Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Targeting Diabetes with Azole-derived Medicinal Agents

Author(s): Anuradha Mehra*

Volume 20, Issue 9, 2024

Published on: 04 June, 2024

Page: [855 - 875] Pages: 21

DOI: 10.2174/0115734064289990240524055002

Price: $65

Abstract

Azoles have long been regarded as an ideal scaffold for the development of numerous innovative therapeutic agents as well as other incredibly adaptable and beneficial chemicals with prospective uses in a variety of fields, including materials, energetics (explosophores), and catalysis (azole organocatalytic arbitration). Azoles exhibit promising pharmacological activities, including antimicrobial, antidiabetic, antiviral, antidepressant, antihistaminic, antitumor, antioxidant, antiallergic, antihelmintic, and antihypertensive activity. According to a database analysis of U.S. FDAapproved medications, 59% of specific medications are connected to small molecules that have heterocycles having nitrogen atoms. The azole moiety has impressive electron abundance. Azoles promptly attach to various receptors as well as enzymes in the physiological environment via distinct specialized interactions, contributing to their anti-diabetic potential. This review encompasses the recent research progress on potent azole-derived antidiabetic agents that can be used as an alternative for the management of type-2 diabetes.

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(1), S62-S67.
[PMID: 19118289]
[2]
Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med., 2020, 10(4), 174-188.
[http://dx.doi.org/10.4103/ajm.ajm_53_20] [PMID: 33437689]
[3]
Ozougwu, O.; Obimba, K.C.; Belonwu, C.D.; Unakalamba, C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol., 2013, 4(4), 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[4]
El Khatabi, K.; El-Mernissi, R.; Hajji, H.; Singh, A.K.; Aziz, M.; Lakhlifi, T.; Kumar, S.; Bouachrine, M. Identification of novel indole derivatives as potent α-amylase inhibitors for the treatment of type-II diabetes using in-silico approaches. Biointerface Res. Appl. Chem., 2023, 13(1), 17.
[5]
Rajaei, E.; Jalali, M.T.; Shahrabi, S.; Asnafi, A.A.; Pezeshki, S.M.S. HLAs in autoimmune diseases: Dependable diagnostic biomarkers? Curr. Rheumatol. Rev., 2019, 15(4), 269-276.
[http://dx.doi.org/10.2174/1573397115666190115143226] [PMID: 30644346]
[6]
Kühl, C. Etiology and pathogenesis of gestational diabetes. Diabetes Care, 1998, 21(2), B19-B26.
[PMID: 9704223]
[7]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E. IDF diabetes atlas committee global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas. Diabetes Res. Clin. Pract., 2019, 157(107843), 10-16.
[8]
Knip, M.; Siljander, H. Autoimmune mechanisms in type 1 diabetes. Autoimmun. Rev., 2008, 7(7), 550-557.
[http://dx.doi.org/10.1016/j.autrev.2008.04.008] [PMID: 18625444]
[9]
Kahaly, G.J.; Hansen, M.P. Type 1 diabetes associated autoimmunity. Autoimmun. Rev., 2016, 15(7), 644-648.
[http://dx.doi.org/10.1016/j.autrev.2016.02.017] [PMID: 26903475]
[10]
Tan, K.T.; Cheah, J.S. Pathogenesis of type 1 and type 2 diabetes mellitus. Ann. Acad. Med. Singap., 1990, 19(4), 506-511.
[PMID: 2221810]
[11]
Buchanan, T.A.; Xiang, A.H. Gestational diabetes mellitus. J. Clin. Invest., 2005, 115(3), 485-491.
[http://dx.doi.org/10.1172/JCI200524531] [PMID: 15765129]
[12]
Catalano, P.M.; Huston, L.; Amini, S.B.; Kalhan, S.C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am. J. Obstet. Gynecol., 1999, 180(4), 903-916.
[http://dx.doi.org/10.1016/S0002-9378(99)70662-9] [PMID: 10203659]
[13]
Leahy, J.L.; Hirsch, I.B.; Peterson, K.A.; Schneider, D. Targeting β-cell function early in the course of therapy for type 2 diabetes mellitus. J. Clin. Endocrinol. Metab., 2010, 95(9), 4206-4216.
[http://dx.doi.org/10.1210/jc.2010-0668] [PMID: 20739389]
[14]
Muoio, D.M.; Newgard, C.B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 193-205.
[http://dx.doi.org/10.1038/nrm2327] [PMID: 18200017]
[15]
Azimi, F.; Azizian, H.; Najafi, M.; Hassanzadeh, F.; Sadeghi-aliabadi, H.; Ghasemi, J.B.; Ali Faramarzi, M.; Mojtabavi, S.; Larijani, B.; Saghaei, L.; Mahdavi, M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg. Chem., 2021, 114, 105127.
[http://dx.doi.org/10.1016/j.bioorg.2021.105127] [PMID: 34246971]
[16]
Jo, J.; Lee, D.; Park, Y.H.; Choi, H.; Han, J.; Park, D.H.; Choi, Y.K.; Kwak, J.; Yang, M.K.; Yoo, J.W.; Moon, H.R.; Geum, D.; Kang, K.S.; Yun, H. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. Eur. J. Med. Chem., 2021, 217, 113325.
[http://dx.doi.org/10.1016/j.ejmech.2021.113325] [PMID: 33765605]
[17]
Naim, M.J.; Alam, O.; Alam, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Naidu, V.G.M. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole‐based 2,4‐thiazolidinedione derivatives as PPAR‐γ modulators. Arch. Pharm., 2018, 351(3-4), 1700223.
[http://dx.doi.org/10.1002/ardp.201700223] [PMID: 29400412]
[18]
Azimi, F.; Ghasemi, J.B.; Azizian, H.; Najafi, M.; Faramarzi, M.A.; Saghaei, L.; Sadeghi-aliabadi, H.; Larijani, B.; Hassanzadeh, F.; Mahdavi, M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int. J. Biol. Macromol., 2021, 166, 1082-1095.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.263] [PMID: 33157144]
[19]
Naim, M.J.; Alam, O.; Alam, M.J.; Hassan, M.Q.; Siddiqui, N.; Naidu, V.G.M.; Alam, M.I. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents. Bioorg. Chem., 2018, 76, 98-112.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.010] [PMID: 29169079]
[20]
Bansal, G.; Singh, S.; Monga, V.; Thanikachalam, P.V.; Chawla, P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem., 2019, 92, 103271.
[http://dx.doi.org/10.1016/j.bioorg.2019.103271] [PMID: 31536952]
[21]
Mohamed, M.A.A.; Abd Allah, O.A.; Bekhit, A.A.; Kadry, A.M.; El-Saghier, A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem., 2020, 57(6), 2365-2378.
[http://dx.doi.org/10.1002/jhet.3951]
[22]
Asgari, M.S.; Tahmasebi, B.; Mojtabavi, S.; Faramarzi, M.A.; Rahimi, R.; Ranjbar, P.R.; Biglar, M.; Larijani, B.; Rastegar, H.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, synthesis, biological evaluation, and docking study of new acridine‐9‐carboxamide linked to 1,2,3‐triazole derivatives as antidiabetic agents targeting α‐glucosidase. J. Heterocycl. Chem., 2020, 57(12), 4348-4357.
[http://dx.doi.org/10.1002/jhet.4142]
[23]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[24]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[25]
Ayeleso, A.O.; Joseph, J.S.; Oguntibeju, O.O.; Mukwevho, E. Evaluation of free radical scavenging capacity of methoxy containing-hybrids of thiosemicarbazone-triazole and their influence on glucose transport. BMC Pharmacol. Toxicol., 2018, 19(1), 84.
[http://dx.doi.org/10.1186/s40360-018-0266-6] [PMID: 30522526]
[26]
Sever, B.; Altıntop, M.D.; Demir, Y.; Pekdoğan, M.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J. Mol. Struct., 2021, 1224, 129446.
[http://dx.doi.org/10.1016/j.molstruc.2020.129446]
[27]
Aroua, L.M.; Almuhaylan, H.R.; Alminderej, F.M.; Messaoudi, S.; Chigurupati, S.; Al-mahmoud, S.; Mohammed, H.A. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg. Chem., 2021, 114, 105073.
[http://dx.doi.org/10.1016/j.bioorg.2021.105073] [PMID: 34153810]
[28]
Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch. Pharm., 2020, 353(9), 2000090.
[http://dx.doi.org/10.1002/ardp.202000090] [PMID: 32567729]
[29]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[30]
Adegboye, A.A.; Khan, K.M.; Salar, U.; Aboaba, S.A.; Kanwal; Chigurupati, S.; Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H.; Perveen, S. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem., 2018, 150, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.011] [PMID: 29533872]
[31]
Ahmad, M.U.; Rafiq, M.; Zahra, B.; Islam, M.; Ashraf, M.; al-Rashida, M.; Khan, A.; Hussain, J.; Shafiq, Z.; Al-Harrasi, A. Synthesis of benzimidazole based hydrazones as non‐sugar based α‐glucosidase inhibitors: Structure activity relation and molecular docking. Drug Dev. Res., 2021, 82(7), 1033-1043.
[http://dx.doi.org/10.1002/ddr.21807] [PMID: 33665884]
[32]
Babkov, D.A.; Zhukowskaya, O.N.; Borisov, A.V.; Babkova, V.A.; Sokolova, E.V.; Brigadirova, A.A.; Litvinov, R.A.; Kolodina, A.A.; Morkovnik, A.S.; Sochnev, V.S.; Borodkin, G.S.; Spasov, A.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg. Med. Chem. Lett., 2019, 29(17), 2443-2447.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.035] [PMID: 31358465]
[33]
Gani, R.S.; Kudva, A.K.; Timanagouda, K.; Raghuveer; Mujawar, S.B.H.; Joshi, S.D.; Raghu, S.V. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg. Chem., 2021, 114, 105046.
[http://dx.doi.org/10.1016/j.bioorg.2021.105046] [PMID: 34126575]
[34]
Nazir, M.; Abbasi, M.A.; Aziz-ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Arif Lodhi, M.; Ali Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[35]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Kant, R.; Iqbal, M.A. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model. Bioorg. Chem., 2018, 77, 6-15.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.037] [PMID: 29316509]
[36]
Kaur, P.; Bhat, Z.R.; Bhat, S.; Kumar, R.; Kumar, R.; Tikoo, K.; Gupta, J.; Khurana, N.; Kaur, J.; Khatik, G.L. Synthesis and evaluation of new 1,2,4-oxadiazole based trans- acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorg. Chem., 2020, 100, 103867.
[http://dx.doi.org/10.1016/j.bioorg.2020.103867] [PMID: 32353564]
[37]
Harada, K.; Mizukami, J.; Watanabe, T.; Mori, G.; Ubukata, M.; Suwa, K.; Fukuda, S.; Negoro, T.; Sato, M.; Inaba, T. Optimization of oxadiazole derivatives with a spirocyclic cyclohexane structure as novel GPR119 agonists. Bioorg. Med. Chem. Lett., 2019, 29(16), 2100-2106.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.004] [PMID: 31288965]
[38]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α -glucosidase inhibitory activity and in silico study of trisindole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[39]
Li, Z.; Chen, Y.; Zhou, Z.; Deng, L.; Xu, Y.; Hu, L.; Liu, B.; Zhang, L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur. J. Med. Chem., 2019, 164, 352-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.069] [PMID: 30605833]
[40]
Charaya, N.; Pandita, D.; Grewal, A.S.; Lather, V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput. Biol. Chem., 2018, 73, 221-229.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.018] [PMID: 29518630]
[41]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[42]
Li, Z.; Qiu, Q.; Xu, X.; Wang, X.; Jiao, L.; Su, X.; Pan, M.; Huang, W.; Qian, H. Design, synthesis and Structure–activity relationship studies of new thiazole-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Eur. J. Med. Chem., 2016, 113, 246-257.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.040] [PMID: 26945112]
[43]
Gao, H.D.; Liu, P.; Yang, Y.; Gao, F. Sulfonamide-1,3,5-triazine–thiazoles: discovery of a novel class of antidiabetic agents via inhibition of DPP-4. RSC Advances, 2016, 6(86), 83438-83447.
[http://dx.doi.org/10.1039/C6RA15948F]
[44]
Gummidi, L.; Kerru, N.; Ebenezer, O.; Awolade, P.; Sanni, O.; Islam, M.S.; Singh, P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg. Chem., 2021, 115, 105210.
[http://dx.doi.org/10.1016/j.bioorg.2021.105210] [PMID: 34332231]
[45]
Alomari, M.; Taha, M.; Rahim, F.; Selvaraj, M.; Iqbal, N.; Chigurupati, S.; Hussain, S.; Uddin, N.; Almandil, N.B.; Nawaz, M.; Khalid Farooq, R.; Khan, K.M. Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorg. Chem., 2021, 108, 104638.
[http://dx.doi.org/10.1016/j.bioorg.2021.104638] [PMID: 33508679]
[46]
Hichri, F.; Omri, A.; Hossan, A.S.M.; Ben Jannet, H. Alpha-glucosidase and amylase inhibitory effects of Eruca vesicaria subsp. longirostris essential oils: synthesis of new 1,2,4-triazole-thiol derivatives and 1,3,4-thiadiazole with potential inhibitory activity. Pharm. Biol., 2019, 57(1), 564-570.
[http://dx.doi.org/10.1080/13880209.2019.1642363] [PMID: 31454271]
[47]
Vaishnav, Y.; Dewangan, D.; Verma, S.; Mishra, A.; Thakur, A.S.; Kashyap, P.; Verma, S.K. PPAR gamma targeted molecular docking and synthesis of some new amide and urea substituted 1, 3, 4‐thiadiazole derivative as antidiabetic compound. J. Heterocycl. Chem., 2020, 57(5), 2213-2224.
[http://dx.doi.org/10.1002/jhet.3941]
[48]
Hameed, S.A.; Varkey, J.; Jayasekhar, P. In Silico design, synthesis and in vitro antidiabetic activity of novel 5-furyl-1, 3, 4-thiadiazolimines. Int. J. Pharm. Sci. Res., 2020, 11(06), 152-159.
[49]
Selvarasu, S.; Srinivasan, P.; Mannathusamy, G.; Maria Susai, B. Synthesis, characterization, in silico molecular modeling, anti-diabetic and antimicrobial screening of novel 1-aryl-N-tosyl-1H-tetrazole-5-carboxamide derivatives. Chem. Dat.Coll., 2021, 32, 100648.
[http://dx.doi.org/10.1016/j.cdc.2021.100648]
[50]
Maheshwari, N.; Karthikeyan, C.; Bhadada, S.V.; Verma, A.K.; Sahi, C.; Moorthy, N.S.H.N.; Trivedi, P. Design, synthesis and biological evaluation of some tetrazole acetamide derivatives as novel non-carboxylic PTP1B inhibitors. Bioorg. Chem., 2019, 92, 103221.
[http://dx.doi.org/10.1016/j.bioorg.2019.103221] [PMID: 31499261]
[51]
Kattimani, P.P.; Somagond, S.M.; Bayannavar, P.K.; Kamble, R.R.; Bijjaragi, S.C.; Hunnur, R.K.; Joshi, S.D. Novel 5‐(1‐aryl‐1 H ‐pyrazol‐3‐yl)‐1 H ‐tetrazoles as glycogen phosphorylase inhibitors: An in vivo antihyperglycemic activity study. Drug Dev. Res., 2020, 81(1), 70-84.
[http://dx.doi.org/10.1002/ddr.21606] [PMID: 31696542]
[52]
Kaushik, N.; Kumar, N.; Kumar, A. Synthesis, antioxidant and antidiabetic activity of 1-[(5-substituted phenyl)-4, 5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole. Indian J. Pharm. Sci., 2016, 78(3), 352-359.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000125]
[53]
Huang, H.; Winters, M.P.; Meegalla, S.K.; Arnoult, E.; Paul Lee, S.; Zhao, S.; Martin, T.; Rady, B.; Liu, J.; Towers, M.; Otieno, M.; Xu, F.; Lim, H.K.; Silva, J.; Pocai, A.; Player, M.R. Discovery of novel benzo[b]thiophene tetrazoles as non-carboxylate GPR40 agonists. Bioorg. Med. Chem. Lett., 2018, 28(3), 429-436.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.022] [PMID: 29258772]
[54]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Iqbal, M.A. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg. Chem., 2019, 83, 6-19.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.025] [PMID: 30339863]
[55]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel benzothiazole based sulfonylureas/sulfonylthioureas: Design, synthesis and evaluation of their antidiabetic potential. New J. Chem., 2016, 40(8), 6777-6786.
[http://dx.doi.org/10.1039/C5NJ03589A]
[56]
Kumar, S.; Mittal, A.; Pathak, A.; Sahu, S.K. Biological assessments of substituted benzothiazole derivatives in streptozocin induced diabetes rats. Plant Arch., 2020, 20, 3250-3253.
[57]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules, 2017, 22(9), 1555.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[58]
Shah, S.; Arshia; Javaid, K.; Zafar, H.; Mohammed Khan, K.; Khalil, R.; Ul-Haq, Z.; Perveen, S.; Iqbal Choudhary, M. Synthesis, and In vitro and in silico α-glucosidase inhibitory studies of 5-chloro-2-aryl benzo [d] thiazoles. Bioorg. Chem., 2018, 78, 269-279.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.013] [PMID: 29614438]
[59]
Adib, M.; Peytam, F.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.012] [PMID: 30661823]
[60]
Asgari, M.S.; Mohammadi-Khanaposhtani, M.; Sharafi, Z.; Faramarzi, M.A.; Rastegar, H.; Nasli Esfahani, E.; Bandarian, F.; Ranjbar Rashidi, P.; Rahimi, R.; Biglar, M.; Mahdavi, M.; Larijani, B. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2021, 25(2), 877-888.
[http://dx.doi.org/10.1007/s11030-020-10072-8] [PMID: 32189236]
[61]
Lohitha, N.; Vijayakumar, V. Imidazole appended novel phenoxyquinolines as new inhibitors of α-amylase and α-glucosidase evidenced with molecular docking studies. Polycycl. Aromat. Compd., 2022, 42(8), 5521-5533.
[http://dx.doi.org/10.1080/10406638.2021.1939069]
[62]
Kyriakis, E.; Karra, A.G.; Papaioannou, O.; Solovou, T.; Skamnaki, V.T.; Liggri, P.G.V.; Zographos, S.E.; Szennyes, E.; Bokor, É.; Kun, S.; Psarra, A.M.G.; Somsák, L.; Leonidas, D.D. The architecture of hydrogen and sulfur σ-hole interactions explain differences in the inhibitory potency of C-β-d-glucopyranosyl thiazoles, imidazoles and an N-β-d glucopyranosyl tetrazole for human liver glycogen phosphorylase and offer new insights to structure-based design. Bioorg. Med. Chem., 2020, 28(1), 115196.
[http://dx.doi.org/10.1016/j.bmc.2019.115196] [PMID: 31767404]
[63]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5719-5723.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.057] [PMID: 27810241]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy