Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Reactive Oxygen Species and Mitochondrial Calcium's Roles in the Development of Atherosclerosis

Author(s): Helan Krishnamandiram Priya, Krishna Priya Jha, Nitesh Kumar and Sanjiv Singh*

Volume 30, Issue 23, 2024

Published on: 27 May, 2024

Page: [1812 - 1821] Pages: 10

DOI: 10.2174/0113816128303026240514111200

Price: $65

Abstract

In the last decade, there has been increasing evidence connecting mitochondrial dysfunction to the onset and advancement of atherosclerosis. Both reactive oxygen species (ROS) and the disruption of mitochondrial calcium (Ca2+) regulation have garnered significant attention due to their involvement in various stages of atherosclerosis. This abstract discusses the potential therapeutic applications of targeting mitochondrial calcium (Ca2+) and reactive oxygen species (ROS), while also providing an overview of their respective roles in atherosclerosis. The abstract underscores the importance of mitochondrial Ca2+ homeostasis in cellular physiology, including functions such as energy production, cell death signaling, and maintaining redox balance. Alterations in the mitochondria's Ca2+ handling disrupt all these procedures and speed up the development of atherosclerosis. Reactive oxygen species (ROS), generated during mitochondrial respiration, are widely recognized as significant contributors to the development of atherosclerosis. Through modulating the function of calcium ion (Ca2+) transport proteins, ROS can impact the regulation of mitochondrial Ca2+ handling. These oxidative modifications lead to vascular remodeling and plaque formation by impairing endothelial function, encouraging the recruitment of inflammatory cells, and promoting smooth muscle cell proliferation. Preclinical investigations indicate that interventions aimed at regulating the production and elimination of reactive oxygen species (ROS) hold promise for mitigating atherosclerosis. Targeting mitochondrial processes represents a prospective therapeutic strategy for addressing this condition. Further research is necessary to elucidate the intricate molecular mechanisms associated with mitochondrial dysfunction in atherosclerosis and develop effective therapeutic strategies to decelerate disease progression.

[1]
Ciccarelli G, Conte S, Cimmino G, Maiorano P, Morrione A, Giordano A. Mitochondrial dysfunction: The hidden player in the pathogenesis of atherosclerosis? Int J Mol Sci 2023; 24(2): 1086.
[http://dx.doi.org/10.3390/ijms24021086] [PMID: 36674602]
[2]
Li D, Yang S, Xing Y, et al. Novel insights and current evidence for mechanisms of atherosclerosis: Mitochondrial dynamics as a potential therapeutic target. Front Cell Dev Biol 2021; 9: 673839.
[http://dx.doi.org/10.3389/fcell.2021.673839] [PMID: 34307357]
[3]
Darley-Usmar V. The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free Radic Biol Med 2004; 37(6): 753-4.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.026] [PMID: 15304251]
[4]
Szewczyk A, Jarmuszkiewicz W, Koziel A, et al. Mitochondrial mechanisms of endothelial dysfunction. Pharmacol Rep 2015; 67(4): 704-10.
[http://dx.doi.org/10.1016/j.pharep.2015.04.009] [PMID: 26321271]
[5]
Gómez-Sánchez R, Yakhine-Diop SM, Bravo-San Pedro JM, Pizarro-Estrella E, Rodríguez-Arribas M, Climent V. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol 2016; 3(2): e1046579.
[http://dx.doi.org/10.1080/23723556.2015.1046579] [PMID: 27308585]
[6]
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[7]
Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368(7): 651-62.
[http://dx.doi.org/10.1056/NEJMra1205406] [PMID: 23406030]
[8]
Kubli DA, Gustafsson ÅB. Mitochondria and mitophagy. Circ Res 2012; 111(9): 1208-21.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.265819] [PMID: 23065344]
[9]
Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol 2010; 12(9): 842-6.
[http://dx.doi.org/10.1038/ncb0910-842] [PMID: 20811357]
[10]
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011; 333(6046): 1109-12.
[http://dx.doi.org/10.1126/science.1201940] [PMID: 21868666]
[11]
Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochim Biophys Acta Bioenerg 2008; 1777(9): 1092-7.
[http://dx.doi.org/10.1016/j.bbabio.2008.05.001] [PMID: 18519024]
[12]
Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res 2019; 53(2): 139-49.
[http://dx.doi.org/10.1080/10715762.2018.1549732] [PMID: 30458637]
[13]
Onat UI, Yildirim AD, Tufanli Ö, et al. Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am Coll Cardiol 2019; 73(10): 1149-69.
[http://dx.doi.org/10.1016/j.jacc.2018.12.055] [PMID: 30871699]
[14]
Salerno AG, Rentz T, Dorighello GG, et al. Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice. Biochem J 2019; 476(24): 3769-89.
[http://dx.doi.org/10.1042/BCJ20190543] [PMID: 31803904]
[15]
Zakirov FH, Zhang D, Grechko AV, Wu WK, Poznyak AV, Orekhov AN. Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacol Res Perspect 2020; 8(2): e00584.
[http://dx.doi.org/10.1002/prp2.584] [PMID: 32237116]
[16]
Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage polarization in atherosclerosis. Genes (Basel) 2022; 13(5): 756.
[http://dx.doi.org/10.3390/genes13050756] [PMID: 35627141]
[17]
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2020; 71: 100840.
[http://dx.doi.org/10.1016/j.mam.2019.100840] [PMID: 31882067]
[18]
Chen S, Wang J, Zhang L, Xia H. Experimental study on alleviating atherosclerosis through intervention of mitochondrial calcium transport and calcium-induced membrane permeability transition. J Investig Med 2021; 69(6): 1156-60.
[http://dx.doi.org/10.1136/jim-2020-001765] [PMID: 33906902]
[19]
Vercesi AE, Castilho RF, Kowaltowski AJ, et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129: 1-24.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.034] [PMID: 30172747]
[20]
Bray AW, Ballinger SW. Mitochondrial DNA mutations and cardiovascular disease. Curr Opin Cardiol 2017; 32(3): 267-74.
[http://dx.doi.org/10.1097/HCO.0000000000000383] [PMID: 28169948]
[21]
Steinberg D, Witztum JL. Lipoproteins and atherogenesis. JAMA 1990; 264(23): 3047-52.
[http://dx.doi.org/10.1001/jama.1990.03450230083034] [PMID: 2243434]
[22]
Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 1994; 14(1): 32-40.
[http://dx.doi.org/10.1161/01.ATV.14.1.32]
[23]
Heinecke JW. Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med 1999; 133(4): 321-5.
[http://dx.doi.org/10.1016/S0022-2143(99)90061-6] [PMID: 10218761]
[24]
Navab M, Berliner JA, Watson AD, et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996; 16(7): 831-42.
[http://dx.doi.org/10.1161/01.ATV.16.7.831] [PMID: 8673557]
[25]
Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 2020; 126(2): 280-93.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316306] [PMID: 31944918]
[26]
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37(5): e41-52.
[http://dx.doi.org/10.1161/ATVBAHA.117.309228] [PMID: 28446473]
[27]
Docherty CK, Carswell A, Friel E, Mercer JR. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018; 268: 1-11.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.009] [PMID: 29156421]
[28]
Dunn J, Grider MH. Physiology, adenosine triphosphate. Treasure Island (FL): StatPearls Publishing 2022.
[29]
Hasselbach W, Oetliker H. Energetics and electrogenicity of the sarcoplasmic reticulum calcium pump. Annu Rev Physiol 1983; 45(1): 325-39.
[http://dx.doi.org/10.1146/annurev.ph.45.030183.001545] [PMID: 6303204]
[30]
Chen W, London R, Murphy E, Steenbergen C. Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rabbit heart. A 19F nuclear magnetic resonance study. Circ Res 1998; 83(9): 898-907.
[http://dx.doi.org/10.1161/01.RES.83.9.898] [PMID: 9797338]
[31]
Tian R, Halow JM, Meyer M, et al. Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in rat hearts. Am J Physiol 1998; 275(6): H2064-71.
[PMID: 9843805]
[32]
Murphy E, Liu JCJCR. Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc Res 2023; 119(5): 1105-16.
[33]
Brustovetsky N, Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 1996; 35(26): 8483-8.
[http://dx.doi.org/10.1021/bi960833v] [PMID: 8679608]
[34]
Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta Bioenerg 2009; 1787(11): 1395-401.
[http://dx.doi.org/10.1016/j.bbabio.2009.06.009] [PMID: 19576166]
[35]
Meghana A, Obulapathi U, Singh S. Indian cow urine as a therapeutic alternative in treatment of human diseases: A review. AYUHOM 2021; 8(2): 57-63.
[36]
Basso E, Petronilli V, Forte MA, Bernardi P. Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 2008; 283(39): 26307-11.
[http://dx.doi.org/10.1074/jbc.C800132200] [PMID: 18684715]
[37]
Cross RL, Cunningham D, Miller CG, Xue ZX, Zhou JM, Boyer PD. Adenine nucleotide binding sites on beef heart F1 ATPase: Photoaffinity labeling of beta-subunit Tyr-368 at a noncatalytic site and beta Tyr-345 at a catalytic site. Proc Natl Acad Sci USA 1987; 84(16): 5715-9.
[http://dx.doi.org/10.1073/pnas.84.16.5715] [PMID: 2886991]
[38]
Chen Y, Yang M, Huang W, et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ Res 2019; 125(12): 1087-102.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315833] [PMID: 31625810]
[39]
Sun X, Seidman JS, Zhao P, Troutman TD, Spann NJ, Que X. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab 2020; 31(1): 1189-206.
[http://dx.doi.org/10.1016/j.cmet.2019.10.014]
[40]
Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20: 247-60.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[41]
Hsu CN, Tain YL. Developmental origins of kidney disease: Why oxidative stress matters? Antioxidants 2020; 10(1): 33.
[http://dx.doi.org/10.3390/antiox10010033] [PMID: 33396856]
[42]
Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem 2019; 19(19): 1611-26.
[http://dx.doi.org/10.2174/1389557519666190903115424] [PMID: 31481002]
[43]
Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003; 93(4): 292-301.
[http://dx.doi.org/10.1161/01.RES.0000087542.26971.D4] [PMID: 12933700]
[44]
Honda H, Korge P, Weiss J. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci 2005; 1047: 248-58.
[45]
Duan J, Karmazyn M. Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Can J Physiol Pharmacol 1989; 67(7): 704-9.
[http://dx.doi.org/10.1139/y89-114] [PMID: 2548694]
[46]
Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 1998; 30(11): 2281-9.
[http://dx.doi.org/10.1006/jmcc.1998.0789] [PMID: 9925365]
[47]
Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 2002; 105(8): 981-6.
[http://dx.doi.org/10.1161/hc0802.104502] [PMID: 11864929]
[48]
Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 2013; 123(2): 540-1.
[http://dx.doi.org/10.1172/JCI66843] [PMID: 23485580]
[49]
Luna-Ceron E, González-Gil AM, Elizondo-Montemayor L. Current insights on the role of irisin in endothelial dysfunction. Curr Vasc Pharmacol 2022; 20(3): 205-20.
[http://dx.doi.org/10.2174/1570161120666220510120220] [PMID: 35538838]
[50]
Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell Tissue Res 2009; 335(1): 191-203.
[http://dx.doi.org/10.1007/s00441-008-0678-5] [PMID: 18797930]
[51]
Mundi S, Massaro M, Scoditti E, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 2018; 114(1): 35-52.
[http://dx.doi.org/10.1093/cvr/cvx226] [PMID: 29228169]
[52]
Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019; 73(1): 22-7.
[http://dx.doi.org/10.1016/j.jjcc.2018.05.010] [PMID: 29907363]
[53]
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118(4): 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361] [PMID: 26892967]
[54]
Singh S, Aggarwal P, Ravichandiran V. Immunological response of the respiratory tract in the SARS-CoV-2 infection. Coronaviruses 2021; 2(9): e020721191471.
[http://dx.doi.org/10.2174/2666796702666210216143545]
[55]
Dominic EA, Ramezani A, Anker SD, Verma M, Mehta N, Rao M. Mitochondrial cytopathies and cardiovascular disease. Heart 2014; 100(8): 611-8.
[http://dx.doi.org/10.1136/heartjnl-2013-304657] [PMID: 24449718]
[56]
Tretter L, Ambrus A. Measurement of ROS homeostasis in isolated mitochondria. Methods Enzymol 2014; 547: 199-223.
[57]
Sun Q, Zhong W, Zhang W, Zhou Z. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: Role of zinc deficiency. Am J Physiol Gastrointest Liver Physiol 2016; 310(3): G205-14.
[http://dx.doi.org/10.1152/ajpgi.00270.2015] [PMID: 26585415]
[58]
Puddu P, Puddu GM, Galletti L, Cravero E, Muscari A. Mitochondrial dysfunction as an initiating event in atherogenesis: A plausible hypothesis. Cardiology 2005; 103(3): 137-41.
[http://dx.doi.org/10.1159/000083440] [PMID: 15665536]
[59]
Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007; 100(4): 460-73.
[http://dx.doi.org/10.1161/01.RES.0000258450.44413.96] [PMID: 17332437]
[60]
Aramouni K, Assaf R, Shaito A, et al. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J Cell Physiol 2023; 238(9): 1951-63.
[http://dx.doi.org/10.1002/jcp.31071] [PMID: 37436042]
[61]
Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, El Yazbi A. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front Biosci (Landmark Ed) 2022; 27(3): 105.
[http://dx.doi.org/10.31083/j.fbl2703105]
[62]
Badran A, Nasser SA, Mesmar J, et al. Reactive oxygen species: Modulators of phenotypic switch of vascular smooth muscle cells. Int J Mol Sci 2020; 21(22): 8764.
[http://dx.doi.org/10.3390/ijms21228764] [PMID: 33233489]
[63]
Solanki K, Bezsonov E, Orekhov A, et al. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154: 107282.
[http://dx.doi.org/10.1016/j.vph.2024.107282] [PMID: 38325566]
[64]
Prajapat SK, Maharana KC, Singh S. Mitochondrial dysfunction in the pathogenesis of endothelial dysfunction. Mol Cell Biochem 2023; 1-18.
[http://dx.doi.org/10.1007/s11010-023-04835-8] [PMID: 37642880]
[65]
Wehbe N, Nasser SA, Al-Dhaheri Y, et al. EPAC in vascular smooth muscle cells. Int J Mol Sci 2020; 21(14): 5160.
[http://dx.doi.org/10.3390/ijms21145160] [PMID: 32708284]
[66]
Passos JF, Zglinicki T, Saretzki G. Mitochondrial dysfunction and cell senescence: Cause or consequence? Rejuvenation Res 2006; 9(1): 64-8.
[http://dx.doi.org/10.1089/rej.2006.9.64] [PMID: 16608398]
[67]
Laher I. Systems Biology of Free Radicals and Antioxidants. Berlin, Heidelberg: Springer 2014.
[68]
Graff C, Clayton DA, Larsson NG. Mitochondrial medicine - recent advances. J Intern Med 1999; 246(1): 11-23.
[http://dx.doi.org/10.1046/j.1365-2796.1999.00514.x] [PMID: 10447221]
[69]
Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002; 8(3): 132-40.
[http://dx.doi.org/10.1111/j.1527-5299.2002.00717.x] [PMID: 12045381]
[70]
Anan R, Nakagawa M, Miyata M, et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 1995; 91(4): 955-61.
[http://dx.doi.org/10.1161/01.CIR.91.4.955] [PMID: 7850981]
[71]
Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283(5407): 1482-8.
[http://dx.doi.org/10.1126/science.283.5407.1482] [PMID: 10066162]
[72]
Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002; 106(5): 544-9.
[http://dx.doi.org/10.1161/01.CIR.0000023921.93743.89] [PMID: 12147534]
[73]
Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 1974; 71(7): 2777-81.
[http://dx.doi.org/10.1073/pnas.71.7.2777] [PMID: 4212385]
[74]
Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997; 94(2): 514-9.
[http://dx.doi.org/10.1073/pnas.94.2.514] [PMID: 9012815]
[75]
Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DCJJ. Hypoxemia is associated with mitochondrial DNA damage and gene induction: Implications for cardiac disease. JAMA 1991; 266(13): 1812-6.
[http://dx.doi.org/10.1001/jama.1991.03470130092035]
[76]
Croteau DL, Stierum RH, Bohr VA. Mitochondrial DNA repair pathways. Mutat Res DNA Repair 1999; 434(3): 137-48.
[http://dx.doi.org/10.1016/S0921-8777(99)00025-7] [PMID: 10486588]
[77]
Corral-Debrinski M, Shoffner J, Lott M, Wallace D. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mut Res/DNAging 1992; 275(3-6): 169-80.
[http://dx.doi.org/10.1016/0921-8734(92)90021-G]
[78]
Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996; 98(2): 345-51.
[http://dx.doi.org/10.1172/JCI118798] [PMID: 8755643]
[79]
Singh S, Pawar A. Effect of radio frequency electromagnetic field from mobile phones’ base station antennas on maturation of rat erythrocytes. Comp Clin Pathol 2019; 28(5): 1395-401.
[http://dx.doi.org/10.1007/s00580-019-02980-5]
[80]
Li C, Liu R, Xiong Z, et al. Ferroptosis: A potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56(3): 331-44.
[http://dx.doi.org/10.3724/abbs.2024016] [PMID: 38327187]
[81]
Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022; 13: 1039241.
[http://dx.doi.org/10.3389/fimmu.2022.1039241] [PMID: 36389728]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy