[http://dx.doi.org/10.1007/s00125-016-4157-3] [PMID: 27878313]
[84]
Dinda B. Clinical trials of phytomedicines in the management of obesity and diabetes. Natural Products in Obesity and Diabetes: Therapeutic Potential and Role in Prevention and Treatment. Springer 2022; pp. 533-51.
[http://dx.doi.org/10.1007/978-3-030-92196-5_8]
[85]
Xue CY, Zhou MQ, Zheng QY, et al. Thiazolidinediones play a positive role in the vascular endothelium and inhibit plaque progression in diabetic patients with coronary atherosclerosis: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9: 1043406.
[http://dx.doi.org/10.3389/fcvm.2022.1043406] [PMID: 36523368]
[86]
Ashraf S, Upreti P, Karki S, Khan M, Nasr R. Metformin-associated lactic acidosis: A case report and review. Cureus 2022; 14(4): e24220.
[http://dx.doi.org/10.7759/cureus.24220] [PMID: 35602825]
[87]
Yuan J. Effect of Glipizide on non-insulin-dependent diabetes mellitus. Highl Sci Eng Technol 2023; 54: 219-24.
[http://dx.doi.org/10.54097/hset.v54i.9760]
[88]
HUSSAIN S. Comparison of efficacy and safety of sitagliptin and glimepiride in treatment of type 2 diabetes mellitus. P J M H S 2021; 15(10): 2800-3.
[89]
Nimekar L, Gaikwad N, Bhuyar A, Bairagi S, Patil A, Shirode D. Role of glibenclamide in diabetes treatment.
[90]
Zanzabil KZ, Hossain MS, Hasan MK. Diabetes mellitus management: An extensive review of 37 medicinal plants. Diabetology 2023; 4(2): 186-234.
[http://dx.doi.org/10.3390/diabetology4020019]
[91]
Shinde Shraddha B, Shraddha G. A review of nateglinide in the management of type 2 diabetes. Tablet 2020; 60: 1.
[92]
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1, 2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Res Sq 2024.
[93]
Maheshwari A, Dhoat PS. Use, safety and adverse effects of thiazolidinediones–a review. World J Pharm Res 2023; 12(12): 111-9.
[94]
Sobolev VV, Tchepourina E, Korsunskaya IM, et al. The role of transcription factor PPAR-γ in the pathogenesis of psoriasis, skin cells, and immune cells. Int J Mol Sci 2022; 23(17): 9708.
[http://dx.doi.org/10.3390/ijms23179708] [PMID: 36077103]
[95]
Makidon PE, Nigavekar SS, Bielinska AU, et al. Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J Aerosol Med Pulm Drug Deliv 2010; 23(2): 77-89.
[http://dx.doi.org/10.1089/jamp.2009.0766] [PMID: 19778268]
[96]
Kurosaki E, Ogasawara H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: Preclinical and clinical data. Pharmacol Ther 2013; 139(1): 51-9.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.003] [PMID: 23563279]
[97]
Patel BD, Ghate MD. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem 2014; 74: 574-605.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.038] [PMID: 24531198]
[98]
Tanwar H, Sachdeva R. Transdermal drug delivery system: A review. Int J Pharm Sci Res 2016; 7(6): 2274.
[99]
Ghume VK, Golhar AR, Merekar AN, Dokhe MD, Parjane SK. Transdermal drug delivery system: A review. Am J PharmTech Res 2020; 10(2): 33-47.
[http://dx.doi.org/10.46624/ajptr.2020.v10.i2.004]
[100]
Choudhury H, Gorain B, Pandey M, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci 2017; 106(7): 1736-51.
[http://dx.doi.org/10.1016/j.xphs.2017.03.042] [PMID: 28412398]
[101]
Laracuente ML, Yu MH, McHugh KJ. Zero-order drug delivery: State of the art and future prospects. J Control Release 2020; 327: 834-56.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.020] [PMID: 32931897]
[102]
Allena RT, Yadav HKS, Sandina S, Sarat Chandra Prasad M. Preparation and evaluation of transdermal patches of metformin hydrochloride using natural polymer for sustained release. Int J Pharm Pharm Sci 2012; 4.
[103]
Mutalik S, Udupa N, Kumar S, Agarwal S, Subramanian G, Ranjith AK. Glipizide matrix transdermal systems for diabetes mellitus: Preparation, in vitro and preclinical studies. Life Sci 2006; 79(16): 1568-77.
[http://dx.doi.org/10.1016/j.lfs.2006.05.002] [PMID: 16730752]
[104]
Akram R, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Devel Ther 2018; 12: 349-64.
[http://dx.doi.org/10.2147/DDDT.S147082] [PMID: 29503528]
[105]
Prajapati ST, Patel CG, Patel CN. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharm 2011; 2011: 651909.
[http://dx.doi.org/10.5402/2011/651909]
[106]
Senthilnathan B, Suganya K, Vijayalakshmi A, Vigneshwar M, Manvizhi K, Masilamani K. Formulation development and evaluation of transdermal patches of miglitol. J Pharm Negat Results 2022; 13(4): 1425-31.
[107]
Francis DJE. Development and evaluation of matrix type transdermal patches of pioglitazone hydrochloride. Univers J Pharm Res 2016; 1(1): 31-7.
[http://dx.doi.org/10.22270/ujpr.v1i1.R5]
[108]
Verma P, Bairagi D, Somkuwar A, Mehra M, Chajjed M. Formulation and evaluation of transdermal patch of glibenclamide. Int J Pharm Life Sci 2020; 11(7): 6724.
[109]
Shukla KV, Swamy M, Pathak R. Formulation, development and characterization of transdermal patches of sitagliptin phosphate. J Drug Deliv Ther 2019; 9(4-s): 408-13.
[http://dx.doi.org/10.22270/jddt.v9i4-s.3347]
[110]
Shiroja MM, Baru CR, Varsha DS. Formulation and evaluation of vildagliptin transdermal patch. Available from: https://ijprajournal.com/issue_dcp/Formulation%20And%20Evaluation%20Of%20Vildagliptin%20Transdermal%20Patch.pdf.
[111]
Perada S, Murthy PN. Design, development and evaluation of eucalyptol transdermal patch for anti-diabetic activity. J Pharm Negat Results 2022; 3618-28.
[112]
Pawar PM, Solanki KP, Mandali VA. Recent advancements in transdermal drug delivery system. Int J Pharm Clin Res 2018; 10(3): 65-73.
[113]
Meng X, Zhang Z, Li L. Micro/nano needles for advanced drug delivery. Prog Nat Sci 2020; 30(5): 589-96.
[http://dx.doi.org/10.1016/j.pnsc.2020.09.016]
[114]
Jamaledin R, Yiu CKY, Zare EN, et al. Advances in antimicrobial microneedle patches for combating infections. Adv Mater 2020; 32(33): 2002129.
[http://dx.doi.org/10.1002/adma.202002129] [PMID: 32602146]
[115]
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50(14): 8319-43.
[http://dx.doi.org/10.1039/D1CS00374G] [PMID: 34100489]
[116]
Fonseca DFS, Costa PC, Almeida IF, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym 2020; 241: 116314.
[http://dx.doi.org/10.1016/j.carbpol.2020.116314] [PMID: 32507191]
[117]
Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm 2018; 544(2): 415-24.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.031] [PMID: 29355656]
[118]
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The role of 3D printing technology in microengineering of microneedles. Small 2022; 18(18): 2106392.
[http://dx.doi.org/10.1002/smll.202106392] [PMID: 35362226]
[119]
Xu X, Dai Z, Zhang Z, et al. Fabrication of oral nanovesicle in- situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol 2021; 897: 173951.
[http://dx.doi.org/10.1016/j.ejphar.2021.173951] [PMID: 33607105]
[120]
More MP, Deshmukh PK, Patil PO, Gujarathi NA. Skin sensitivity and irritation testing for transposing transdermal drug delivery system. Topical and Transdermal Drug Delivery Systems 1st ed. Apple Academic Press 2023; p. 261
[121]
Fouad SA, Teaima MH, Gebril MI, Abd Allah FI, El-Nabarawi MA, Elhabal SF. Formulation of novel niosomal repaglinide chewable tablets using coprocessed excipients: In vitro characterization, optimization and enhanced hypoglycemic activity in rats. Drug Deliv 2023; 30(1): 2181747.
[http://dx.doi.org/10.1080/10717544.2023.2181747] [PMID: 36803255]
[122]
Jana BA, Osmani RA, Jaiswal S, Banerjee R, Karri VVSR, Wadhwani A. Fabrication of carboxymethylcellulose-gelatin dissolving microneedle patch for pain-free, efficient, and controlled transdermal delivery of insulin. J Pharm Innov 2023; 18(2): 653-64.
[http://dx.doi.org/10.1007/s12247-022-09670-w]
[123]
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system. Curr Pharm Des 2022; 28(39): 3212-24.
[http://dx.doi.org/10.2174/1381612829666221021152354] [PMID: 36281868]
[124]
Kumar M, Thakur A, Mandal UK, Thakur A, Bhatia A. Foam-based drug delivery: A newer approach for pharmaceutical dosage form. AAPS PharmSciTech 2022; 23(7): 244.
[http://dx.doi.org/10.1208/s12249-022-02390-x] [PMID: 36042060]
[125]
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022; 74: 103533.
[http://dx.doi.org/10.1016/j.jddst.2022.103533]
[126]
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing – A review. Int J Biol Macromol 2024; 131335.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.131335] [PMID: 38604431]
[127]
Kumar M, Mandal UK, Mahmood S. Novel drug delivery system. Advanced and Modern Approaches for Drug Delivery. Academic Press 2023; pp. 1-32.
[http://dx.doi.org/10.1016/B978-0-323-91668-4.00012-5]
[128]
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(6): 155.
[http://dx.doi.org/10.1208/s12249-023-02616-6] [PMID: 37468691]
[129]
Kumar M, Dogra R, Mandal UK. Novel formulation approaches used for the management of osteoarthritis: A recent review. Curr Drug Deliv 2023; 20(7): 841-56.
[http://dx.doi.org/10.2174/1567201819666220901092832] [PMID: 36056857]
[130]
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234: 123696.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123696] [PMID: 36801273]
[131]
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2023; 79: 104095.
[132]
Kumar M, Mahmood S, Mandal UK. An updated account on formulations and strategies for the treatment of burn infection - A review. Curr Pharm Des 2022; 28(18): 1480-92.
[http://dx.doi.org/10.2174/1381612828666220519145859] [PMID: 35598231]
[133]
Kumar M, Kumar D, Mahmood S, Singh V, Chopra S, Hilles AR. Nanotechnology-driven wound healing potential of asiaticoside: A comprehensive review. RSC Pharm 2024; 1: 9-36.
[134]
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Correction: Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(7): 206.
[http://dx.doi.org/10.1208/s12249-023-02668-8] [PMID: 37798593]
[135]
Sharma DS, Singh VP, Kumar R. Formulation and characterization of curcumin loaded vesicular formulation for ocular diseases. Think India J 2019; 22(17): 3038-50.
[136]
Kumar M, Hilles AR, Almurisi SHA, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations-A review. JCIS Open 2023; p. 100095.
[137]
Divakar P, Kumar D, Praveen C, Sowmya C, Reddy CS. Formulation and in vitro evaluation of liposomes containing metformin hydrochloride. Int J Res Pharm Biomed Sci 2013; 4(2): 479-85.
[138]
Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin Drug Deliv 2014; 11(1): 45-59.
[http://dx.doi.org/10.1517/17425247.2013.860130] [PMID: 24294974]
[139]
Paiva-Santos AC, Silva AL, Guerra C, et al. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res 2021; 38(6): 947-70.
[http://dx.doi.org/10.1007/s11095-021-03053-5] [PMID: 34036520]
[140]
Saudagar RB, Samuel S. Ethosomes: Novel noninvasive carrier for transdermal drug delivery. AJPTech 2016; 6(2): 135-8.
[http://dx.doi.org/10.5958/2231-5713.2016.00019.2]
[141]
Bhulli N, Sharma A. Preparation of novel vesicular carrier ethosomes with glimepiride and their invistigation of permeability. Int J Ther Appl 2012; 10: 1-10.
[142]
Bodade SS, Shaikh KS, Kamble MS, Chaudhari PD. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv 2013; 20(1): 40-6.
[http://dx.doi.org/10.3109/10717544.2012.752420] [PMID: 23311652]
[143]
Bunglavan SJ, Garg AK, Dass RS, Shrivastava S. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int 2014; 2(3): 36-47.
[144]
Khan F. Chemical hazards of nanoparticles to human and environment (a review). Orient J Chem 2013; 29(4): 1399-408.
[http://dx.doi.org/10.13005/ojc/290415]
[145]
Fang C, Zhang M. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 2009; 19(35): 6258-66.
[http://dx.doi.org/10.1039/b902182e] [PMID: 20593005]
[146]
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomed 2016; 11: 1987-2007.
[http://dx.doi.org/10.2147/IJN.S104701] [PMID: 27274231]
[147]
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253(Pt 6): 127331.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127331] [PMID: 37820901]
[148]
Gohardani O, Elola MC, Elizetxea C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog Aerosp Sci 2014; 70: 42-68.
[http://dx.doi.org/10.1016/j.paerosci.2014.05.002]
[149]
Chauhan NPS. Ceramic-based hybrid nanoparticles in drug delivery. Nanoparticles for Drug Delivery. Springer 2021; pp. 109-31.
[http://dx.doi.org/10.1007/978-981-16-2119-2_5]
[150]
Shi Y, xue J, Jia L, Du Q, Niu J, Zhang D. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surf B Biointerfaces 2018; 161: 67-72.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.037] [PMID: 29040836]
[151]
Arunachalam A, Jeganath S, Yamini K, Tharangini K. Niosomes: A novel drug delivery system. Int J Nov trends Pharm Sci 2012; 2(1): 25-31.
[152]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[153]
Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomed 2015; 10: 4797-813.
[PMID: 26251598]
[154]
Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J Dispers Sci Technol 2023; 1-14.
[155]
Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: In-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm 2017; 43(8): 1254-64.
[http://dx.doi.org/10.1080/03639045.2017.1310224] [PMID: 28330377]
[156]
Barani M, Sangiovanni E, Angarano M, et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int J Nanomed 2021; 16: 6983-7022.
[http://dx.doi.org/10.2147/IJN.S318416] [PMID: 34703224]
[157]
Kumar D, Vats N, Saroha K, Rana AC. Phytosomes as emerging nanotechnology for herbal drug delivery. Sustainable Agriculture Reviews 43. Springer 2020; pp. 217-37.
[http://dx.doi.org/10.1007/978-3-030-41838-0_7]
[158]
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions’. Prog Lipid Res 2016; 64: 192-230.
[http://dx.doi.org/10.1016/j.plipres.2016.08.005] [PMID: 27697511]
[159]
Karimi N, Ghanbarzadeh B, Hamishehkar H. Phytosome and liposome: The beneficial encapsulation systems in drug delivery and food application. Appl Food Biotechnol 2015; 2: 17-27.
[160]
Kapoor B, Gupta R, Gulati M, Singh SK, Khursheed R, Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv Colloid Interface Sci 2019; 271: 101985.
[http://dx.doi.org/10.1016/j.cis.2019.07.006] [PMID: 31351415]
[161]
Kim S, Imm JY. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules 2020; 25(23): 5503.
[http://dx.doi.org/10.3390/molecules25235503] [PMID: 33255372]
[162]
Rathee S, Kamboj A. Optimization and development of antidiabetic phytosomes by the Box–Behnken design. J Liposome Res 2018; 28(2): 161-72.
[http://dx.doi.org/10.1080/08982104.2017.1311913] [PMID: 28337938]
[163]
Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan J, Zeb A. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech 2021; 23(1): 7.
[http://dx.doi.org/10.1208/s12249-021-02166-9] [PMID: 34853906]
[164]
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv Drug Deliv Rev 2007; 59(15): 1521-46.
[http://dx.doi.org/10.1016/j.addr.2007.08.019] [PMID: 17881081]
[165]
Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci 2021; 162: 105811.
[http://dx.doi.org/10.1016/j.ejps.2021.105811] [PMID: 33757828]
[166]
Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J 2012; 20(4): 355-63.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[167]
Shravya Lakshmi S, Parthiban S, Senthil Kumar GP, Tamizh Mani T. Development and evaluation of mucoadhesive liposomes of repaglinide for oral controlled delivery system. World J Pharm Res 2017; 706-18.
[168]
Varghese T, Shabani A, Agilandeswari D, Syed A. Formulation, evaluation and optimization of in-situ gel of an alpha-glucosidase inhibitor for management of non-insulin dependent diabetes mellitus. World J Pharm Res 2016; 5(10): 1101-22.
[169]
Jain AK, Chalasani KB, Khar RK, Ahmed FJ, Diwan PV. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target 2007; 15(6): 417-27.
[http://dx.doi.org/10.1080/10611860701453653] [PMID: 17613660]
[170]
Chowdhary P, Mahalakshmi L, Dutta S, Moses JA, Anandharamakrishnan C. Strategies for stabilization and preservation of liposomes. Liposomal Encapsulation in Food Science and Technology. Elsevier 2023; pp. 223-37.
[http://dx.doi.org/10.1016/B978-0-12-823935-3.00014-X]
[171]
Von Zuben ES, Eloy JO, Inácio MD, et al. Hydroxyethylcellulose-based hydrogels containing liposomes functionalized with cell-penetrating peptides for nasal delivery of insulin in the treatment of diabetes. Pharmaceutics 2022; 14(11): 2492.
[http://dx.doi.org/10.3390/pharmaceutics14112492] [PMID: 36432681]
[172]
Myneni GS, Radha G, Soujanya G. Novel vesicular drug delivery systems: A review. J Pharm Res 2021; 11: 1650-64.
[173]
Zhang L, Ding L, Tang C, Li Y, Yang L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv 2016; 23(9): 3358-63.
[http://dx.doi.org/10.1080/10717544.2016.1180723] [PMID: 27099000]
[174]
Krishnan S, Saravana Pandian AKS. Effect of bisphosphonates on orthodontic tooth movement-an update. J Clin diagnostic Res JCDR 2015; 9(4): ZE01.
[175]
Chinnaiyan SK, Karthikeyan D, Gadela VR. Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm Nanotechnol 2019; 6(4): 253-63.
[http://dx.doi.org/10.2174/2211738507666181221142406] [PMID: 30574859]
[176]
Nair AB, Sreeharsha N, Al-Dhubiab BE, et al. HPMC-and PLGA-based nanoparticles for the mucoadhesive delivery of Sitagliptin: Optimization and in vivo evaluation in rats. Materials 2019; 12(24): 4239.
[http://dx.doi.org/10.3390/ma12244239] [PMID: 31861192]
[177]
SG V, Vaishnav GA. Preparation and in-vitro assessment of tolbutamide loaded nanosponges. Ind J Res Methods Pharm Sci 2022; 1(1): 15-20.
[178]
Guadarrama-Escobar OR, Sánchez-Vázquez I, Serrano-Castañeda P, et al. Development, characterization, optimization, and in vivo evaluation of methacrylic acid–ethyl acrylate copolymer nanoparticles loaded with glibenclamide in diabetic rats for oral administration. Pharmaceutics 2021; 13(12): 2023.
[http://dx.doi.org/10.3390/pharmaceutics13122023] [PMID: 34959305]
[179]
Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm 2010; 67(3): 283-90.
[PMID: 20524431]
[180]
Battaglia L, Trotta M, Gallarate M, Carlotti ME, Zara GIANP, Bargoni A. Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: Development and influence on insulin stability. J Microencapsul 2007; 24(7): 672-84.
[http://dx.doi.org/10.1080/02652040701532981] [PMID: 17763060]
[181]
Dhana lekshmi UM, Poovi G, Kishore N, Reddy PN. In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int J Pharm 2010; 396(1-2): 194-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.023] [PMID: 20600729]
[182]
Shimkunas RA, Robinson E, Lam R, et al. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 2009; 30(29): 5720-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.004] [PMID: 19635632]
[183]
Lokhande A, Mishra S, Kulkarni R, Naik J. Formulation and evaluation of glipizide loaded nanoparticles. Int J Pharm Pharm Sci 2013; 5(4): 147-51.
[184]
Kim JY, Lee H, Oh KS, et al. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials 2013; 34(33): 8444-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.040] [PMID: 23895999]
[185]
Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 2013; 20(3-4): 120-6.
[http://dx.doi.org/10.3109/10717544.2013.779332] [PMID: 23651102]
[186]
AP S, Parthiban S, Senthilkumar GP. Formulation development and evaluation of repaglinide proniosomal gel for transdermal delivery. WJPR 2020.
[187]
Akhilesh D, Faishal G, Prabhu P, Kamath J. Development and optimization of proniosomes for oral delivery of glipizide. Int J Pharm Pharm Sci 2012; 4(3): 307-14.
[188]
Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother 2018; 97: 1514-20.
[http://dx.doi.org/10.1016/j.biopha.2017.11.073] [PMID: 29793314]
[189]
Kamble B, Talreja S, Gupta A, et al. Development and biological evaluation of Gymnema sylvestre extract-loaded nonionic surfactant-based niosomes. Nanomedicine 2013; 8(8): 1295-305.
[http://dx.doi.org/10.2217/nnm.12.162] [PMID: 23259778]
[190]
Sankhyan A, Pawar P. Recent trends in niosome as vesicular drugdelivery system. J Appl Pharm Sci 2012; 20-32.
[191]
Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 2007; 328(2): 130-41.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.002] [PMID: 16997517]
[192]
Silva CM, Ribeiro AJ, Ferreira D, Veiga F. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur J Pharm Sci 2006; 29(2): 148-59.
[http://dx.doi.org/10.1016/j.ejps.2006.06.008] [PMID: 16952452]
[193]
Bertoni S, Albertini B, Passerini N. Spray congealing: An emerging technology to prepare solid dispersions with enhanced oral bioavailability of poorly water soluble drugs. Molecules 2019; 24(19): 3471.
[http://dx.doi.org/10.3390/molecules24193471] [PMID: 31557815]
[194]
Ge Y, Hu Z, Chen J, Qin Y, Wu F, Jin T. Exenatide microspheres for monthly controlled-release aided by magnesium hydroxide. Pharmaceutics 2021; 13(6): 816.
[http://dx.doi.org/10.3390/pharmaceutics13060816] [PMID: 34070856]
[195]
Hashide R, Yoshida K, Hasebe Y, Takahashi S, Sato K, Anzai J. Insulin-containing layer-by-layer films deposited on poly(lactic acid) microbeads for pH-controlled release of insulin. Colloids Surf B Biointerfaces 2012; 89: 242-7.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.023] [PMID: 21974906]
[196]
Elsayed EW, El-Ashmawy AA, Mahmoud KM, Mursi NM, Emara LH. Modulating gliclazide release and bioavailability utilizing multiparticulate drug delivery systems. J Pharm Innov 2022; 17(3): 674-89.
[http://dx.doi.org/10.1007/s12247-021-09542-9]
[197]
Sivaprasad S, Alagarsamy V, Bharathi MP, Murali Krishna PV, Kanna KS. Formulation and evaluation of mucoadhesive floating microspheres of repaglinide. RJPT 2021; 14(11): 5673-9.
[http://dx.doi.org/10.52711/0974-360X.2021.00986]
[198]
Nnamani PO, Attama AA, Ibezim EC, Adikwu MU. SRMS142-based solid lipid microparticles: Application in oral delivery of glibenclamide to diabetic rats. Eur J Pharm Biopharm 2010; 76(1): 68-74.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.002] [PMID: 20554020]
[199]
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022; 7: 100048.
[http://dx.doi.org/10.1016/j.onano.2022.100048]
[200]
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent applications of advanced atomic force microscopy in polymer science: A review. Polymers 2020; 12(5): 1142.
[http://dx.doi.org/10.3390/polym12051142] [PMID: 32429499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy