[1]
Bergantin, L.B. Ca2+/cAMP ratio as an inflammatory index. Curr. Hypertens. Rev., 2022, 19(1), 4-6.
[http://dx.doi.org/10.2174/1573402119666221202145753] [PMID: 36476433]
[http://dx.doi.org/10.2174/1573402119666221202145753] [PMID: 36476433]
[2]
Bergantin, L.B. A timeline of Ca2+/cAMP signalling: From basic research to potential therapeutics for dementia. Curr. Alzheimer Res., 2022, 19(3), 179-187.
[http://dx.doi.org/10.2174/1567205019666220415125447] [PMID: 35430979]
[http://dx.doi.org/10.2174/1567205019666220415125447] [PMID: 35430979]
[3]
Bezzini, D.; Battaglia, M.A. Multiple sclerosis epidemiology in Europe. Adv. Exp. Med. Biol., 2017, 958, 141-159.
[http://dx.doi.org/10.1007/978-3-319-47861-6_9] [PMID: 28093712]
[http://dx.doi.org/10.1007/978-3-319-47861-6_9] [PMID: 28093712]
[4]
Schreiner, T.G.; Genes, T.M. Obesity and multiple sclerosis: A multifaceted association. J. Clin. Med., 2021, 10(12), 2689.
[http://dx.doi.org/10.3390/jcm10122689] [PMID: 34207197]
[http://dx.doi.org/10.3390/jcm10122689] [PMID: 34207197]
[5]
Asghar, A.; Sheikh, N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell. Immunol., 2017, 315, 18-26.
[http://dx.doi.org/10.1016/j.cellimm.2017.03.001] [PMID: 28285710]
[http://dx.doi.org/10.1016/j.cellimm.2017.03.001] [PMID: 28285710]
[6]
Munger, K.L. Childhood obesity is a risk factor for multiple sclerosis. Mult. Scler., 2013, 19(13), 1800.
[http://dx.doi.org/10.1177/1352458513507357] [PMID: 24072725]
[http://dx.doi.org/10.1177/1352458513507357] [PMID: 24072725]
[7]
Alfredsson, L.; Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med., 2019, 9(4)a028944
[http://dx.doi.org/10.1101/cshperspect.a028944] [PMID: 29735578]
[http://dx.doi.org/10.1101/cshperspect.a028944] [PMID: 29735578]
[8]
Baranova, A.; Cao, H.; Teng, S.; Zhang, F. A phenome-wide investigation of risk factors for severe COVID-19. J. Med. Virol., 2022, e28264 Epub ahead of print
[http://dx.doi.org/10.1002/jmv.28264] [PMID: 36316288]
[http://dx.doi.org/10.1002/jmv.28264] [PMID: 36316288]
[9]
Bergantin, L.B. Diabetes and inflammatory diseases: An overview from the perspective of Ca 2+ /3′-5′-cyclic adenosine monophosphate signaling. World J. Diabetes, 2021, 12(6), 767-779.
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[10]
Bergantin, L.B. The interplay among epilepsy, parkinson’s disease and inflammation: Revisiting the link through Ca2+/cAMP signalling. Curr. Neurovasc. Res., 2021, 18(1), 162-168.
[http://dx.doi.org/10.2174/1567202618666210603123345] [PMID: 34082680]
[http://dx.doi.org/10.2174/1567202618666210603123345] [PMID: 34082680]
[11]
Beal, M.F. Mechanisms of excitotoxicity in neurologic diseases. FASEB J., 1992, 6(15), 3338-3344.
[http://dx.doi.org/10.1096/fasebj.6.15.1464368] [PMID: 1464368]
[http://dx.doi.org/10.1096/fasebj.6.15.1464368] [PMID: 1464368]
[12]
Pitt, D.; Werner, P.; Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med., 2000, 6(1), 67-70.
[http://dx.doi.org/10.1038/71555] [PMID: 10613826]
[http://dx.doi.org/10.1038/71555] [PMID: 10613826]
[13]
Bergantin, L.B. COVID-19 and Obesity: Reevaluating the Relationship Through Ca2+/cAMP Signalling. Curr. Drug Res. Rev., 2022, 14(3), 157-159.
[http://dx.doi.org/10.2174/1573399818666220429100819] [PMID: 36281829]
[http://dx.doi.org/10.2174/1573399818666220429100819] [PMID: 36281829]
[14]
Bergantin, L.B. The clinical link between depression and obesity: Role of Ca2+/cAMP signalling. Psychiatry Res., 2020, 291, 113167.
[http://dx.doi.org/10.1016/j.psychres.2020.113167] [PMID: 32562933]
[http://dx.doi.org/10.1016/j.psychres.2020.113167] [PMID: 32562933]
[15]
Adhikari, A.; Mandal, D.; Rana, D.; Nath, J.; Bose, A.; Sonika, J.T.O.; Orasugh, J.T.; De, S.; Chattopadhyay, D. COVID-19 mitigation: Nanotechnological intervention, perspective, and future scope. Mater. Adv., 2023, 4(1), 52-78.
[http://dx.doi.org/10.1039/D2MA00797E]
[http://dx.doi.org/10.1039/D2MA00797E]