Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Alternatives to β-Lactams as Agents for the Management of Dentoalveolar Abscess

Author(s): Aditi Kaushik, Nidhika Rana*, Mahendra Singh Ashawat, Amardeep Ankalgi and Ankit Sharma

Volume 24, Issue 21, 2024

Published on: 04 June, 2024

Page: [1870 - 1882] Pages: 13

DOI: 10.2174/0115680266289334240530104637

Price: $65

Abstract

Dentoalveolar abscess are localized infections within the tooth or the surrounding alveolar bone, often resulting from untreated dental caries or dental trauma causing alveolar bone resorption or even loss. Serious consequences arising from the spread of a dental abscess can often lead to significant morbidity and mortality. The acute dentoalveolar abscess is a polymicrobial infection comprising strict anaerobes, such as anaerobic cocci i.e., Prevotella fusobacterium species, and facultative anaerobes i.e., Streptococci viridians and Streptococcus anginosus. Moreover, inappropriately managed dental infections can progress to severe submandibular space infections with associated serious complications, such as sepsis and airway obstruction. An audit of the Hull Royal Infirmary between 1999 and 2004 showed an increase in the number of patients presenting to oral and maxillofacial surgery services with dental sepsis. Thus, the scientific community is forced to focus on treatment strategies for the management of dentoalveolar abscess (DAA) and other related dental problems. The current treatment includes antibiotic therapy, including β-lactams and non-β- lactams drugs, but it leads to the development of resistant micro-organisms due to improper and wide usage. Furthermore, the currently used β-lactam therapeutics is non-specific and easily hydrolyzed by the β-lactamase enzymes. Thus, the research focused on the non-β-lactams that can be the potential pharmacophore and helpful in the management of DAA, as the appropriate use and choice of antibiotics in dentistry plays an important role in antibiotic stewardship. The newer target for the choice is NLRP inflammasome, which is the major chemical mediator involved in dental problems. This review focused on pathogenesis and current therapeutics for the treatment of dentoalveolar abscesses.

[1]
Márton, I.J.; Kiss, C. Protective and destructive immune reactions in apical periodontitis. Oral Microbiol. Immunol., 2000, 15(3), 139-150.
[http://dx.doi.org/10.1034/j.1399-302x.2000.150301.x ] [PMID: 11154396]
[2]
Teoh, L.; Stewart, K.; Marino, R.J.; McCullough, M.J. Current prescribing trends of antibiotics by dentists in Australia from 2013 to 2016. Part 1. Aust. Dent. J., 2018, 63(3), 329-337. [Google Scholar]. [CrossRef].
[http://dx.doi.org/10.1111/adj.12622]
[3]
Marra, F.; George, D.; Chong, M.; Sutherland, S.; Patrick, D.M. Antibiotic prescribing by dentists has increased. J. Am. Dent. Assoc., 2016, 147(5), 320-327.
[http://dx.doi.org/10.1016/j.adaj.2015.12.014] [PMID: 26857041]
[4]
Thornhill, M.H.; Dayer, M.J.; Durkin, M.J.; Lockhart, P.B.; Baddour, L.M. Oral antibiotic prescribing by NHS dentists in England 2010-2017. Br. Dent. J., 2019, 227(12), 1044-1050.
[http://dx.doi.org/10.1038/s41415-019-1002-3] [PMID: 31873263]
[5]
Lockhart, P.B.; Tampi, M.P.; Abt, E.; Aminoshariae, A.; Durkin, M.J.; Fouad, A.F.; Gopal, P.; Hatten, B.W.; Kennedy, E.; Lang, M.S.; Patton, L.L.; Paumier, T.; Suda, K.J.; Pilcher, L.; Urquhart, O.; O’Brien, K.K.; Carrasco-Labra, A. Evidence-based clinical practice guideline on antibiotic use for the urgent management of pulpal- and periapical-related dental pain and intraoral swelling. J. Am. Dent. Assoc., 2019, 150(11), 906-921.e12.
[http://dx.doi.org/10.1016/j.adaj.2019.08.020] [PMID: 31668170]
[6]
FGDP (UK). Antimicrobial Prescribing for GDPs. Available online: https://www.fgdp.org.uk/guidance-standards/antimicrobial-prescribing-gdps (accessed on 10 January 2019).
[7]
Gross, A.E.; Hanna, D.; Rowan, S.A.; Bleasdale, S.C.; Suda, K.J. Successful implementation of an antibiotic stewardship program in an academic dental practice. Open Forum Infect. Dis., 2019, 6(3), ofz067.
[http://dx.doi.org/10.1093/ofid/ofz067] [PMID: 30895206]
[8]
Teoh, L.; Stewart, K.; Marino, R.J.; McCullough, M.J. Improvement of dental prescribing practices using education and a prescribing tool: A pilot intervention study. Br. J. Clin. Pharmacol., 2021, 87(1), 152-162.
[http://dx.doi.org/10.1111/bcp.14373] [PMID: 32436349]
[9]
Teoh, L.; Marino, R.J.; Stewart, K.; McCullough, M.J. A survey of prescribing practices by general dentists in Australia. BMC Oral Health, 2019, 19(1), 193.
[http://dx.doi.org/10.1186/s12903-019-0882-6] [PMID: 31438922]
[10]
Cope, A.L.; Francis, N.A.; Wood, F.; Chestnutt, I.G. Antibiotic prescribing in UK general dental practice: a cross‐sectional study. Community Dent. Oral Epidemiol., 2016, 44(2), 145-153.
[http://dx.doi.org/10.1111/cdoe.12199] [PMID: 26507098]
[11]
Suda, K.J.; Calip, G.S.; Zhou, J.; Rowan, S.; Gross, A.E.; Hershow, R.C.; Perez, R.I.; McGregor, J.C.; Evans, C.T. Assessment of the appropriateness of antibiotic prescriptions for infection prophylaxis before dental procedures, 2011 to 2015. JAMA Netw. Open, 2019, 2(5), e193909.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.3909 ] [PMID: 31150071]
[12]
Kudiyirickal, M.G.; Hollinshead, F. Antimicrobial prescribing practice by dentists: A study from two primary care centres in UK. Minerva Stomatol., 2011, 60(10), 495-500.
[PMID: 22082854]
[13]
Matthews, D.C.; Sutherland, S.; Basrani, B. Emergency management of acute apical abscesses in the permanent dentition: a systematic review of the literature. J. Can. Dent. Assoc., 2003, 69(10), 660.
[PMID: 14611715]
[14]
US Food and Drug Administration (FDA)Guidance for Industry: Non-Penicillin Beta-Lactam Drugs: A CGMP Framework for Preventing Cross-Contamination; US Food and Drug Administration; FDA: Silver Spring, MD, USA, 2013.
[15]
Koyuncuoglu, C.Z.; Aydin, M.; Kirmizi, N.I.; Aydin, V.; Aksoy, M.; Isli, F.; Akici, A. Rational use of medicine in dentistry: Do dentists prescribe antibiotics in appropriate indications? Eur. J. Clin. Pharmacol., 2017, 73(8), 1027-1032.
[http://dx.doi.org/10.1007/s00228-017-2258-7] [PMID: 28462430]
[16]
Kloos, W.; Bannerman, T.; Murray, P.; Baron, E. Manual of Clinical Microbiology; American Society for Microbiology; ASM: Washington, DC, USA, 1991.
[17]
Sanders, J.L.; Houck, R.C. Dental Abscess; Stat Pearls Publishing: San Francisco, CA, USA, 2019.
[18]
Ligon, B.L. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis., 2004, 15(1), 52-57.
[19]
Sobottka, I.; Cachovan, G.; Stürenburg, E.; Ahlers, M.O.; Laufs, R.; Platzer, U.; Mack, D. In vitro activity of moxifloxacin against bacteria isolated from odontogenic abscesses. Antimicrob. Agents Chemother., 2002, 46(12), 4019-4021.
[http://dx.doi.org/10.1128/AAC.46.12.4019-4021.2002 ] [PMID: 12435716]
[20]
Gonzalez-Estrada, A.; Radojicic, C. Penicillin allergy: A practical guide for clinicians. Cleve. Clin. J. Med., 2015, 82(5), 295-300.
[http://dx.doi.org/10.3949/ccjm.82a.14111] [PMID: 25973877]
[21]
Dar-Odeh, N.; Abu-Hammad, O.A.; Al-Omari, M.K.; Khraisat, A.S.; Shehabi, A.A. Antibiotic prescribing practices by dentists: A review. Ther. Clin. Risk Manag., 2010, 6, 301-306.
[http://dx.doi.org/10.2147/TCRM.S9736]
[22]
Poveda Roda, R.; Bagán, J.V. Antibiotic use in dental practice: A review. Med. Oral, 2007, 12(3), 186-192.
[23]
Bascones Martínez, A.; Aguirre Urízar, J.M.; Bermejo Fenoll, A.; Blanco Carrión, A.; Gay-Escoda, C.; González-Moles, M.A.; Gutiérrez Pérez, J.L.; Jiménez Soriano, Y.; Liébana Ureña, J.; López Marcos, J.F.; Maestre Vera, J.R.; Perea Pérez, E.J.; Prieto Prieto, J.; de Vicente Rodríguez, J.C. Consensus statement on antimicrobial treatment of odontogenic bacterial infections. Med. Oral Patol. Oral Cir. Bucal, 2004, 9(5), 369-376, 363-369.
[PMID: 15580113]
[24]
Freitas, D.; Gonçalves, L.; João Coelho, M.; Pia Ferraz, M.; Magalhães, R.; Pina, C.; Lopes Cardoso, I. Prevalence of antibiotic (β-lactams, tetracycline, metronidazole, erythromycin) resistance genes in periodontic infections. Clin. Res. Trials, 2019, 5(6), 1-4.
[http://dx.doi.org/10.15761/CRT.1000280]
[25]
Akhavan, B.J.; Khanna, N.R.; Vihaan, P. Amoxicillin; Stat Pearls Publishing: San Francisco, CA, USA, 2020.
[26]
Lafaurie, G.I.; Noriega, L.A.; Torres, C.C.; Castillo, Y.; Moscoso, S.B.; Mosquera, S.; Díaz-Báez, D.; Chambrone, L. Impact of antibiotic prophylaxis on the incidence, nature, magnitude, and duration of bacteremia associated with dental procedures. J. Am. Dent. Assoc., 2019, 150(11), 948-959.e4.
[http://dx.doi.org/10.1016/j.adaj.2019.06.017] [PMID: 31561837]
[27]
Halling, F.; Neff, A.; Heymann, P.; Ziebart, T. Trends in antibiotic prescribing by dental practitioners in Germany. J. Craniomaxillofac. Surg., 2017, 45(11), 1854-1859.
[http://dx.doi.org/10.1016/j.jcms.2017.08.010] [PMID: 28939205]
[28]
Robertson, D.; Smith, A.J. The microbiology of the acute dental abscess. J. Med. Microbiol., 2009, 58(Pt 2), 155-162.
[http://dx.doi.org/10.1099/jmm.0.003517-0]
[29]
López-Píriz, R.; Aguilar, L.; Giménez, M.J. Management of odontogenic infection of pulpal and periodontal origin. Med. Oral, 2007, 12(2), 154-159.
[30]
Martínez, S.R.; Serna, J.T.; Silvestre, F-J. Dental management in patients with cirrhosis. Gastroenterology Hepatology, 2016, 39(3), 224-232.
[31]
DeAngelis, A.F.; Barrowman, R.A.; Harrod, R.; Nastri, A.L. Review article: Maxillofacial emergencies: Oral pain and odontogenic infections. Emerg. Med. Australas., 2014, 26(4), 336-342.
[http://dx.doi.org/10.1111/1742-6723.12266] [PMID: 25065769]
[32]
Kumar, A.; Singh, M.; Gupta, A. Prophylactic use of antibiotics in dentistry: A review. Medicine, 2014.
[33]
Ellison, S.J. The role of phenoxymethylpenicillin, amoxicillin, metronidazole and clindamycin in the management of acute dentoalveolar abscesses a review. Br. Dent. J., 2009, 206(7), 357-362.
[http://dx.doi.org/10.1038/sj.bdj.2009.257] [PMID: 19357666]
[34]
Jayadev, M.; Karunakar, P.; Vishwanath, B.; Chinmayi, S.S.; Siddhartha, P.; Chaitanya, B. Knowledge and pattern of antibiotic and non-narcotic analgesic prescription for pulpal and periapical pathologies-a survey among dentists. J. Clin. Diagn. Res., 2014, 8(7), ZC10-ZC14.
[http://dx.doi.org/10.7860/JCDR/2014/9645.4536] [PMID: 25177628]
[35]
Bui, T.; Preuss, C.V. Cephalosporins; Stat Pearls Publishing: San Francisco, CA, USA, 2020.
[36]
Al-Qamachi, L.H.; Aga, H.; McMahon, J.; Leanord, A.; Hammersley, N. Microbiology of odontogenic infections in deep neck spaces: A retrospective study. Br. J. Oral Maxillofac. Surg., 2010, 48(1), 37-39.
[http://dx.doi.org/10.1016/j.bjoms.2008.12.007] [PMID: 19178989]
[37]
Dancer, S.J. The problem with cephalosporins. J. Antimicrob. Chemother., 2001, 48(4), 463-478.
[http://dx.doi.org/10.1093/jac/48.4.463] [PMID: 11581224]
[38]
Chen, W.R.; Ding, Y.; Johnston, C.T.; Teppen, B.J.; Boyd, S.A.; Li, H. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution. Environ. Sci. Technol., 2010, 44(12), 4486-4492.
[http://dx.doi.org/10.1021/es1000598] [PMID: 20476766]
[39]
Spížek, J.; Řezanka, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol., 2017, 133, 20-28.
[http://dx.doi.org/10.1016/j.bcp.2016.12.001] [PMID: 27940264]
[40]
Maffioli, S.I. A Chemist’s Survey of Different Antibiotic Classes; O Gualerzi, C., Ed.; Wiley: Hoboken New Jersey, USA, 2014.
[41]
Koppen, L.; Suda, K.J.; Rowan, S.; McGregor, J.; Evans, C.T. Dentists’ prescribing of antibiotics and opioids to Medicare Part D beneficiaries. J. Am. Dent. Assoc., 2018, 149(8), 721-730.
[http://dx.doi.org/10.1016/j.adaj.2018.04.027] [PMID: 29929728]
[42]
Raeisian, S.; Raeisi, S.; Azimi, G.; Moradpoor, H. Comparison of the effect of penicillin-metronidazole and clindamycin in the treatment of facial abscesses at emamkhumeini hospital in ahvaz: Sub-clinical trial. Annal. Dent. Special., 2018, 6(4), 380.
[43]
Gómez-Sandoval, J.R.; Robles-Cervantes, J.A.; Hernández-González, S.O.; Espinel-Bermudez, M.C.; Mariaud-Schmidt, R.; Martínez-Rodríguez, V.; Morgado-Castillo, K.C.; Mercado-Sesma, A.R. Efficacy of clindamycin compared with amoxicillin-metronidazole after a 7-day regimen in the treatment of periodontitis in patients with diabetes: A randomized clinical trial. BMJ Open Diabetes Res. Care, 2020, 8(1), e000665.
[http://dx.doi.org/10.1136/bmjdrc-2019-000665] [PMID: 31958293]
[44]
Kehrenberg, C.; Schwarz, S.; Jacobsen, L.; Hansen, L.H.; Vester, B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: Methylation of 23S ribosomal RNA at A2503. Mol. Microbiol., 2005, 57(4), 1064-1073.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04754.x ] [PMID: 16091044]
[45]
Murphy, P.B.; Bistas, K.G.; Le, J.K. Clindamycin,
[46]
Nadig, K.; Taylor, N.G. Management of odontogenic infection at a district general hospital. Br. Dent. J., 2018, 224(12), 962-966.
[http://dx.doi.org/10.1038/sj.bdj.2018.445] [PMID: 29999002]
[47]
Fos, P.; Forner, L.; Llena, C.; Anadon, A. Analysis of clarithromycin in dental pulp with and without inflammation. Int. Dent. J., 2011, 13, 50-54.
[48]
Vázquez-Laslop, N.; Mankin, A.S. How macrolide antibiotics work. Trends Biochem. Sci., 2018, 43(9), 668-684.
[http://dx.doi.org/10.1016/j.tibs.2018.06.011] [PMID: 30054232]
[49]
Flynn, T.R. Evidence-based principles of antibiotic therapy. In: Evidence-Based Oral Surgery; Springer: Berlin, Germany, 2019; pp. 283-316.
[50]
Seiple, I.B.; Zhang, Z.; Jakubec, P.; Langlois-Mercier, A.; Wright, P.M.; Hog, D.T.; Yabu, K.; Allu, S.R.; Fukuzaki, T.; Carlsen, P.N.; Kitamura, Y.; Zhou, X.; Condakes, M.L.; Szczypiński, F.T.; Green, W.D.; Myers, A.G. A platform for the discovery of new macrolide antibiotics. Nature, 2016, 533(7603), 338-345.
[http://dx.doi.org/10.1038/nature17967] [PMID: 27193679]
[51]
Singh, V.P.; Nayak, S.U.; Nettemu, S.K.; Nettem, S.; Lee, Y.H.; Verma, M.B. Azithromycin in periodontal therapy: Beyond the antibiotics. J. Nepal. Soc. Periodont. Oral Implantol., 2018, 2(2), 61-66.
[52]
Buset, S.L.; Zitzmann, N.U.; Weiger, R.; Walter, C. Non-surgical periodontal therapy supplemented with systemically administered azithromycin: A systematic review of RCTs. Clin. Oral Investig., 2015, 19(8), 1763-1775.
[http://dx.doi.org/10.1007/s00784-015-1499-z] [PMID: 26063646]
[53]
Peedikayil, F. Antibiotics in odontogenic infections:An update. J. Antimicrob., 2016, 2(11), 24721212.
[http://dx.doi.org/10.4172/24721212.1000116]
[54]
Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of antibiotics/antimicrobial agents on dental caries. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/5658212] [PMID: 32076608]
[55]
Naghsh, N.; Shahabooei, M.; Razavi, S.M.; Minaiyan, M.; Birang, R.; Behfarnia, P.; Yaghini, J.; Ghalayani, P.; Hajisadeghi, S. A histomorphometric study of the effect of doxycycline and erythromycin on bone formation in dental alveolar socket of rat. Adv. Biomed. Res., 2015, 4(1), 71.
[http://dx.doi.org/10.4103/2277-9175.153895] [PMID: 25878996]
[56]
El Sherbiny, G.M. Control of growth Streptococcus mutans isolated from saliva and dental caries. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(10), 1-10. [Google Scholar].
[57]
Lobene, R.R.; Brion, M.; Socransky, S.S. Effect of erythromycin on dental plaque and plaque forming microorganisms of man. J. Periodontol.-Periodontics, 1969, 40(5), 287-291.
[http://dx.doi.org/10.1902/jop.1969.40.5.287] [PMID: 5255346]
[58]
Thornhill, M.H.; Dayer, M.J.; Durkin, M.J.; Lockhart, P.B.; Baddour, L.M. Risk of adverse reactions to oral antibiotics prescribed by dentists. J. Dent. Res., 2019, 98(10), 1081-1087.
[http://dx.doi.org/10.1177/0022034519863645] [PMID: 31314998]
[59]
Greenwood, M.; Meechan, J.G. Metabolic disorders and dental practice. In: General Medicine; Springer: Germany, 2019; pp. 137-145.
[60]
Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol., 2017, 174(18), 2967-2983.
[http://dx.doi.org/10.1111/bph.13936] [PMID: 28664582]
[61]
Burrell, R.C.; Walters, J.D. Distribution of systemic clarithromycin to gingiva. J. Periodontol., 2008, 79(9), 1712-1718.
[http://dx.doi.org/10.1902/jop.2008.080013] [PMID: 18771373]
[62]
Aoyama, N.; Suzuki, J.I.; Ogawa, M.; Watanabe, R.; Kobayashi, N.; Hanatani, T.; Yoshida, A.; Ashigaki, N.; Izumi, Y.; Isobe, M. Clarithromycin suppresses the periodontal bacteria‐accelerated abdominal aortic aneurysms in mice. J. Periodontal Res., 2012, 47(4), 463-469.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01454.x ] [PMID: 22181324]
[63]
Mital, A. Synthetic nitroimidazoles: Biological activities and mutagenicity relationships. Sci. Pharm., 2009, 77(3), 497-520.
[http://dx.doi.org/10.3797/scipharm.0907-14]
[64]
Mitchell, D.A. Metronidazole: its use in clinical dentistry. J. Clin. Periodontol., 1984, 11(3), 145-158.
[http://dx.doi.org/10.1111/j.1600-051X.1984.tb01318.x ] [PMID: 6368609]
[65]
Smith, A. Metronidazole resistance: A hidden epidemic? Br. Dent. J., 2018, 224(6), 403-404.
[http://dx.doi.org/10.1038/sj.bdj.2018.221] [PMID: 29545544]
[66]
Speer, B.S.; Shoemaker, N.B.; Salyers, A.A. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev., 1992, 5(4), 387-399.
[http://dx.doi.org/10.1128/CMR.5.4.387] [PMID: 1423217]
[67]
Macfarlane, Samaranayake; Wallace, Lakshman P. Clinical oral microbiology; Butterworth-Heinemann, 1989.
[68]
Kafle, S.; Pradhan, S.; Gupta, S. Locally delivered tetracycline fibres in the treatment of chronic periodontitis. J. Nepal. Soc.Periodont. Oral Implantol., 2018, 2(2), 45-48.
[69]
Segal, B.M. Photosensitivity, nail discoloration, and onycholysis. Arch. Intern. Med., 1963, 112(2), 165-167.
[http://dx.doi.org/10.1001/archinte.1963.03860020063005 ] [PMID: 14044811]
[70]
Pöyhönen, H.; Nurmi, M.; Peltola, V.; Alaluusua, S.; Ruuskanen, O.; Lähdesmäki, T. Dental staining after doxycycline use in children. J. Antimicrob. Chemother., 2017, 72(10), 2887-2890.
[http://dx.doi.org/10.1093/jac/dkx245] [PMID: 29091225]
[71]
Hooper, D. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis., 2001, 7(2), 337-341.
[http://dx.doi.org/10.3201/eid0702.010239] [PMID: 11294736]
[72]
Dabija-Wolter, G.; Al-Zubaydi, S.S.; Mohammed, M.M.A.; Bakken, V.; Bolstad, A.I. The effect of metronidazole plus amoxicillin or metronidazole plus penicillin V on periodontal pathogens in an in vitro biofilm model. Clin. Exp. Dent. Res., 2018, 4(1), 6-12.
[http://dx.doi.org/10.1002/cre2.96] [PMID: 29744209]
[73]
Guentsch, A.; Jentsch, H.; Pfister, W.; Hoffmann, T.; Eick, S. Moxifloxacin as an adjunctive antibiotic in the treatment of severe chronic periodontitis. J. Periodontol., 2008, 79(10), 1894-1903.
[http://dx.doi.org/10.1902/jop.2008.070493] [PMID: 18834244]
[74]
Diz Dios, P.; Tomás Carmona, I.; Limeres Posse, J.; Medina Henríquez, J.; Fernández Feijoo, J.; Álvarez Fernández, M. Comparative efficacies of amoxicillin, clindamycin, and moxifloxacin in prevention of bacteremia following dental extractions. Antimicrob. Agents Chemother., 2006, 50(9), 2996-3002.
[http://dx.doi.org/10.1128/AAC.01550-05] [PMID: 16940094]
[75]
Loyola-Rodriguez, J.P.; Franco-Miranda, A.; Loyola-Leyva, A.; Perez-Elizalde, B.; Contreras-Palma, G.; Sanchez-Adame, O. Prevention of infective endocarditis and bacterial resistance to antibiotics: A brief review. Spec. Care Dentist., 2019, 39(6), 603-609.
[http://dx.doi.org/10.1111/scd.12415] [PMID: 31464005]
[76]
Holmes, C.J.; Pellecchia, R. Antimicrobial therapy in management of odontogenic infections in general dentistry. Dent. Clin. North Am., 2016, 60(2), 497-507.
[http://dx.doi.org/10.1016/j.cden.2015.11.013] [PMID: 27040298]
[77]
Anand, B.G.; Mala, R. Prevalence of oral pathogens in oral cavities, dental implants, fixed bridges among the people in South India. Europ. J. Biotechnol. Biosci., 2014, 2(1), 35-41.
[78]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[79]
Bem, J.L.; Mann, R.D. Drug point: Danger of interaction between ciprofloxacin and theophylline. BMJ, 1988, 296(6629), 1131.
[http://dx.doi.org/10.1136/bmj.296.6629.1131] [PMID: 3132238]
[80]
Mariathasan, S.; Newton, K.; Monack, D.M.; Vucic, D.; French, D.M.; Lee, W.P. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 2004, 430(6996), 213-218.
[http://dx.doi.org/10.1038/nature02664]
[81]
Harton, J.A.; Linhoff, M.W.; Zhang, J.; Ting, J.P.Y. Cutting edge: CATERPILLER: A large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol., 2002, 169(8), 4088-4093.
[http://dx.doi.org/10.4049/jimmunol.169.8.4088] [PMID: 12370334]
[82]
Ting, J.P.Y.; Lovering, R.C.; Alnemri, E.S.; Bertin, J.; Boss, J.M.; Davis, B.K.; Flavell, R.A.; Girardin, S.E.; Godzik, A.; Harton, J.A.; Hoffman, H.M.; Hugot, J.P.; Inohara, N.; MacKenzie, A.; Maltais, L.J.; Nunez, G.; Ogura, Y.; Otten, L.A.; Philpott, D.; Reed, J.C.; Reith, W.; Schreiber, S.; Steimle, V.; Ward, P.A. The NLR gene family: A standard nomenclature. Immunity, 2008, 28(3), 285-287.
[http://dx.doi.org/10.1016/j.immuni.2008.02.005] [PMID: 18341998]
[83]
Chavarría-Smith, J.; Vance, R.E. The NLRP 1 inflammasomes. Immunol. Rev., 2015, 265(1), 22-34.
[http://dx.doi.org/10.1111/imr.12283] [PMID: 25879281]
[84]
Lilue, J.; Doran, A.G.; Fiddes, I.T.; Abrudan, M.; Armstrong, J.; Bennett, R.; Chow, W.; Collins, J.; Collins, S.; Czechanski, A.; Danecek, P.; Diekhans, M.; Dolle, D.D.; Dunn, M.; Durbin, R.; Earl, D.; Ferguson-Smith, A.; Flicek, P.; Flint, J.; Frankish, A.; Fu, B.; Gerstein, M.; Gilbert, J.; Goodstadt, L.; Harrow, J.; Howe, K.; Ibarra-Soria, X.; Kolmogorov, M.; Lelliott, C.J.; Logan, D.W.; Loveland, J.; Mathews, C.E.; Mott, R.; Muir, P.; Nachtweide, S.; Navarro, F.C.P.; Odom, D.T.; Park, N.; Pelan, S.; Pham, S.K.; Quail, M.; Reinholdt, L.; Romoth, L.; Shirley, L.; Sisu, C.; Sjoberg-Herrera, M.; Stanke, M.; Steward, C.; Thomas, M.; Threadgold, G.; Thybert, D.; Torrance, J.; Wong, K.; Wood, J.; Yalcin, B.; Yang, F.; Adams, D.J.; Paten, B.; Keane, T.M. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat. Genet., 2018, 50(11), 1574-1583.
[http://dx.doi.org/10.1038/s41588-018-0223-8] [PMID: 30275530]
[85]
Chavarría-Smith, J.; Mitchell, P.S.; Ho, A.M.; Daugherty, M.D.; Vance, R.E. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog., 2016, 12(12), e1006052.
[http://dx.doi.org/10.1371/journal.ppat.1006052] [PMID: 27926929]
[86]
Witola, W.H.; Mui, E.; Hargrave, A.; Liu, S.; Hypolite, M.; Montpetit, A.; Cavailles, P.; Bisanz, C.; Cesbron-Delauw, M.F.; Fournié, G.J.; McLeod, R. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect. Immun., 2011, 79(2), 756-766.
[http://dx.doi.org/10.1128/IAI.00898-10] [PMID: 21098108]
[87]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Ozkurede, U.; Kim, Y.G.; Chakrabarti, A.; Gale, M., Jr; Silverman, R.H.; Colonna, M.; Akira, S.; Núñez, G. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol., 2014, 193(8), 4214-4222.
[http://dx.doi.org/10.4049/jimmunol.1400582] [PMID: 25225670]
[88]
Park, S.; Juliana, C.; Hong, S.; Datta, P.; Hwang, I.; Fernandes-Alnemri, T.; Yu, J.W.; Alnemri, E.S. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol., 2013, 191(8), 4358-4366.
[http://dx.doi.org/10.4049/jimmunol.1301170] [PMID: 24048902]
[89]
Subramanian, N.; Natarajan, K.; Clatworthy, M.R.; Wang, Z.; Germain, R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell, 2013, 153(2), 348-361.
[http://dx.doi.org/10.1016/j.cell.2013.02.054] [PMID: 23582325]
[90]
Ichinohe, T.; Yamazaki, T.; Koshiba, T.; Yanagi, Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci., 2013, 110(44), 17963-17968.
[http://dx.doi.org/10.1073/pnas.1312571110] [PMID: 24127597]
[91]
Zhang, G.; Lin, X.; Zhang, S.; Xiu, H.; Pan, C.; Cui, W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/3578702] [PMID: 28740332]
[92]
Kawahara, Y.; Kaneko, T.; Yoshinaga, Y.; Arita, Y.; Nakamura, K.; Koga, C.; Yoshimura, A.; Sakagami, R. Effects of sulfonylureas on periodontopathic bacteria-induced inflammation. J. Dent. Res., 2020, 99(7), 830-838.
[http://dx.doi.org/10.1177/0022034520913250] [PMID: 32202959]
[93]
Arita, Y.; Yoshinaga, Y.; Kaneko, T.; Kawahara, Y.; Nakamura, K.; Ohgi, K.; Arita, S.; Ryu, T.; Takase, M.; Sakagami, R. Glyburide inhibits the bone resorption induced by traumatic occlusion in rats. J. Periodontal Res., 2020, 55(3), 464-471.
[http://dx.doi.org/10.1111/jre.12731] [PMID: 32153049]
[94]
Jiang, M.; Shang, Z.; Zhang, T.; Yin, X.; Liang, X.; Sun, H. Study on the role of pyroptosis in bone resorption induced by occlusal trauma with or without periodontitis. J. Periodontal Res., 2022, 57(3), 448-460.
[http://dx.doi.org/10.1111/jre.12974] [PMID: 35141913]
[95]
Yin, W.; Liu, S.; Dong, M.; Liu, Q.; Shi, C.; Bai, H.; Wang, Q.; Yang, X.; Niu, W.; Wang, L. A New NLRP3 inflammasome inhibitor, dioscin, promotes osteogenesis. Small, 2020, 16(1), 1905977.
[http://dx.doi.org/10.1002/smll.201905977] [PMID: 31814281]
[96]
Cai, J.; Liu, J.; Fan, P.; Dong, X.; Zhu, K.; Liu, X.; Zhang, N.; Cao, Y. Dioscin prevents DSS-induced colitis in mice with enhancing intestinal barrier function and reducing colon inflammation. Int. Immunopharmacol., 2021, 99, 108015.
[http://dx.doi.org/10.1016/j.intimp.2021.108015] [PMID: 34339962]
[97]
Zhong, J.; Pierantoni, M.; Weinkamer, R.; Brumfeld, V.; Zheng, K.; Chen, J.; Swain, M.V.; Weiner, S.; Li, Q. Microstructural heterogeneity of the collagenous network in the loaded and unloaded periodontal ligament and its biomechanical implications. J. Struct. Biol., 2021, 213(3), 107772.
[http://dx.doi.org/10.1016/j.jsb.2021.107772] [PMID: 34311076]
[98]
Zang, Y.; Song, J.H.; Oh, S.H.; Kim, J.W.; Lee, M.N.; Piao, X.; Yang, J.W.; Kim, O.S.; Kim, T.S.; Kim, S.H.; Koh, J.T. Targeting NLRP3 inflammasome reduces age-related experimental alveolar bone loss. J. Dent. Res., 2020, 99(11), 1287-1295.
[http://dx.doi.org/10.1177/0022034520933533] [PMID: 32531176]
[99]
Yamaguchi, Y.; Kurita-Ochiai, T.; Kobayashi, R.; Suzuki, T.; Ando, T. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm. Res., 2017, 66(1), 59-65.
[http://dx.doi.org/10.1007/s00011-016-0992-4] [PMID: 27665233]
[100]
Liu, S.; Du, J.; Li, D.; Yang, P.; Kou, Y.; Li, C.; Zhou, Q.; Lu, Y.; Hasegawa, T.; Li, M. Oxidative stress induced pyroptosis leads to osteogenic dysfunction of MG63 cells. J. Mol. Histol., 2020, 51(3), 221-232.
[http://dx.doi.org/10.1007/s10735-020-09874-9] [PMID: 32356234]
[101]
Zhang, X.; Fan, C.; Xiao, Y.; Mao, X. Anti-inflammatory and antiosteoclastogenic activities of parthenolide on human periodontal ligament cells in vitro. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/546097] [PMID: 25610476]
[102]
Zhang, X.; Chen, Q.; Liu, J.; Fan, C.; Wei, Q.; Chen, Z.; Mao, X. Parthenolide promotes differentiation of osteoblasts through the Wnt/β-Catenin signaling pathway in inflammatory environments. J. Interferon Cytokine Res., 2017, 37(9), 406-414.
[http://dx.doi.org/10.1089/jir.2017.0023] [PMID: 28829282]
[103]
Darwish, N.H.E.; Sudha, T.; Godugu, K.; Bharali, D.J.; Elbaz, O.; El-ghaffar, H.A.A.; Azmy, E.; Anber, N.; Mousa, S.A. Novel targeted nano-parthenolide molecule against NF-kB in acute myeloid leukemia. Molecules, 2019, 24(11), 2103.
[http://dx.doi.org/10.3390/molecules24112103] [PMID: 31163672]
[104]
Deng, X.; Huang, W.; Peng, J.; Zhu, T.T.; Sun, X.L.; Zhou, X.Y.; Yang, H.; Xiong, J.F.; He, H.Q.; Xu, Y.H.; He, Y.Z. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling. Inflammation, 2018, 41(1), 260-275.
[http://dx.doi.org/10.1007/s10753-017-0685-3] [PMID: 29098483]
[105]
Pullisaar, H.; Colaianni, G.; Lian, A.M.; Vandevska-Radunovic, V.; Grano, M.; Reseland, J.E. Irisin promotes growth, migration and matrix formation in human periodontal ligament cells. Arch. Oral Biol., 2020, 111, 104635.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104635 ] [PMID: 31869727]
[106]
Huang, X.; Xiao, J.; Wang, X.; Cao, Z. Irisin attenuates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells via p38 signaling pathway. Biochem. Biophys. Res. Commun., 2022, 618, 100-106.
[http://dx.doi.org/10.1016/j.bbrc.2022.06.001] [PMID: 35716593]
[107]
Kawakami, T.; Fukai, K.; Sowa, J.; Ishii, M.; Teramae, H.; Kanazawa, K. Case of cheilitis granulomatosa associated with apical periodontitis. J. Dermatol., 2008, 35(2), 115-119.
[http://dx.doi.org/10.1111/j.1346-8138.2008.00426.x ] [PMID: 18271809]
[108]
Phan, T.V.; Ke, K.; Sul, O.J.; Park, Y.K.; Kim, K.K.; Cho, Y.S.; Chung, H.T.; Choi, H.S. Protection against ovariectomy-induced bone loss by tranilast. PLoS One, 2014, 9(4), e95585.
[http://dx.doi.org/10.1371/journal.pone.0095585] [PMID: 24751945]
[109]
Shiota, N.; Kovanen, P.T.; Eklund, K.K.; Shibata, N.; Shimoura, K.; Niibayashi, T.; Shimbori, C.; Okunishi, H. The anti‐allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen‐induced arthritis in mice. Br. J. Pharmacol., 2010, 159(3), 626-635.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00561.x ] [PMID: 20067475]
[110]
Xue, F.; Shu, R.; Xie, Y. The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistochemistry. Arch. Oral Biol., 2015, 60(6), 948-958.
[http://dx.doi.org/10.1016/j.archoralbio.2015.03.005 ] [PMID: 25841070]
[111]
Yilmaz, Ã.; Sater, A.A.; Yao, L.; Koutouzis, T.; Pettengill, M.; Ojcius, D.M. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell. Microbiol., 2010, 12(2), 188-198.
[http://dx.doi.org/10.1111/j.1462-5822.2009.01390.x ] [PMID: 19811501]
[112]
Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 inflammasome and autophagy. Front. Immunol., 2020, 11, 591803.
[http://dx.doi.org/10.3389/fimmu.2020.591803] [PMID: 33163006]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy