Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke

Author(s): Yasaman Mehdizadeh Darban, Hamid Askari, Maryam Ghasemi-Kasman*, Hanie Yavarpour-Bali, Amirabbas Dehpanah, Parnia Gholizade and Nasrin Nosratiyan

Volume 22, Issue 14, 2024

Published on: 27 June, 2024

Page: [2368 - 2383] Pages: 16

DOI: 10.2174/1570159X22666240603084558

Price: $65

Abstract

Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.

[1]
Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Soliman, E.Z.; Sorlie, P.D.; Sotoodehnia, N.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation, 2012, 125(1), e2-e220.
[PMID: 22179539]
[2]
Hinkle, J.L.; Guanci, M.M. Acute ischemic stroke review. J. Neurosci. Nurs., 2007, 39(5), 285-310.
[http://dx.doi.org/10.1097/01376517-200710000-00005] [PMID: 17966295]
[3]
World Health OrganizationNeurological disorders: Public health challenges 2006. Available from: https://www.who.int/publications/i/item/9789241563369
[4]
Amarenco, P.; Bogousslavsky, J.; Caplan, L.R.; Donnan, G.A.; Hennerici, M.G. New approach to stroke subtyping: The A-S-C-O (phenotypic) classification of stroke. Cerebrovasc. Dis., 2009, 27(5), 502-508.
[http://dx.doi.org/10.1159/000210433] [PMID: 19342826]
[5]
Abbott, N.J. Röِnnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[6]
del Zoppo, G.J.; Saver, J.L.; Jauch, E.C.; Adams, H.P., Jr Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: A science advisory from the American Heart Association/American Stroke Association. Stroke, 2009, 40(8), 2945-2948.
[http://dx.doi.org/10.1161/STROKEAHA.109.192535] [PMID: 19478221]
[7]
Saver, J.L.; Goyal, M.; van der Lugt, A.; Menon, B.K.; Majoie, C.B.L.M.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; Cardona, P.; Devlin, T.G.; Frei, D.F.; du Mesnil de Rochemont, R.; Berkhemer, O.A.; Jovin, T.G.; Siddiqui, A.H.; van Zwam, W.H.; Davis, S.M. Castañٌo, C.; Sapkota, B.L.; Fransen, P.S.; Molina, C.; van Oostenbrugge, R.J.; Chamorro, Á; Lingsma, H.; Silver, F.L.; Donnan, G.A.; Shuaib, A.; Brown, S.; Stouch, B.; Mitchell, P.J.; Davalos, A.; Roos, Y.B.W.E.M.; Hill, M.D. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA, 2016, 316(12), 1279-1288.
[http://dx.doi.org/10.1001/jama.2016.13647] [PMID: 27673305]
[8]
Gervois, P.; Wolfs, E.; Ratajczak, J.; Dillen, Y.; Vangansewinkel, T.; Hilkens, P.; Bronckaers, A.; Lambrichts, I.; Struys, T. Stem cell-based therapies for ischemic stroke: Preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration. Med. Res. Rev., 2016, 36(6), 1080-1126.
[http://dx.doi.org/10.1002/med.21400] [PMID: 27439773]
[9]
Li, Y.; Yu, S.P.; Mohamad, O.; Genetta, T.; Wei, L. Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice. Transl. Stroke Res., 2010, 1(3), 184-196.
[http://dx.doi.org/10.1007/s12975-010-0016-6] [PMID: 21792374]
[10]
Li, W.L.; Yu, S.P.; Ogle, M.E.; Ding, X.S.; Wei, L. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev. Neurobiol., 2008, 68(13), 1474-1486.
[http://dx.doi.org/10.1002/dneu.20674] [PMID: 18777565]
[11]
Kornack, D.R.; Rakic, P. The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4752-4757.
[http://dx.doi.org/10.1073/pnas.081074998] [PMID: 11296302]
[12]
Menezes, J.R.L.; Smith, C.M.; Nelson, K.C.; Luskin, M.B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci., 1995, 6(6), 496-508.
[http://dx.doi.org/10.1006/mcne.1995.0002] [PMID: 8742267]
[13]
Smith, C.M.; Luskin, M.B. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Dev. Dyn., 1998, 213(2), 220-227.
[http://dx.doi.org/10.1002/(SICI)1097-0177(199810)213:2<220:AID-AJA7>3.0.CO;2-I] [PMID: 9786422]
[14]
Kokaia, Z.; Thored, P.; Arvidsson, A.; Lindvall, O. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress. Cereb. Cortex, 2006, 16(Suppl. 1), i162-i167.
[http://dx.doi.org/10.1093/cercor/bhj174] [PMID: 16766702]
[15]
Wu, Q.; Yang, B.; Hu, K.; Cao, C.; Man, Y.; Wang, P. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Eng. Part B Rev., 2017, 23(1), 1-8.
[http://dx.doi.org/10.1089/ten.teb.2015.0559] [PMID: 27392674]
[16]
Mohamad, O.; Drury-Stewart, D.; Song, M.; Faulkner, B.; Chen, D.; Yu, S.P.; Wei, L. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS One, 2013, 8(5), e64160.
[http://dx.doi.org/10.1371/journal.pone.0064160] [PMID: 23717557]
[17]
Yuan, T.; Liao, W.; Feng, N.H.; Lou, Y.L.; Niu, X.; Zhang, A.J.; Wang, Y.; Deng, Z.F. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther., 2013, 4(3), 73.
[http://dx.doi.org/10.1186/scrt224] [PMID: 23769173]
[18]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[19]
Yu, F.; Li, Y.; Morshead, C. Induced pluripotent stem cells for the treatment of stroke: The potential and the pitfalls. Curr. Stem Cell Res. Ther., 2013, 8(5), 407-414.
[http://dx.doi.org/10.2174/1574888X113089990052] [PMID: 23895059]
[20]
Gurdon, J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol., 1962, 10(5), 622-640.
[http://dx.doi.org/10.1242/dev.10.4.622]
[21]
Wilmut, I.; Schnieke, AE.; McWhir, J.; Kind, AJ.; Campbell, KHS. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619), 810.
[22]
Abe, K.; Yamashita, T.; Takizawa, S.; Kuroda, S.; Kinouchi, H.; Kawahara, N. Stem cell therapy for cerebral ischemia: From basic science to clinical applications. J. Cereb. Blood Flow Metab., 2012, 32(7), 1317-1331.
[http://dx.doi.org/10.1038/jcbfm.2011.187] [PMID: 22252239]
[23]
Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; Terada, M.; Nomiya, Y.; Tanishima, S.; Nakamura, M.; Kamao, H.; Sugita, S.; Onishi, A.; Ito, T.; Fujita, K.; Kawamata, S.; Go, M.J.; Shinohara, C.; Hata, K.; Sawada, M.; Yamamoto, M.; Ohta, S.; Ohara, Y.; Yoshida, K.; Kuwahara, J.; Kitano, Y.; Amano, N.; Umekage, M.; Kitaoka, F.; Tanaka, A.; Okada, C.; Takasu, N.; Ogawa, S.; Yamanaka, S.; Takahashi, M. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med., 2017, 376(11), 1038-1046.
[http://dx.doi.org/10.1056/NEJMoa1608368] [PMID: 28296613]
[24]
Okita, K.; Yamanaka, S. Induced pluripotent stem cells: Opportunities and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1575), 2198-2207.
[http://dx.doi.org/10.1098/rstb.2011.0016] [PMID: 21727125]
[25]
Kajikawa, K.; Imaizumi, K.; Shinozaki, M.; Shibata, S.; Shindo, T.; Kitagawa, T.; Shibata, R.; Kamata, Y.; Kojima, K.; Nagoshi, N.; Matsumoto, M.; Nakamura, M.; Okano, H. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol. Brain, 2020, 13(1), 120.
[http://dx.doi.org/10.1186/s13041-020-00662-w] [PMID: 32883317]
[26]
Mathur, A.; Loskill, P.; Shao, K.; Huebsch, N.; Hong, S.; Marcus, S.G.; Marks, N.; Mandegar, M.; Conklin, B.R.; Lee, L.P.; Healy, K.E. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep., 2015, 5(1), 8883.
[http://dx.doi.org/10.1038/srep08883] [PMID: 25748532]
[27]
Gutbier, S.; Wanke, F.; Dahm, N.; Rümmelin, A.; Zimmermann, S.; Christensen, K. Köِchl, F.; Rautanen, A.; Hatje, K.; Geering, B.; Zhang, J.D.; Britschgi, M.; Cowley, S.A.; Patsch, C. Large-scale production of human iPSC-derived macrophages for drug screening. Int. J. Mol. Sci., 2020, 21(13), 4808.
[http://dx.doi.org/10.3390/ijms21134808] [PMID: 32645954]
[28]
Feng, L.; Chao, J.; Tian, E.; Li, L.; Ye, P.; Zhang, M.; Chen, X.; Cui, Q.; Sun, G.; Zhou, T.; Felix, G.; Qin, Y.; Li, W.; Meza, E.D.; Klein, J.; Ghoda, L.; Hu, W.; Luo, Y.; Dang, W.; Hsu, D.; Gold, J.; Goldman, S.A.; Matalon, R.; Shi, Y. Cell-based therapy for canavan disease using human iPSC-derived NPCs and OPCs. Adv. Sci. (Weinh.), 2020, 7(23), 2002155.
[http://dx.doi.org/10.1002/advs.202002155] [PMID: 33304759]
[29]
Sugai, K.; Sumida, M.; Shofuda, T.; Yamaguchi, R.; Tamura, T.; Kohzuki, T.; Abe, T.; Shibata, R.; Kamata, Y.; Ito, S.; Okubo, T.; Tsuji, O.; Nori, S.; Nagoshi, N.; Yamanaka, S.; Kawamata, S.; Kanemura, Y.; Nakamura, M.; Okano, H. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen. Ther., 2021, 18, 321-333.
[http://dx.doi.org/10.1016/j.reth.2021.08.005] [PMID: 34522725]
[30]
Choi, D.W.; Rothman, S.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci., 1990, 13(1), 171-182.
[http://dx.doi.org/10.1146/annurev.ne.13.030190.001131] [PMID: 1970230]
[31]
Deleglise, B.; Lassus, B.; Soubeyre, V.; Doulazmi, M.; Brugg, B.; Vanhoutte, P.; Peyrin, J.M. Dysregulated neurotransmission induces trans-synaptic degeneration in reconstructed neuronal networks. Sci. Rep., 2018, 8(1), 11596.
[http://dx.doi.org/10.1038/s41598-018-29918-1] [PMID: 30072750]
[32]
Qin, J.; Ma, X.; Qi, H.; Song, B.; Wang, Y.; Wen, X.; Wang, Q.M.; Sun, S.; Li, Y.; Zhang, R.; Liu, X.; Hou, H.; Gong, G.; Xu, Y. Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One, 2015, 10(6), e0129881.
[http://dx.doi.org/10.1371/journal.pone.0129881] [PMID: 26086994]
[33]
Lee, I.H.; Huang, S.S.; Chuang, C.Y.; Liao, K.H.; Chang, L.H.; Chuang, C.C.; Su, Y.S.; Lin, H.J.; Hsieh, J.Y.; Su, S.H.; Lee, O.K.S.; Kuo, H.C. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci. Rep., 2017, 7(1), 1943.
[http://dx.doi.org/10.1038/s41598-017-02137-w] [PMID: 28512358]
[34]
Huang, J.Y.; Hong, Y.T.; Chuang, J.I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro. J. Neurochem., 2009, 109(5), 1400-1412.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06061.x] [PMID: 19476551]
[35]
Shurin, G.V.; Ferris, R.; Tourkova, I.L.; Perez, L.; Lokshin, A.; Balkir, L.; Collins, B.; Chatta, G.S.; Shurin, M.R. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J. Immunol., 2005, 174(9), 5490-5498.
[http://dx.doi.org/10.4049/jimmunol.174.9.5490] [PMID: 15843547]
[36]
Banisadr, G.; Bhattacharyya, B.J.; Belmadani, A.; Izen, S.C.; Ren, D.; Tran, P.B.; Miller, R.J. The chemokine BRAK/CXCL14 regulates synaptic transmission in the adult mouse dentate gyrus stem cell niche. J. Neurochem., 2011, 119(6), 1173-1182.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07509.x] [PMID: 21955359]
[37]
Zhang, J.; Moats-Staats, B.M.; Ye, P.; D’Ercole, A.J. Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J. Neurosci. Res., 2007, 85(8), 1618-1627.
[http://dx.doi.org/10.1002/jnr.21289] [PMID: 17455296]
[38]
Jin, K.; Mao, X.O.; Eshoo, M.W.; Nagayama, T.; Minami, M.; Simon, R.P.; Greenberg, D.A. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol., 2001, 50(1), 93-103.
[http://dx.doi.org/10.1002/ana.1073] [PMID: 11456315]
[39]
Mehrian-Shai, R.; Chen, C.D.; Shi, T.; Horvath, S.; Nelson, S.F.; Reichardt, J.K.V.; Sawyers, C.L. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5563-5568.
[http://dx.doi.org/10.1073/pnas.0609139104] [PMID: 17372210]
[40]
Tatarishvili, J.; Oki, K.; Monni, E.; Koch, P.; Memanishvili, T.; Buga, A.M.; Verma, V.; Popa-Wagner, A.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor. Neurol. Neurosci., 2014, 32(4), 547-558.
[http://dx.doi.org/10.3233/RNN-140404] [PMID: 24916776]
[41]
Lau, V.W.; Platt, S.R.; Stice, S.L.; West, F.D. Induced pluripotent stem-cell-derived neural cell types in treatment of stroke. Cell Therapy For Brain Injury; Springer: Berlin, Heidelberg, 2015, pp. 147-172.
[42]
Chen, S.J.; Chang, C.M.; Tsai, S.K.; Chang, Y.L.; Chou, S.J.; Huang, S.S.; Tai, L.K.; Chen, Y.C.; Ku, H.H.; Li, H.Y.; Chiou, S.H. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev., 2010, 19(11), 1757-1767.
[http://dx.doi.org/10.1089/scd.2009.0452] [PMID: 20192839]
[43]
Grøّnning Hansen, M.; Laterza, C.; Palma-Tortosa, S.; Kvist, G.; Monni, E.; Tsupykov, O.; Tornero, D.; Uoshima, N.; Soriano, J.; Bengzon, J.; Martino, G.; Skibo, G.; Lindvall, O.; Kokaia, Z. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Transl. Med., 2020, 9(11), 1365-1377.
[http://dx.doi.org/10.1002/sctm.20-0134] [PMID: 32602201]
[44]
Baker, E.W.; Platt, S.R.; Lau, V.W.; Grace, H.E.; Holmes, S.P.; Wang, L.; Duberstein, K.J.; Howerth, E.W.; Kinder, H.A.; Stice, S.L.; Hess, D.C.; Mao, H.; West, F.D. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep., 2017, 7(1), 10075.
[http://dx.doi.org/10.1038/s41598-017-10406-x] [PMID: 28855627]
[45]
Arai, K.; Jin, G.; Navaratna, D.; Lo, E.H. Brain angiogenesis in developmental and pathological processes: Neurovascular injury and angiogenic recovery after stroke. FEBS J., 2009, 276(17), 4644-4652.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07176.x] [PMID: 19664070]
[46]
Brumm, A.J.; Carmichael, S.T. Not just a rush of blood to the head. Nat. Med., 2012, 18(11), 1609-1610.
[http://dx.doi.org/10.1038/nm.2990] [PMID: 23135507]
[47]
Cai, M.; Zhang, W.; Weng, Z.; Stetler, R.A.; Jiang, X.; Shi, Y.; Gao, Y.; Chen, J. Promoting neurovascular recovery in aged mice after ischemic stroke - prophylactic effect of omega-3 polyunsaturated fatty acids. Aging Dis., 2017, 8(5), 531-545.
[http://dx.doi.org/10.14336/AD.2017.0520] [PMID: 28966799]
[48]
Jiang, X.; Suenaga, J.; Pu, H.; Wei, Z.; Smith, A.D.; Hu, X.; Shi, Y.; Chen, J. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiol. Dis., 2019, 126, 62-75.
[http://dx.doi.org/10.1016/j.nbd.2018.09.012] [PMID: 30218758]
[49]
Oki, K.; Tatarishvili, J.; Wood, J.; Koch, P.; Wattananit, S.; Mine, Y.; Monni, E.; Tornero, D.; Ahlenius, H.; Ladewig, J.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells, 2012, 30(6), 1120-1133.
[http://dx.doi.org/10.1002/stem.1104] [PMID: 22495829]
[50]
Chan, S.J.; Esposito, E.; Hayakawa, K.; Mandaville, E.; Smith, R.A.A.; Guo, S.; Niu, W.; Wong, P.T.H.; Cool, S.M.; Lo, E.H.; Nurcombe, V. Vascular endothelial growth factor 165-binding heparan sulfate promotes functional recovery from cerebral ischemia. Stroke, 2020, 51(9), 2844-2853.
[http://dx.doi.org/10.1161/STROKEAHA.119.025304] [PMID: 32772683]
[51]
Kelleher, J.; Dickinson, A.; Cain, S.; Hu, Y.; Bates, N.; Harvey, A.; Ren, J.; Zhang, W.; Moreton, F.C.; Muir, K.W.; Ward, C.; Touyz, R.M.; Sharma, P.; Xu, Q.; Kimber, S.J.; Wang, T. Patient-specific iPSC Model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures. Stem Cell Rep, 2019, 13(5), 817-831.
[http://dx.doi.org/10.1016/j.stemcr.2019.10.004] [PMID: 31680059]
[52]
Xia, Y.; Ling, X.; Hu, G.; Zhu, Q.; Zhang, J.; Li, Q.; Zhao, B.; Wang, Y.; Deng, Z. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res. Ther., 2020, 11(1), 313.
[http://dx.doi.org/10.1186/s13287-020-01834-0] [PMID: 32698909]
[53]
Ceradini, D.J.; Kulkarni, A.R.; Callaghan, M.J.; Tepper, O.M.; Bastidas, N.; Kleinman, M.E.; Capla, J.M.; Galiano, R.D.; Levine, J.P.; Gurtner, G.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med., 2004, 10(8), 858-864.
[http://dx.doi.org/10.1038/nm1075] [PMID: 15235597]
[54]
Suzuki, Y.; Rahman, M.; Mitsuya, H. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor SDF-1: Cell survival promotion and priming effects of SDF-1 on CD4+ T cells. J. Immunol., 2001, 167(6), 3064-3073.
[http://dx.doi.org/10.4049/jimmunol.167.6.3064] [PMID: 11544290]
[55]
Shyu, W.C.; Lin, S.Z.; Yen, P.S.; Su, C.Y.; Chen, D.C.; Wang, H.J.; Li, H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J. Pharmacol. Exp. Ther., 2008, 324(2), 834-849.
[http://dx.doi.org/10.1124/jpet.107.127746] [PMID: 18029549]
[56]
Ziai, W.C. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke, 2013, 44(6)(1), S74, S78.
[http://dx.doi.org/10.1161/STROKEAHA.111.000662 ] [PMID: 23709738]
[57]
Eckert, A.; Huang, L.; Gonzalez, R.; Kim, H.S.; Hamblin, M.H.; Lee, J.P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl. Med., 2015, 4(7), 841-851.
[http://dx.doi.org/10.5966/sctm.2014-0184] [PMID: 26025980]
[58]
Li, H.; Wu, J.; Shen, H.; Yao, X.; Liu, C.; Pianta, S.; Han, J.; Borlongan, C.V.; Chen, G. Autophagy in hemorrhagic stroke: Mechanisms and clinical implications. Prog. Neurobiol., 2018, 163-164, 79-97.
[http://dx.doi.org/10.1016/j.pneurobio.2017.04.002] [PMID: 28414101]
[59]
Thiebaut, A.M.; Hedou, E.; Marciniak, S.J.; Vivien, D.; Roussel, B.D. Proteostasis during cerebral ischemia. Front. Neurosci., 2019, 13, 637.
[http://dx.doi.org/10.3389/fnins.2019.00637] [PMID: 31275110]
[60]
Buckley, K.M.; Hess, D.L.; Sazonova, I.Y.; Periyasamy-Thandavan, S.; Barrett, J.R.; Kirks, R.; Grace, H.; Kondrikova, G.; Johnson, M.H.; Hess, D.C.; Schoenlein, P.V.; Hoda, M.N.; Hill, W.D. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp. Transl. Stroke Med., 2014, 6(1), 8.
[http://dx.doi.org/10.1186/2040-7378-6-8] [PMID: 24991402]
[61]
Shi, R.; Weng, J.; Zhao, L.; Li, X.M.; Gao, T.M.; Kong, J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther., 2012, 18(3), 250-260.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00295.x] [PMID: 22449108]
[62]
Ryan, F.; Khodagholi, F.; Dargahi, L.; Minai-Tehrani, D.; Ahmadiani, A. Temporal pattern and crosstalk of necroptosis markers with autophagy and apoptosis associated proteins in ischemic hippocampus. Neurotox. Res., 2018, 34(1), 79-92.
[http://dx.doi.org/10.1007/s12640-017-9861-3] [PMID: 29313217]
[63]
Cui, D.R.; Wang, L.; Jiang, W.; Qi, A.H.; Zhou, Q.H.; Zhang, X.L. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience, 2013, 246, 117-132.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.054] [PMID: 23644056]
[64]
Al-Ahmad, A.J.; Pervaiz, I.; Karamyan, V.T. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J. Neuroendocrinol., 2021, 33(2), e12931.
[http://dx.doi.org/10.1111/jne.12931] [PMID: 33506602]
[65]
Wu, Y.; Wu, J.; Ju, R.; Chen, Z.; Xu, Q. Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models. Cell Biochem. Funct., 2015, 33(4), 174-182.
[http://dx.doi.org/10.1002/cbf.3083] [PMID: 25914321]
[66]
Tornero, D.; Tsupykov, O.; Granmo, M.; Rodriguez, C. Grøّnning-Hansen, M.; Thelin, J.; Smozhanik, E.; Laterza, C.; Wattananit, S.; Ge, R.; Tatarishvili, J.; Grealish, S.; Brüstle, O.; Skibo, G.; Parmar, M.; Schouenborg, J.; Lindvall, O.; Kokaia, Z. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 2017, 140(3), aww347.
[http://dx.doi.org/10.1093/brain/aww347] [PMID: 28115364]
[67]
Jensen, M.B.; Yan, H.; Krishnaney-Davison, R.; Al Sawaf, A.; Zhang, S.C. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis., 2013, 22(4), 304-308.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2011.09.008] [PMID: 22078778]
[68]
Chang, D.J.; Lee, N.; Park, I.H.; Choi, C.; Jeon, I.; Kwon, J.; Oh, S.H.; Shin, D.A.; Do, J.T.; Lee, D.R.; Lee, H.; Hong, K.S.; Daley, G.Q.; Song, J.; Moon, H. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant., 2013, 22(8), 1427-1440.
[http://dx.doi.org/10.3727/096368912X657314] [PMID: 23044029]
[69]
Oh, S.H.; Jeong, Y.W.; Choi, W.; Noh, J.E.; Lee, S.; Kim, H.S. Multimodal therapeutic effects of neural precursor cells derived from human-induced pluripotent stem cells through episomal plasmid-based reprogramming in a rodent model of ischemic stroke. Stem Cells Int., 2020, 2020, 4061516.
[http://dx.doi.org/10.1155/2020/4061516]
[70]
Liu, S.P.; Fu, R.H.; Wu, D.C.; Hsu, C.Y.; Chang, C.H.; Lee, W.; Lee, Y.D.; Liu, C.H.; Chien, Y.J.; Lin, S.Z.; Shyu, W.C. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev., 2014, 23(4), 421-433.
[http://dx.doi.org/10.1089/scd.2013.0182] [PMID: 24266622]
[71]
Kawai, H.; Yamashita, T.; Ohta, Y.; Deguchi, K.; Nagotani, S.; Zhang, X.; Ikeda, Y.; Matsuura, T.; Abe, K. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J. Cereb. Blood Flow Metab., 2010, 30(8), 1487-1493.
[http://dx.doi.org/10.1038/jcbfm.2010.32] [PMID: 20216552]
[72]
Zong, Y.; Xin, L.; Goldstein, A.S.; Lawson, D.A.; Teitell, M.A.; Witte, O.N. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl. Acad. Sci. USA, 2009, 106(30), 12465-12470.
[http://dx.doi.org/10.1073/pnas.0905931106] [PMID: 19592505]
[73]
Huang, C.Y.; Fujimura, M.; Noshita, N.; Chang, Y.Y.; Chan, P.H. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2001, 21(2), 163-173.
[http://dx.doi.org/10.1097/00004647-200102000-00008] [PMID: 11176282]
[74]
Baudino, T.A.; McKay, C.; Pendeville-Samain, H.; Nilsson, J.A.; Maclean, K.H.; White, E.L.; Davis, A.C.; Ihle, J.N.; Cleveland, J.L. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev., 2002, 16(19), 2530-2543.
[http://dx.doi.org/10.1101/gad.1024602] [PMID: 12368264]
[75]
Miljan, E.A.; Sinden, J.D. Stem cell treatment of ischemic brain injury. Curr. Opin. Mol. Ther., 2009, 11(4), 394-403.
[PMID: 19649984]
[76]
Albekairi, T.H.; Vaidya, B.; Patel, R.; Nozohouri, S.; Villalba, H.; Zhang, Y.; Lee, Y.S.; Al-Ahmad, A.; Abbruscato, T.J. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: Role of organic anion transporting polypeptide (OATP). Pharmaceutics, 2019, 11(9), 467.
[http://dx.doi.org/10.3390/pharmaceutics11090467] [PMID: 31509975]
[77]
Payne, S.L.; Anandakumaran, P.N.; Varga, B.V.; Morshead, C.M.; Nagy, A.; Shoichet, M.S. In vitro maturation of human iPSC-derived neuroepithelial cells influences transplant survival in the stroke-injured rat brain. Tissue Eng. Part A, 2018, 24(3-4), 351-360.
[http://dx.doi.org/10.1089/ten.tea.2016.0515] [PMID: 28594288]
[78]
Benoit, J.P.; Faisant, N.; Venier-Julienne, M.C.; Menei, P. Development of microspheres for neurological disorders: From basics to clinical applications. J. Control. Release, 2000, 65(1-2), 285-296.
[http://dx.doi.org/10.1016/S0168-3659(99)00250-3] [PMID: 10699288]
[79]
Nicholas, A.P.; McInnis, C.; Gupta, K.B.; Snow, W.W.; Love, D.F.; Mason, D.W.; Ferrell, T.M.; Staas, J.K.; Tice, T.R. The fate of biodegradable microspheres injected into rat brain. Neurosci. Lett., 2002, 323(2), 85-88.
[http://dx.doi.org/10.1016/S0304-3940(01)02534-4] [PMID: 11950499]
[80]
Bible, E.; Chau, D.Y.S.; Alexander, M.R.; Price, J.; Shakesheff, K.M.; Modo, M. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat. Protoc., 2009, 4(10), 1440-1453.
[http://dx.doi.org/10.1038/nprot.2009.156] [PMID: 19798079]
[81]
Tornero, D.; Wattananit, S. Grøّnning Madsen, M.; Koch, P.; Wood, J.; Tatarishvili, J.; Mine, Y.; Ge, R.; Monni, E.; Devaraju, K.; Hevner, R.F.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain, 2013, 136(12), 3561-3577.
[http://dx.doi.org/10.1093/brain/awt278] [PMID: 24148272]
[82]
Knight, D.K.; Gillies, E.R.; Mequanint, K. Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules, 2011, 12(7), 2475-2487.
[http://dx.doi.org/10.1021/bm200149k] [PMID: 21619072]
[83]
Huang, Y.; Wang, L.; Li, S.; Liu, X.; Lee, K.; Verbeken, E.; van de Werf, F.; de Scheerder, I. Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card. Care, 2006, 8(4), 210-216.
[http://dx.doi.org/10.1080/17482940600949661] [PMID: 17162547]
[84]
Kropp, M.; Morawa, K.M.; Mihov, G.; Salz, A.; Harmening, N.; Franken, A.; Kemp, A.; Dias, A.; Thies, J.; Johnen, S.; Thumann, G. Biocompatibility of poly(ester amide) (PEA) microfibrils in ocular tissues. Polymers (Basel), 2014, 6(1), 243-260.
[http://dx.doi.org/10.3390/polym6010243]
[85]
Darsalia, V.; Allison, S.J.; Cusulin, C.; Monni, E.; Kuzdas, D.; Kallur, T.; Lindvall, O.; Kokaia, Z. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J. Cereb. Blood Flow Metab., 2011, 31(1), 235-242.
[http://dx.doi.org/10.1038/jcbfm.2010.81] [PMID: 20531461]
[86]
Memanishvili, T.; Kupatadze, N.; Tugushi, D.; Katsarava, R.; Wattananit, S.; Hara, N.; Tornero, D.; Kokaia, Z. Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomed. Mater., 2016, 11(2), 025011.
[http://dx.doi.org/10.1088/1748-6041/11/2/025011] [PMID: 27007569]
[87]
Wu, R.; Luo, S.; Yang, H.; Hu, X.; Lin, A.; Pan, G.; Zhong, X.; Li, Z. Transplantation of neural progenitor cells generated from human urine epithelial cell-derived induced pluripotent stem cells improves neurological functions in rats with stroke. Discov. Med., 2020, 29(156), 53-64.
[PMID: 32598863]
[88]
Ould-Brahim, F.; Sarma, S.N.; Syal, C.; Lu, K.J.; Seegobin, M.; Carter, A.; Jeffers, M.S.; Doré, C.; Stanford, W.L.; Corbett, D.; Wang, J. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev., 2018, 27(16), 1085-1096.
[http://dx.doi.org/10.1089/scd.2018.0055] [PMID: 29893190]
[89]
Chau, M.J.; Deveau, T.C.; Song, M.; Gu, X.; Chen, D.; Wei, L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells, 2014, 32(12), 3075-3087.
[http://dx.doi.org/10.1002/stem.1802] [PMID: 25132189]
[90]
McCrary, M.R.; Jesson, K.; Wei, Z.Z.; Logun, M.; Lenear, C.; Tan, S.; Gu, X.; Jiang, M.Q.; Karumbaiah, L.; Yu, S.P.; Wei, L. Cortical transplantation of brain-mimetic glycosaminoglycan scaffolds and neural progenitor cells promotes vascular regeneration and functional recovery after ischemic stroke in mice. Adv. Healthc. Mater., 2020, 9(5), 1900285.
[http://dx.doi.org/10.1002/adhm.201900285] [PMID: 31977165]
[91]
Wang, Z.; Zheng, D.; Tan, Y.S.; Yuan, Q.; Yuan, F.; Zhang, S.C. Enabling survival of transplanted neural precursor cells in the ischemic brain. Adv. Sci. (Weinh.), 2023, 10(33), 2302527.
[http://dx.doi.org/10.1002/advs.202302527] [PMID: 37867250]
[92]
Yu, S.P.; Tung, J.K.; Wei, Z.Z.; Chen, D.; Berglund, K.; Zhong, W.; Zhang, J.Y.; Gu, X.; Song, M.; Gross, R.E.; Lin, S.Z.; Wei, L. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke. J. Neurosci., 2019, 39(33), 6571-6594.
[http://dx.doi.org/10.1523/JNEUROSCI.2010-18.2019] [PMID: 31263065]
[93]
Nih, L.R.; Moshayedi, P.; Llorente, I.L.; Berg, A.R.; Cinkornpumin, J.; Lowry, W.E.; Segura, T.; Carmichael, S.T. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data Brief, 2017, 10, 202-209.
[http://dx.doi.org/10.1016/j.dib.2016.11.069] [PMID: 27995155]
[94]
Chau, M.; Deveau, T.C.; Song, M.; Wei, Z.Z.; Gu, X.; Yu, S.P.; Wei, L. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke. Oncotarget, 2017, 8(57), 97537-97553.
[http://dx.doi.org/10.18632/oncotarget.22180] [PMID: 29228630]
[95]
Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350), 212-215.
[http://dx.doi.org/10.1038/nature10135] [PMID: 21572395]
[96]
Bang, O.Y.; Kim, E.H.; Cha, J.M.; Moon, G.J. Adult stem cell therapy for stroke: Challenges and progress. J. Stroke, 2016, 18(3), 256-266.
[http://dx.doi.org/10.5853/jos.2016.01263] [PMID: 27733032]
[97]
Schenke-Layland, K.; Rhodes, K.E.; Angelis, E.; Butylkova, Y.; Heydarkhan-Hagvall, S.; Gekas, C.; Zhang, R.; Goldhaber, J.I.; Mikkola, H.K.; Plath, K.; MacLellan, W.R. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 2008, 26(6), 1537-1546.
[http://dx.doi.org/10.1634/stemcells.2008-0033] [PMID: 18450826]
[98]
Hanna, J.; Markoulaki, S.; Schorderet, P.; Carey, B.W.; Beard, C.; Wernig, M.; Creyghton, M.P.; Steine, E.J.; Cassady, J.P.; Foreman, R.; Lengner, C.J.; Dausman, J.A.; Jaenisch, R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133(2), 250-264.
[http://dx.doi.org/10.1016/j.cell.2008.03.028] [PMID: 18423197]
[99]
Lee, M.O.; Moon, S.H.; Jeong, H.C.; Yi, J.Y.; Lee, T.H.; Shim, S.H.; Rhee, Y.H.; Lee, S.H.; Oh, S.J.; Lee, M.Y.; Han, M.J.; Cho, Y.S.; Chung, H.M.; Kim, K.S.; Cha, H.J. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. USA, 2013, 110(35), E3281-E3290.
[http://dx.doi.org/10.1073/pnas.1303669110] [PMID: 23918355]
[100]
Zhu, Y.; Wan, S.; Zhan, R. Inducible pluripotent stem cells for the treatment of ischemic stroke: Current status and problems. Rev. Neurosci., 2012, 23(4), 393-402.
[http://dx.doi.org/10.1515/revneuro-2012-0042] [PMID: 23089605]
[101]
Amabile, G.; Meissner, A. Induced pluripotent stem cells: Current progress and potential for regenerative medicine. Trends Mol. Med., 2009, 15(2), 59-68.
[http://dx.doi.org/10.1016/j.molmed.2008.12.003] [PMID: 19162546]
[102]
Cai, J.; Li, W.; Su, H.; Qin, D.; Yang, J.; Zhu, F.; Xu, J.; He, W.; Guo, X.; Labuda, K.; Peterbauer, A.; Wolbank, S.; Zhong, M.; Li, Z.; Wu, W.; So, K.F.; Redl, H.; Zeng, L.; Esteban, M.A.; Pei, D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J. Biol. Chem., 2010, 285(15), 11227-11234.
[http://dx.doi.org/10.1074/jbc.M109.086389] [PMID: 20139068]
[103]
Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; Downes, M.; Yu, R.; Stewart, R.; Ren, B.; Thomson, J.A.; Evans, R.M.; Ecker, J.R. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336), 68-73.
[http://dx.doi.org/10.1038/nature09798] [PMID: 21289626]
[104]
Wakabayashi, K.; Nagai, A.; Sheikh, A.M.; Shiota, Y.; Narantuya, D.; Watanabe, T.; Masuda, J.; Kobayashi, S.; Kim, S.U.; Yamaguchi, S. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J. Neurosci. Res., 2010, 88(5), 1017-1025.
[http://dx.doi.org/10.1002/jnr.22279] [PMID: 19885863]
[105]
Chen, J.; Li, Y.; Katakowski, M.; Chen, X.; Wang, L.; Lu, D.; Lu, M.; Gautam, S.C.; Chopp, M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res., 2003, 73(6), 778-786.
[http://dx.doi.org/10.1002/jnr.10691] [PMID: 12949903]
[106]
Cui, J.; Cui, C.; Cui, Y.; Li, R.; Sheng, H.; Jiang, X.; Tian, Y.; Wang, K.; Gao, J. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell. Physiol. Biochem., 2017, 42(1), 137-144.
[http://dx.doi.org/10.1159/000477122] [PMID: 28505619]
[107]
Azevedo-Pereira, RL.; Daadi, MM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke. Methods Mol. Biol., 2013, 1059, 157-167.
[http://dx.doi.org/10.1007/978-1-62703-574-3_14]
[108]
Gao, L.; Xu, W.; Li, T.; Chen, J.; Shao, A.; Yan, F.; Chen, G. Stem cell therapy: A promising therapeutic method for intracerebral hemorrhage. Cell Transplant., 2018, 27(12), 1809-1824.
[http://dx.doi.org/10.1177/0963689718773363] [PMID: 29871521]
[109]
Hu, C.; Zhao, L.; Zhang, L.; Bao, Q.; Li, L. Mesenchymal stem cell-based cell-free strategies: Safe and effective treatments for liver injury. Stem Cell Res. Ther., 2020, 11(1), 377.
[http://dx.doi.org/10.1186/s13287-020-01895-1] [PMID: 32883343]
[110]
Villarreal, C.F.; Evangelista, A.F.; Soares, M.B.P. Cell-free therapy: A neuroregenerative approach to sensory neuropathy? Neural Regen. Res., 2019, 14(8), 1383-1384.
[http://dx.doi.org/10.4103/1673-5374.253522] [PMID: 30964062]
[111]
Singh, A.B.; Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal., 2005, 17(10), 1183-1193.
[http://dx.doi.org/10.1016/j.cellsig.2005.03.026] [PMID: 15982853]
[112]
Budnik, V. Ruiz-Cañٌada, C.; Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci., 2016, 17(3), 160-172.
[http://dx.doi.org/10.1038/nrn.2015.29] [PMID: 26891626]
[113]
Castellana, D.; Toti, F.; Freyssinet, J.M. Membrane microvesicles: Macromessengers in cancer disease and progression. Thromb. Res., 2010, 125(Suppl. 2), S84-S88.
[http://dx.doi.org/10.1016/S0049-3848(10)70021-9] [PMID: 20434014]
[114]
Castellana, D.; Zobairi, F.; Martinez, M.C.; Panaro, M.A.; Mitolo, V.; Freyssinet, J.M.; Kunzelmann, C. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: A role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res., 2009, 69(3), 785-793.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1946] [PMID: 19155311]
[115]
Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol., 2017, 27(3), 172-188.
[http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
[116]
Hur, Y.H.; Cerione, R.A.; Antonyak, M.A. Extracellular vesicles and their roles in stem cell biology. Stem Cells, 2020, 38(4), 469-476.
[http://dx.doi.org/10.1002/stem.3140] [PMID: 31828924]
[117]
Reclusa, P.; Taverna, S.; Pucci, M.; Durendez, E.; Calabuig, S.; Manca, P.; Serrano, M.J.; Sober, L.; Pauwels, P.; Russo, A.; Rolfo, C. Exosomes as diagnostic and predictive biomarkers in lung cancer. J. Thorac. Dis., 2017, 9(S13), S1373-S1382.
[http://dx.doi.org/10.21037/jtd.2017.10.67] [PMID: 29184676]
[118]
Peng, G.; Yuan, Y.; Wu, S.; He, F.; Hu, Y.; Luo, B. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl. Stroke Res., 2015, 6(6), 437-445.
[http://dx.doi.org/10.1007/s12975-015-0422-x] [PMID: 26415639]
[119]
Frühbeis, C. Fröِhlich, D.; Krämer-Albers, E.M. Emerging roles of exosomes in neuron-glia communication. Front. Physiol., 2012, 3, 119.
[http://dx.doi.org/10.3389/fphys.2012.00119] [PMID: 22557979]
[120]
Aryani, A.; Denecke, B. Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol. Neurobiol., 2016, 53(2), 818-834.
[http://dx.doi.org/10.1007/s12035-014-9054-5] [PMID: 25502465]
[121]
Fröِhlich, D.; Kuo, W.P.; Frühbeis, C.; Sun, J.J.; Zehendner, C.M.; Luhmann, H.J.; Pinto, S.; Toedling, J.; Trotter, J.; Krämer-Albers, E.M. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 20130510.
[http://dx.doi.org/10.1098/rstb.2013.0510] [PMID: 25135971]
[122]
Krämer-Albers, E.M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Möِbius, W.; Berger, H.; Nave, K.A.; Schild, H.; Trotter, J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl., 2007, 1(11), 1446-1461.
[http://dx.doi.org/10.1002/prca.200700522] [PMID: 21136642]
[123]
You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739.
[http://dx.doi.org/10.1080/15548627.2015.1017192] [PMID: 25951043]
[124]
Oh, M.; Lee, J.; Kim, Y.; Rhee, W.; Park, J. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci., 2018, 19(6), 1715.
[http://dx.doi.org/10.3390/ijms19061715] [PMID: 29890746]
[125]
Ye, M.; Ni, Q.; Qi, H.; Qian, X.; Chen, J.; Guo, X.; Li, M.; Zhao, Y.; Xue, G.; Deng, H.; Zhang, L. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs. Int. J. Biol. Sci., 2019, 15(1), 158-168.
[http://dx.doi.org/10.7150/ijbs.28392] [PMID: 30662356]
[126]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[127]
Joladarashi, D.; Garikipati, V.N.S.; Thandavarayan, R.A.; Verma, S.K.; Mackie, A.R.; Khan, M.; Gumpert, A.M.; Bhimaraj, A.; Youker, K.A.; Uribe, C.; Suresh Babu, S.; Jeyabal, P.; Kishore, R.; Krishnamurthy, P. Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury. J. Am. Coll. Cardiol., 2015, 66(20), 2214-2226.
[http://dx.doi.org/10.1016/j.jacc.2015.09.009] [PMID: 26564600]
[128]
Santoso, M.R.; Ikeda, G.; Tada, Y.; Jung, J.H.; Vaskova, E.; Sierra, R.G.; Gati, C.; Goldstone, A.B.; von Bornstaedt, D.; Shukla, P.; Wu, J.C.; Wakatsuki, S.; Woo, Y.J.; Yang, P.C. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair. J. Am. Heart Assoc., 2020, 9(6), e014345.
[http://dx.doi.org/10.1161/JAHA.119.014345] [PMID: 32131688]
[129]
Nong, K.; Wang, W.; Niu, X.; Hu, B.; Ma, C.; Bai, Y.; Wu, B.; Wang, Y.; Ai, K. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy, 2016, 18(12), 1548-1559.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.002] [PMID: 27592404]
[130]
Hettiarachchi, NT.; Boyle, JP.; Dallas, ML.; Al-Owais, MM.; Scragg, JL. Peers, C Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes. Cell Death Dis., 2017, 8(6), e2884.
[http://dx.doi.org/10.1038/cddis.2017.276]
[131]
Carmichael, S.T. Rodent models of focal stroke: Size, mechanism, and purpose. NeuroRx, 2005, 2(3), 396-409.
[http://dx.doi.org/10.1602/neurorx.2.3.396] [PMID: 16389304]
[132]
Krencik, R.; Weick, J.P.; Liu, Y.; Zhang, Z.J.; Zhang, S.C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol., 2011, 29(6), 528-534.
[http://dx.doi.org/10.1038/nbt.1877] [PMID: 21602806]
[133]
Li, X.; Tao, Y.; Bradley, R.; Du, Z.; Tao, Y.; Kong, L.; Dong, Y.; Jones, J.; Yan, Y.; Harder, C.R.K.; Friedman, L.M.; Bilal, M.; Hoffmann, B.; Zhang, S.C. Fast generation of functional subtype astrocytes from human pluripotent stem cells. Stem Cell Rep, 2018, 11(4), 998-1008.
[http://dx.doi.org/10.1016/j.stemcr.2018.08.019] [PMID: 30269954]
[134]
Llorente, I.L.; Xie, Y.; Mazzitelli, J.A.; Hatanaka, E.A.; Cinkornpumin, J.; Miller, D.R.; Lin, Y.; Lowry, W.E.; Carmichael, S.T. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci. Transl. Med., 2021, 13(590), eaaz6747.
[http://dx.doi.org/10.1126/scitranslmed.aaz6747] [PMID: 33883275]
[135]
Ma, D.K.; Ming, G.; Song, H. Glial influences on neural stem cell development: Cellular niches for adult neurogenesis. Curr. Opin. Neurobiol., 2005, 15(5), 514-520.
[http://dx.doi.org/10.1016/j.conb.2005.08.003] [PMID: 16144763]
[136]
Curtis, MA.; Kam, M.; Nannmark, U.; Anderson, MF.; Axell, MZ.; Wikkelso, C. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 2007, 315(5816), 1243-1249.
[137]
Gage, F.H. Mammalian neural stem cells. Science, 2000, 287(5457), 1433-1438.
[http://dx.doi.org/10.1126/science.287.5457.1433] [PMID: 10688783]
[138]
Chen, K-H.; Lin, K-C.; Wallace, C.G.; Li, Y-C.; Shao, P-L.; Chiang, J.Y.; Sung, P.H.; Yip, H.K. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am. J. Transl. Res., 2019, 11(9), 6232-6248.
[PMID: 31632590]
[139]
Chen, L.; Zhang, G.; Khan, A.A.; Guo, X.; Gu, Y. Clinical efficacy and meta-analysis of stem cell therapies for patients with brain ischemia. Stem Cells Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/6129579] [PMID: 27656217]
[140]
Detante, O.; Moisan, A.; Hommel, M.; Jaillard, A. Controlled clinical trials of cell therapy in stroke: Meta-analysis at six months after treatment. Int. J. Stroke, 2017, 12(7), 748-751.
[http://dx.doi.org/10.1177/1747493017696098] [PMID: 28884654]
[141]
Díez-Tejedor, E.; Gutiérrez-Fernández, M.; Martínez-Sánchez, P.; Rodríguez-Frutos, B. Ruiz-Ares, G.; Lara, M.L.; Gimeno, B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2694-2700.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011] [PMID: 25304723]
[142]
Liu, X; Jia, X. RNeuroprotection of stem cells against ischemic brain injury: From bench to clinic. Transl. Stroke Res 2027, 10, 01163.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy