Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Effects of Psychological Stress on Multiple Sclerosis via HPA Axis-mediated Modulation of Natural Killer T Cell Activity

Author(s): Yafei Gao, Wenying Liu, Paiyu Liu, Min Li* and Bing Ni*

Volume 23, Issue 12, 2024

Published on: 30 May, 2024

Page: [1450 - 1462] Pages: 13

DOI: 10.2174/0118715273315953240528075542

Price: $65

Abstract

The involvement of psychological stress and Natural Killer T (NKT) cells in the pathophysiology of multiple sclerosis has been identified in the progression of this disease. Psychological stress can impact disease occurrence, relapse, and severity through its effects on the Hypothalamic- Pituitary-Adrenal (HPA) axis and immune responses. NKT cells are believed to play a pivotal role in the pathogenesis of multiple sclerosis, with recent evidence suggesting their distinct functional alterations following activation of the HPA axis under conditions of psychological stress. This review summarizes the associations between psychological stress, NKT cells, and multiple sclerosis while discussing the potential mechanism for how NKT cells mediate the effects of psychological stress on this disease.

[1]
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47(1): 58-70.
[http://dx.doi.org/10.1016/j.tins.2023.11.005] [PMID: 38102058]
[2]
Patsopoulos NA, Baranzini SE, Santaniello A, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019; 365(6460): eaav7188.
[http://dx.doi.org/10.1126/science.aav7188] [PMID: 31604244]
[3]
Abdollahpour I, Nedjat S, Mansournia MA, Eckert S, Weinstock-Guttman B. Stress-full life events and multiple sclerosis: A population-based incident case-control study. Mult Scler Relat Disord 2018; 26: 168-72.
[http://dx.doi.org/10.1016/j.msard.2018.09.026] [PMID: 30268037]
[4]
Kuhlmann T, Moccia M, Coetzee T, et al. Multiple sclerosis progression: Time for a new mechanism-driven framework. Lancet Neurol 2023; 22(1): 78-88.
[http://dx.doi.org/10.1016/S1474-4422(22)00289-7] [PMID: 36410373]
[5]
Mohr DC, Lovera J, Brown T, et al. A randomized trial of stress management for the prevention of new brain lesions in MS. Neurology 2012; 79(5): 412-9.
[http://dx.doi.org/10.1212/WNL.0b013e3182616ff9] [PMID: 22786596]
[6]
Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol 2010; 11(3): 197-206.
[http://dx.doi.org/10.1038/ni.1841] [PMID: 20139988]
[7]
Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue specific distribution of iNKT cells impacts their cytokine response. Immunity 2015; 43(3): 566-78.
[http://dx.doi.org/10.1016/j.immuni.2015.06.025] [PMID: 26362265]
[8]
Crosby CM, Kronenberg M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol 2018; 18(9): 559-74.
[http://dx.doi.org/10.1038/s41577-018-0034-2] [PMID: 29967365]
[9]
Cui G, Shimba A, Jin J, et al. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci Immunol 2022; 7(76): eabj8760.
[http://dx.doi.org/10.1126/sciimmunol.abj8760] [PMID: 36269840]
[10]
Carrión B, Liu Y, Hadi M, et al. Transcriptome and function of novel immunosuppressive autoreactive invariant natural killer t cells that are absent in progressive multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2021; 8(6): e1065.
[http://dx.doi.org/10.1212/NXI.0000000000001065] [PMID: 34385365]
[11]
Kaer LV. α-Galactosylceramide therapy for autoimmune diseases: Prospects and obstacles. Nat Rev Immunol 2005; 5(1): 31-42.
[http://dx.doi.org/10.1038/nri1531] [PMID: 15630427]
[12]
Sato W, Noto D, Araki M, et al. First-in-human clinical trial of the NKT cell-stimulatory glycolipid OCH in multiple sclerosis. Ther Adv Neurol Disord 2023; 16.
[http://dx.doi.org/10.1177/17562864231162153] [PMID: 36993937]
[13]
Haykin H, Rolls A. The neuroimmune response during stress: A physiological perspective. Immunity 2021; 54(9): 1933-47.
[http://dx.doi.org/10.1016/j.immuni.2021.08.023] [PMID: 34525336]
[14]
Irwin MR. Human psychoneuroimmunology: 20 Years of discovery. Brain Behav Immun 2008; 22(2): 129-39.
[http://dx.doi.org/10.1016/j.bbi.2007.07.013] [PMID: 17911004]
[15]
Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 2021; 21(4): 233-43.
[http://dx.doi.org/10.1038/s41577-020-00464-0] [PMID: 33149283]
[16]
Rudak PT, Choi J, Parkins KM, et al. Chronic stress physically spares but functionally impairs innate-like invariant T cells. Cell Rep 2021; 35(2): 108979.
[http://dx.doi.org/10.1016/j.celrep.2021.108979] [PMID: 33852855]
[17]
Karagkouni A, Alevizos M, Theoharides TC. Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12(10): 947-53.
[http://dx.doi.org/10.1016/j.autrev.2013.02.006] [PMID: 23537508]
[18]
Mohr DC, Hart SL, Julian L, Cox D, Pelletier D. Association between stressful life events and exacerbation in multiple sclerosis: A meta-analysis. BMJ 2004; 328(7442): 731.
[http://dx.doi.org/10.1136/bmj.38041.724421.55] [PMID: 15033880]
[19]
Grant I, Brown GW, Harris T, McDonald WI, Patterson T, Trimble MR. Severely threatening events and marked life difficulties preceding onset or exacerbation of multiple sclerosis. J Neurol Neurosurg Psychiatry 1989; 52(1): 8-13.
[http://dx.doi.org/10.1136/jnnp.52.1.8] [PMID: 2709039]
[20]
Spitzer C, Bouchain M, Winkler LY, et al. Childhood trauma in multiple sclerosis: A case-control study. Psychosom Med 2012; 74(3): 312-8.
[http://dx.doi.org/10.1097/PSY.0b013e31824c2013] [PMID: 22408134]
[21]
Jiang J, Abduljabbar S, Zhang C, Osier N. The relationship between stress and disease onset and relapse in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2022; 67: 104142.
[http://dx.doi.org/10.1016/j.msard.2022.104142] [PMID: 36155965]
[22]
Rehan ST, Khan Z, Shuja SH, et al. Association of adverse childhood experiences with adulthood multiple sclerosis: A systematic review of observational studies. Brain Behav 2023; 13(6): e3024.
[http://dx.doi.org/10.1002/brb3.3024] [PMID: 37128143]
[23]
Ackerman KD, Stover A, Heyman R, et al. Relationship of cardiovascular reactivity, stressful life events, and multiple sclerosis disease activity. Brain Behav Immun 2003; 17(3): 141-51.
[http://dx.doi.org/10.1016/S0889-1591(03)00047-3] [PMID: 12706412]
[24]
Jiang X, Olsson T, Hillert J, Kockum I, Alfredsson L. Stressful life events are associated with the risk of multiple sclerosis. Eur J Neurol 2020; 27(12): 2539-48.
[http://dx.doi.org/10.1111/ene.14458]
[25]
Mohr DC, Goodkin DE, Bacchetti P, et al. Psychological stress and the subsequent appearance of new brain MRI lesions in MS. Neurology 2000; 55(1): 55-61.
[http://dx.doi.org/10.1212/WNL.55.1.55] [PMID: 10891906]
[26]
Meyer-Arndt L, Hetzer S, Asseyer S, et al. Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiol Stress 2020; 13: 100244.
[http://dx.doi.org/10.1016/j.ynstr.2020.100244] [PMID: 33344700]
[27]
Meyer-Arndt L, Schmitz-Hübsch T, Bellmann-Strobl J, et al. Neural processes of psychological stress and relaxation predict the future evolution of quality of life in multiple sclerosis. Front Neurol 2021; 12: 753107.
[http://dx.doi.org/10.3389/fneur.2021.753107] [PMID: 34887828]
[28]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[29]
Griffin AC, Lo WD, Wolny AC, Whitacre CC. Suppression of experimental autoimmune encephalomyelitis by restraint stress: Sex differences. J Neuroimmunol 1993; 44(1): 103-16.
[http://dx.doi.org/10.1016/0165-5728(93)90273-2] [PMID: 8496336]
[30]
Levine S, Strebel R, Wenk EJ, Harman PJ. Suppression of experimental allergic encephalomyelitis by stress. Exp Biol Med 1962; 109(2): 294-8.
[http://dx.doi.org/10.3181/00379727-109-27183] [PMID: 14464656]
[31]
Correa SG, Rodriguez-Galán MC, Rivero VE, Riera CM. Chronic varied stress modulates experimental autoimmune encephalomyelitis in Wistar rats. Brain Behav Immun 1998; 12(2): 134-48.
[http://dx.doi.org/10.1006/brbi.1998.0519] [PMID: 9646938]
[32]
Harpaz I, Abutbul S, Nemirovsky A, Gal R, Cohen H, Monsonego A. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C 57 BL/6 mice: Glucocorticoids as a double‐edged sword. Eur J Immunol 2013; 43(3): 758-69.
[http://dx.doi.org/10.1002/eji.201242613] [PMID: 23255172]
[33]
Stephan M, Straub RH, Breivik T, Pabst R, von Hörsten S. Postnatal maternal deprivation aggravates experimental autoimmune encephalomyelitis in adult Lewis rats: reversal by chronic imipramine treatment. Int J Dev Neurosci 2002; 20(2): 125-32.
[http://dx.doi.org/10.1016/S0736-5748(02)00007-2] [PMID: 12034143]
[34]
Paladini MS, Marangon D, Rossetti AC, et al. Prenatal stress impairs spinal cord oligodendrocyte maturation via bdnf signaling in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Cell Mol Neurobiol 2022; 42(4): 1225-40.
[http://dx.doi.org/10.1007/s10571-020-01014-x] [PMID: 33259004]
[35]
Pérez-Nievas BG, García-Bueno B, Madrigal JLM, Leza JC. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated. J Neuroinflammation 2010; 7(1): 60.
[http://dx.doi.org/10.1186/1742-2094-7-60] [PMID: 20929574]
[36]
Gerrard B, Singh V, Babenko O, et al. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Neuroscience 2017; 359: 299-307.
[http://dx.doi.org/10.1016/j.neuroscience.2017.07.033] [PMID: 28739526]
[37]
Chandler N, Jacobson S, Esposito P, Connolly R, Theoharides TC. Acute stress shortens the time to onset of experimental allergic encephalomyelitis in SJL/J mice. Brain Behav Immun 2002; 16(6): 757-63.
[http://dx.doi.org/10.1016/S0889-1591(02)00028-4] [PMID: 12776697]
[38]
Habek M. Immune and autonomic nervous system interactions in multiple sclerosis: clinical implications. Clin Auton Res 2019; 29(3): 267-75.
[http://dx.doi.org/10.1007/s10286-019-00605-z] [PMID: 30963343]
[39]
Racosta JM, Kimpinski K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res 2016; 26(1): 23-31.
[http://dx.doi.org/10.1007/s10286-015-0325-7] [PMID: 26691635]
[40]
Erkut ZA, Hofman MA, Ravid R, Swaab DF. Increased activity of hypothalamic corticotropin-releasing hormone neurons in multiple sclerosis. J Neuroimmunol 1995; 62(1): 27-33.
[http://dx.doi.org/10.1016/0165-5728(95)00098-M] [PMID: 7499489]
[41]
Genç B, Şen S, Aslan K, İncesu L. Volumetric changes in hypothalamic subunits in patients with relapsing remitting multiple sclerosis. Neuroradiology 2023; 65(5): 899-905.
[http://dx.doi.org/10.1007/s00234-023-03122-z] [PMID: 36720749]
[42]
Stoppe M, Meyer K, Schlingmann M, Olbrich S, Then Bergh F. Hyperstable arousal regulation in multiple sclerosis. Psychoneuroendocrinology 2019; 110: 104417.
[http://dx.doi.org/10.1016/j.psyneuen.2019.104417] [PMID: 31546115]
[43]
Arata M, Sternberg Z. Neuroendocrine responses to transvascular autonomic modulation: A modified balloon angioplasty in multiple sclerosis patients. Horm Metab Res 2015; 48(2): 123-9.
[http://dx.doi.org/10.1055/s-0035-1547235] [PMID: 25789986]
[44]
Ysrraelit MC, Gaitán MI, Lopez AS, Correale J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology 2008; 71(24): 1948-54.
[http://dx.doi.org/10.1212/01.wnl.0000336918.32695.6b] [PMID: 19064876]
[45]
Huitinga I, Erkut ZA, van Beurden D, Swaab DF. Impaired hypothalamus‐pituitary‐adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann Neurol 2004; 55(1): 37-45.
[http://dx.doi.org/10.1002/ana.10766] [PMID: 14705110]
[46]
Bergh FT, Kümpfel T, Trenkwalder C, Rupprecht R, Holsboer F. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS. Neurology 1999; 53(4): 772-7.
[http://dx.doi.org/10.1212/WNL.53.4.772] [PMID: 10489039]
[47]
Melief J, de Wit SJ, van Eden CG, et al. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter. Acta Neuropathol 2013; 126(2): 237-49.
[http://dx.doi.org/10.1007/s00401-013-1140-7] [PMID: 23812288]
[48]
Poliak S, Mor F, Conlon P, et al. Stress and autoimmunity: the neuropeptides corticotropin-releasing factor and urocortin suppress encephalomyelitis via effects on both the hypothalamic-pituitary-adrenal axis and the immune system. J Immunol 1997; 158(12): 5751-6.
[http://dx.doi.org/10.4049/jimmunol.158.12.5751] [PMID: 9190925]
[49]
Benou C, Wang Y, Imitola J, et al. Corticotropin-releasing hormone contributes to the peripheral inflammatory response in experimental autoimmune encephalomyelitis. J Immunol 2005; 174(9): 5407-13.
[http://dx.doi.org/10.4049/jimmunol.174.9.5407] [PMID: 15843539]
[50]
MacPhee IA, Antoni FA, Mason DW. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 1989; 169(2): 431-45.
[http://dx.doi.org/10.1084/jem.169.2.431] [PMID: 2783450]
[51]
Villas PA, Dronsfield MJ, Blankenhorn EP. Experimental allergic encephalomyelitis and corticosterone studies in resistant and] susceptible rat strains. Clin Immunol Immunopathol 1991; 61(1): 29-40.
[http://dx.doi.org/10.1016/S0090-1229(06)80005-X] [PMID: 1959238]
[52]
Mason D, MacPhee I, Antoni F. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunology 1990; 70(1): 1-5.
[PMID: 2354853]
[53]
Ji N, Kovalovsky A, Fingerle-Rowson G, Guentzel MN, Forsthuber TG. Macrophage migration inhibitory factor promotes resistance to glucocorticoid treatment in EAE. Neurol Neuroimmunol Neuroinflamm 2015; 2(5): e139.
[http://dx.doi.org/10.1212/NXI.0000000000000139] [PMID: 26280015]
[54]
Wang Z, Zheng G, Li G, et al. Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. J Cell Mol Med 2020; 24(23): 13703-14.
[http://dx.doi.org/10.1111/jcmm.15928] [PMID: 33094923]
[55]
Benjamins JA, Nedelkoska L, Bealmear B, Lisak RP. ACTH protects mature oligodendroglia from excitotoxic and inflammation-related damage in vitro. Glia 2013; 61(8): 1206-17.
[http://dx.doi.org/10.1002/glia.22504] [PMID: 23832579]
[56]
Dittel LJ, Dittel BN, Brod SA. Ingested ACTH blocks Th17 production by inhibiting GALT IL-6. J Neurol Sci 2020; 409: 116602.
[http://dx.doi.org/10.1016/j.jns.2019.116602] [PMID: 31812846]
[57]
Berkovich R, Agius MA. Mechanisms of action of ACTH in the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord 2014; 7(2): 83-96.
[http://dx.doi.org/10.1177/1756285613518599] [PMID: 24587825]
[58]
Citterio A, La Mantia L, Ciucci G, et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Libr 2000; (4): CD001331.
[http://dx.doi.org/10.1002/14651858.CD001331] [PMID: 11034713]
[59]
Segamarchi C, Silva B, Saidon P, Garcea O, Alonso R. Would it be recommended treating multiple sclerosis relapses with high dose oral instead intravenous steroids during the COVID-19 pandemic? Yes. Mult Scler Relat Disord 2020; 46: 102449.
[http://dx.doi.org/10.1016/j.msard.2020.102449] [PMID: 32853893]
[60]
Brusaferri F, Candelise L. Steriods for multiple sclerosis and optic neuritis: A meta-analysis of randomized controlled clinical trials. J Neurol 2000; 247(6): 435-42.
[http://dx.doi.org/10.1007/s004150070172] [PMID: 10929272]
[61]
Le Page E, Veillard D, Laplaud DA, et al. Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): A randomised, controlled, double-blind, non-inferiority trial. Lancet 2015; 386(9997): 974-81.
[http://dx.doi.org/10.1016/S0140-6736(15)61137-0] [PMID: 26135706]
[62]
Myhr KM, Mellgren SI. Corticosteroids in the treatment of multiple sclerosis. Acta Neurol Scand 2009; 120(189): 73-80.
[http://dx.doi.org/10.1111/j.1600-0404.2009.01213.x] [PMID: 19566504]
[63]
Arnason BG, Berkovich R, Catania A, Lisak RP, Zaidi M. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult Scler 2013; 19(2): 130-6.
[http://dx.doi.org/10.1177/1352458512458844] [PMID: 23034287]
[64]
Benjamins JA, Nedelkoska L, Lisak RP. Melanocortin receptor subtypes are expressed on cells in the oligodendroglial lineage and signal ACTH protection. J Neurosci Res 2018; 96(3): 427-35.
[http://dx.doi.org/10.1002/jnr.24141] [PMID: 28877366]
[65]
Berkovich R, Bakshi R, Amezcua L, et al. Adrenocorticotropic hormone versus methylprednisolone added to interferon β in patients with multiple sclerosis experiencing breakthrough disease: A randomized, rater-blinded trial. Ther Adv Neurol Disord 2017; 10(1): 3-17.
[http://dx.doi.org/10.1177/1756285616670060] [PMID: 28450891]
[66]
Simsarian J, Saunders C, Smith M. Five-day regimen of intramuscular or subcutaneous self-administered adrenocorticotropic hormone gel for acute exacerbations of multiple sclerosis: A prospective, randomized, open-label pilot trial. Drug Des Devel Ther 2011; 5: 381-9.
[http://dx.doi.org/10.2147/DDDT.S19331] [PMID: 21792296]
[67]
Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 2011; 11(2): 131-42.
[http://dx.doi.org/10.1038/nri2904] [PMID: 21267014]
[68]
Gately CM, Podbielska M, Counihan T, et al. Invariant Natural Killer T-cell anergy to endogenous myelin acetyl-glycolipids in multiple sclerosis. J Neuroimmunol 2013; 259(1-2): 1-7.
[http://dx.doi.org/10.1016/j.jneuroim.2013.02.020] [PMID: 23537888]
[69]
He D, Liu L, Shen D, Zou P, Cui L. The effect of peripheral immune cell counts on the risk of multiple sclerosis: A mendelian randomization study. Front Immunol 2022; 13: 867693.
[http://dx.doi.org/10.3389/fimmu.2022.867693] [PMID: 35619713]
[70]
Jahng AW, Maricic I, Pedersen B, et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001; 194(12): 1789-99.
[http://dx.doi.org/10.1084/jem.194.12.1789] [PMID: 11748280]
[71]
Pál E, Tabira T, Kawano T, Taniguchi M, Miyake S, Yamamura T. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V α 14 NK T cells. J Immunol 2001; 166(1): 662-8.
[http://dx.doi.org/10.4049/jimmunol.166.1.662] [PMID: 11123351]
[72]
Furlan R, Bergami A, Cantarella D, et al. Activation of invariant NKT cells by αGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-γ. Eur J Immunol 2003; 33(7): 1830-8.
[http://dx.doi.org/10.1002/eji.200323885] [PMID: 12811843]
[73]
Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol 2012; 189(2): 551-7.
[http://dx.doi.org/10.4049/jimmunol.1103608] [PMID: 22685310]
[74]
Singh AK, Yang JQ, Parekh VV, et al. The natural killer T cell ligand α‐galactosylceramide prevents or promotes pristane‐induced lupus in mice. Eur J Immunol 2005; 35(4): 1143-54.
[http://dx.doi.org/10.1002/eji.200425861] [PMID: 15761849]
[75]
Kigerl KA, McGaughy VM, Popovich PG. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 2006; 494(4): 578-94.
[http://dx.doi.org/10.1002/cne.20827] [PMID: 16374800]
[76]
Mars LT, Laloux V, Goude K, et al. Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 2002; 168(12): 6007-11.
[http://dx.doi.org/10.4049/jimmunol.168.12.6007] [PMID: 12055208]
[77]
Oh SJ, Chung DH. Invariant NKT cells producing IL-4 or IL-10, but not IFN-γ, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response. J Immunol 2011; 186(12): 6815-21.
[http://dx.doi.org/10.4049/jimmunol.1003916] [PMID: 21572032]
[78]
Etesam Z, Nemati M, Ebrahimizadeh MA, et al. Different expressions of specific transcription factors of Th1 (T-bet) and Th2 cells (GATA-3) by peripheral blood mononuclear cells from patients with multiple sclerosis. Basic Clin Neurosci 2018; 9(6): 458-69.
[http://dx.doi.org/10.32598/bcn.9.6.458] [PMID: 30719260]
[79]
Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413(6855): 531-4.
[http://dx.doi.org/10.1038/35097097] [PMID: 11586362]
[80]
Krishnarajah S, Becher B. TH cells and cytokines in encephalitogenic disorders. Front Immunol 2022; 13: 822919.
[http://dx.doi.org/10.3389/fimmu.2022.822919] [PMID: 35320935]
[81]
Paroni M, Maltese V, De Simone M, et al. Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J Allergy Clin Immunol 2017; 140(3): 797-808.
[http://dx.doi.org/10.1016/j.jaci.2016.11.045] [PMID: 28237728]
[82]
Zhang F, Liu G, Wei C, Gao C, Hao J. Linc-MAF-4 regulates Th1/Th 2 differentiation and is associated with the pathogenesis] of multiple sclerosis by targeting MAF. FASEB J 2017; 31(2): 519-25.
[http://dx.doi.org/10.1096/fj.201600838R] [PMID: 27756768]
[83]
Singh AK, Wilson MT, Hong S, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001; 194(12): 1801-11.
[http://dx.doi.org/10.1084/jem.194.12.1801] [PMID: 11748281]
[84]
Yoshimoto T, Bendelac A, Hu-Li J, Paul WE. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci 1995; 92(25): 11931-4.
[http://dx.doi.org/10.1073/pnas.92.25.11931] [PMID: 8524877]
[85]
Bugbee E, Wang AA, Gommerman JL. Under the influence: Environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14: 1188750.
[http://dx.doi.org/10.3389/fimmu.2023.1188750] [PMID: 37600781]
[86]
Kann O, Almouhanna F, Chausse B. Interferon γ: A master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci 2022; 45(12): 913-27.
[http://dx.doi.org/10.1016/j.tins.2022.10.007] [PMID: 36283867]
[87]
Carnaud C, Lee D, Donnars O, et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163(9): 4647-50.
[http://dx.doi.org/10.4049/jimmunol.163.9.4647] [PMID: 10528160]
[88]
Galli G, Pittoni P, Tonti E, et al. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci 2007; 104(10): 3984-9.
[http://dx.doi.org/10.1073/pnas.0700191104] [PMID: 17360464]
[89]
Kojo S, Seino K, Harada M, et al. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J Immunol 2005; 175(6): 3648-55.
[http://dx.doi.org/10.4049/jimmunol.175.6.3648] [PMID: 16148109]
[90]
Singh N, Hong S, Scherer DC, et al. Cutting edge: Activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999; 163(5): 2373-7.
[http://dx.doi.org/10.4049/jimmunol.163.5.2373] [PMID: 10452969]
[91]
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222: 1-11.
[http://dx.doi.org/10.1016/j.imlet.2020.02.012] [PMID: 32113900]
[92]
Liu C, Zhu J, Mi Y, Jin T. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation 2022; 19(1): 298.
[http://dx.doi.org/10.1186/s12974-022-02663-z] [PMID: 36510261]
[93]
Onoé K, Yanagawa Y, Minami K, Iijima N, Iwabuchi K. Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells. Immunol Res 2007; 38(1-3): 319-32.
[http://dx.doi.org/10.1007/s12026-007-0011-5] [PMID: 17917039]
[94]
Chen YG, Choisy-Rossi CM, Holl TM, et al. Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 2005; 174(3): 1196-204.
[http://dx.doi.org/10.4049/jimmunol.174.3.1196] [PMID: 15661873]
[95]
Fujii SI, Shimizu K, Hemmi H, Steinman RM. Innate Vα14+] natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 2007; 220(1): 183-98.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00561.x] [PMID: 17979847]
[96]
Yang JQ, Wen X, Kim PJ, Singh RR. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J Immunol 2011; 186(3): 1512-20.
[http://dx.doi.org/10.4049/jimmunol.1002373] [PMID: 21209282]
[97]
Atanackovic D, Nowottne U, Freier E, et al. Acute psychological stress increases peripheral blood CD3 + CD56 + natural killer T cells in healthy men: possible implications for the development and treatment of allergic and autoimmune disorders. Stress 2013; 16(4): 421-8.
[http://dx.doi.org/10.3109/10253890.2013.777702] [PMID: 23425210]
[98]
Rudak PT, Gangireddy R, Choi J, et al. Stress-elicited glucocorticoid receptor signaling upregulates TIGIT in innate-like invariant T lymphocytes. Brain Behav Immun 2019; 80: 793-804.
[http://dx.doi.org/10.1016/j.bbi.2019.05.027] [PMID: 31108170]
[99]
Bowers SL, Bilbo SD, Dhabhar FS, Nelson RJ. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav Immun 2008; 22(1): 105-13.
[http://dx.doi.org/10.1016/j.bbi.2007.07.012] [PMID: 17890050]
[100]
Gong S, Miao YL, Jiao GZ, et al. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One 2015; 10(2): e0117503.
[http://dx.doi.org/10.1371/journal.pone.0117503] [PMID: 25699675]
[101]
Keller-Wood M. Hypothalamic-pituitary--adrenal axis-feedback control. Compr Physiol 2015; 5(3): 1161-82.
[http://dx.doi.org/10.1002/cphy.c140065] [PMID: 26140713]
[102]
Franco AJ, Chen C, Scullen T, et al. Sensitization of the hypothalamic-pituitary-adrenal axis in a male rat chronic stress model. Endocrinology 2016; 157(6): 2346-55.
[http://dx.doi.org/10.1210/en.2015-1641] [PMID: 27054552]
[103]
Stefferl A, Linington C, Holsboer F, Reul JMHM. Susceptibility and resistance to experimental allergic encephalomyelitis: relationship with hypothalamic-pituitary-adrenocortical axis responsiveness in the rat. Endocrinology 1999; 140(11): 4932-8.
[http://dx.doi.org/10.1210/endo.140.11.7109] [PMID: 10537116]
[104]
Wüst S, van den Brandt J, Tischner D, et al. Peripheral T cells are the therapeutic targets of glucocorticoids in experimental autoimmune encephalomyelitis. J Immunol 2008; 180(12): 8434-43.
[http://dx.doi.org/10.4049/jimmunol.180.12.8434] [PMID: 18523311]
[105]
Wüst S, van den Brandt J, Reichardt HM, Lühder F. Preventive treatment with methylprednisolone paradoxically exacerbates experimental autoimmune encephalomyelitis. Int J Endocrinol 2012; 8: 8.
[http://dx.doi.org/10.1155/2012/417017]
[106]
Bier J, Steiger SM, Reichardt HM, Lühder F. Protection of antigen-primed effector t cells from glucocorticoid-induced apoptosis in cell culture and in a mouse model of multiple sclerosis. Front Immunol 2021; 12: 671258.
[http://dx.doi.org/10.3389/fimmu.2021.671258] [PMID: 34177911]
[107]
Montani MSG, Tuosto L, Giliberti R, Stefanini L, Cundari E, Piccolella E. Dexamethasone induces apoptosis in human T cell clones expressing low levels of Bcl-2. Cell Death Differ 1999; 6(1): 79-86.
[http://dx.doi.org/10.1038/sj.cdd.4400461] [PMID: 10200551]
[108]
Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 2006; 63(1): 60-72.
[http://dx.doi.org/10.1007/s00018-005-5390-y] [PMID: 16314919]
[109]
Kainuma E, Watanabe M, Tomiyama-Miyaji C, et al. Association of glucocorticoid with stress-induced modulation of body temperature, blood glucose and innate immunity. Psychoneuroendocrinology 2009; 34(10): 1459-68.
[http://dx.doi.org/10.1016/j.psyneuen.2009.04.021] [PMID: 19493627]
[110]
Sakami S, Nakata A, Yamamura T, Kawamura N. Psychological stress increases human T cell apoptosis in vitro. Neuroimmunomodulation 2002-2003; 10(4): 224-31.
[http://dx.doi.org/10.1159/000068326] [PMID: 12584410]
[111]
Shimizu T, Kawamura T, Miyaji C, et al. Resistance of extrathymic T cells to stress and the role of endogenous glucocorticoids in stress associated immunosuppression. Scand J Immunol 2000; 51(3): 285-92.
[http://dx.doi.org/10.1046/j.1365-3083.2000.00695.x] [PMID: 10736098]
[112]
Tseng RJ, Padgett DA, Dhabhar FS, Engler H, Sheridan JF. Stress-induced modulation of NK activity during influenza viral infection: Role of glucocorticoids and opioids. Brain Behav Immun 2005; 19(2): 153-64.
[http://dx.doi.org/10.1016/j.bbi.2004.07.001] [PMID: 15664788]
[113]
Counotte J, Drexhage HA, Wijkhuijs JM, et al. Th17/T regulator cell balance and NK cell numbers in relation to psychosis liability and social stress reactivity. Brain Behav Immun 2018; 69: 408-17.
[http://dx.doi.org/10.1016/j.bbi.2017.12.015] [PMID: 29289662]
[114]
Hu D, Wan L, Chen M, et al. Essential role of IL-10/STAT3 in chronic stress-induced immune suppression. Brain Behav Immun 2014; 36: 118-27.
[http://dx.doi.org/10.1016/j.bbi.2013.10.016] [PMID: 24513872]
[115]
Paik I, Toh K, Lee C, Kim J, Lee S. Psychological stress may induce increased humoral and decreased cellular immunity. Behav Med 2000; 26(3): 139-41.
[http://dx.doi.org/10.1080/08964280009595761] [PMID: 11209594]
[116]
Marin TJ, Chen E, Munch JA, Miller GE. Double-exposure to acute stress and chronic family stress is associated with immune changes in children with asthma. Psychosom Med 2009; 71(4): 378-84.
[http://dx.doi.org/10.1097/PSY.0b013e318199dbc3] [PMID: 19196805]
[117]
Palumbo ML, Canzobre MC, Pascuan CG, Ríos H, Wald M, Genaro AM. Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice. J Neuroimmunol 2010; 218(1-2): 12-20.
[http://dx.doi.org/10.1016/j.jneuroim.2009.11.005] [PMID: 19942299]
[118]
Giannou AD, Kempski J, Shiri AM, et al. Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity 2023; 56(1): 125-42.
[http://dx.doi.org/10.1016/j.immuni.2022.12.014] [PMID: 36630911]
[119]
Park HJ, Lee SW, Im W, Kim M, Van Kaer L, Hong S. iNKT cell activation exacerbates the development of Huntington’s Disease in R6/2 transgenic mice. Mediators Inflamm 2019; 2019: 10.
[http://dx.doi.org/10.1155/2019/3540974]
[120]
Montañés-Masias B, Bort-Roig J, Pascual JC, Soler J, Briones-Buixassa L. Online psychological interventions to improve symptoms in multiple sclerosis: A systematic review. Acta Neurol Scand 2022; 146(5): 448-64.
[http://dx.doi.org/10.1111/ane.13709] [PMID: 36121184]
[121]
Simpson R, Simpson S, Ramparsad N, Lawrence M, Booth J, Mercer SW. Effects of Mindfulness-based interventions on physical symptoms in people with multiple sclerosis - a systematic review and meta-analysis. Mult Scler Relat Disord 2020; 38: 101493.
[http://dx.doi.org/10.1016/j.msard.2019.101493] [PMID: 31835209]
[122]
Thomas PW, Thomas S, Hillier C, Galvin K, Baker R. Psychological interventions for multiple sclerosis. Cochrane Libr 2006; 2010(1): CD004431.
[http://dx.doi.org/10.1002/14651858.CD004431.pub2] [PMID: 16437487]
[123]
Lamkin DM, Lutgendorf SK, McGinn S, et al. Positive psychosocial factors and NKT cells in ovarian cancer patients. Brain Behav Immun 2008; 22(1): 65-73.
[http://dx.doi.org/10.1016/j.bbi.2007.06.005] [PMID: 17643954]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy