Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Symptomatic Treatment of Extrapyramidal Hyperkinetic Movement Disorders

Author(s): Gregory de Boer, Robertus Maria Alfonsius de Bie and Bart Erik Kris Sylvain Swinnen*

Volume 22, Issue 14, 2024

Published on: 20 May, 2024

Page: [2284 - 2297] Pages: 14

DOI: 10.2174/1570159X22666240517161444

Price: $65

Abstract

Extrapyramidal hyperkinetic movement disorders comprise a broad range of phenotypic phenomena, including chorea, dystonia, and tics. Treatment is generally challenging and individualized, given the overlapping phenomenology, limited evidence regarding efficacy, and concerns regarding the tolerability and safety of most treatments. Over the past decade, the treatment has become even more intricate due to advancements in the field of deep brain stimulation as well as optimized dopamine-depleting agents. Here, we review the current evidence for treatment modalities of extrapyramidal hyperkinetic movement disorders and provide a comprehensive and practical overview to aid the choice of therapy. Mechanism of action and practical intricacies of each treatment modality are discussed, focusing on dosing and adverse effect management. Finally, future therapeutic developments are also discussed.

[1]
Abdo, W.F.; van de Warrenburg, B.P.C.; Burn, D.J.; Quinn, N.P.; Bloem, B.R. The clinical approach to movement disorders. Nat. Rev. Neurol., 2010, 6(1), 29-37.
[http://dx.doi.org/10.1038/nrneurol.2009.196]
[2]
Jankovic, J. Treatment of hyperkinetic movement disorders. Lancet Neurol., 2009, 8(9), 844-856.
[http://dx.doi.org/10.1016/S1474-4422(09)70183-8]
[3]
André, V.M.; Cepeda, C.; Levine, M.S. Dopamine and glutamate in huntington’s disease: A balancing act. CNS Neurosci. Ther., 2010, 16(3), 163-178.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00134.x]
[4]
Frank, S.; Testa, C.M.; Stamler, D.; Kayson, E.; Davis, C.; Edmondson, M.C.; Kinel, S.; Leavitt, B.; Oakes, D.; O’Neill, C.; Vaughan, C.; Goldstein, J.; Herzog, M.; Snively, V.; Whaley, J.; Wong, C.; Suter, G.; Jankovic, J.; Jimenez-Shahed, J.; Hunter, C.; Claassen, D.O.; Roman, O.C.; Sung, V.; Smith, J.; Janicki, S.; Clouse, R.; Saint-Hilaire, M.; Hohler, A.; Turpin, D.; James, R.C.; Rodriguez, R.; Rizer, K.; Anderson, K.E.; Heller, H.; Carlson, A.; Criswell, S.; Racette, B.A.; Revilla, F.J.; Nucifora, F., Jr; Margolis, R.L.; Ong, M.J.; Mendis, T.; Mendis, N.; Singer, C.; Quesada, M.; Paulsen, J.S.; Brashers-Krug, T.; Miller, A.; Kerr, J.; Dubinsky, R.M.; Gray, C.; Factor, S.A.; Sperin, E.; Molho, E.; Eglow, M.; Evans, S.; Kumar, R.; Reeves, C.; Samii, A.; Chouinard, S.; Beland, M.; Scott, B.L.; Hickey, P.T.; Esmail, S.; Fung, W.L.A.; Gibbons, C.; Qi, L.; Colcher, A.; Hackmyer, C.; McGarry, A.; Klos, K.; Gudesblatt, M.; Fafard, L.; Graffitti, L.; Schneider, D.P.; Dhall, R.; Wojcieszek, J.M.; LaFaver, K.; Duker, A.; Neefus, E.; Wilson-Perez, H.; Shprecher, D.; Wall, P.; Blindauer, K.A.; Wheeler, L.; Boyd, J.T.; Houston, E.; Farbman, E.S.; Agarwal, P.; Eberly, S.W.; Watts, A.; Tariot, P.N.; Feigin, A.; Evans, S.; Beck, C.; Orme, C.; Edicola, J.; Christopher, E. Effect of deutetrabenazine on chorea among patients with huntington disease. JAMA, 2016, 316(1), 40-50.
[http://dx.doi.org/10.1001/jama.2016.8655]
[5]
Bashir, H.; Jankovic, J. Treatment options for chorea. Expert Rev. Neurother., 2018, 18(1), 51-63.
[http://dx.doi.org/10.1080/14737175.2018.1403899]
[6]
Coppen, E.M.; Roos, R.A.C. Current pharmacological approaches to reduce chorea in huntington’s disease. Drugs, 2017, 77(1), 29-46.
[http://dx.doi.org/10.1007/s40265-016-0670-4]
[7]
Crosby, N.J.; Deane, K.; Clarke, C.E. Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database of Systematic Reviews; John Wiley and Sons Ltd, 2010.
[8]
Reilmann, R. Pharmacological treatment of chorea in Huntington’s disease-good clinical practice versus evidence-based guideline. Mov. Disord., 2013, 28(8), 1030-1033.
[http://dx.doi.org/10.1002/mds.25500]
[9]
Smith, K.M.; Spindler, M.A. Uncommon applications of deep brain stimulation in hyperkinetic movement disorders. Tremor Other Hyperkinet. Mov. , 2015, 5, 278.
[http://dx.doi.org/10.5334/tohm.265]
[10]
Posturna, R.B.; Lang, A.E. Hemiballism: Revisiting a classic disorder. Lancet Neurol., 2003, 2(11), 661-668.
[http://dx.doi.org/10.1016/S1474-4422(03)00554-4]
[11]
Whittier, J.R. Ballism and the subthalamic nucleus (Nucleus Hypothalamicus; Corpus Luysi). Arch. Neurol. Psychiatry, 1947, 58(6), 672-692.
[http://dx.doi.org/10.1001/archneurpsyc.1947.02300350022002]
[12]
Mehanna, R.; Jankovic, J. Movement disorders in cerebrovascular disease. Lancet Neurol., 2013, 12(6), 597-608.
[http://dx.doi.org/10.1016/S1474-4422(13)70057-7]
[13]
Ganapa, S.V.; Ramani, M.D.; Ebunlomo, O.O.; Rahman, R.K.; Herschman, Y.; Mammis, A. Treatment of persistent hemiballism with deep brain stimulation of the globus pallidus internus: Case report and literature review. World Neurosurg., 2019, 132, 368-370.
[http://dx.doi.org/10.1016/j.wneu.2019.08.247]
[14]
Albanese, A.; Bhatia, K.; Bressman, S.B.; DeLong, M.R.; Fahn, S.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; Lang, A.E.; Mink, J.W.; Teller, J.K. Phenomenology and classification of dystonia: A consensus update. Mov. Disord., 2013, 28(7), 863-873.
[http://dx.doi.org/10.1002/mds.25475]
[15]
Balint, B.; Mencacci, N.E.; Valente, E.M.; Pisani, A.; Rothwell, J.; Jankovic, J.; Vidailhet, M.; Bhatia, K.P. Author correction. Dystonia. Nat. Rev. Dis. Primers, 2018, 4(1), 37.
[http://dx.doi.org/10.1038/s41572-018-0039-y]
[16]
Jankovic, J. Botulinum toxin: State of the art. Mov. Disord., 2017, 32(8), 1131-1138.
[http://dx.doi.org/10.1002/mds.27072]
[17]
Termsarasab, P.; Thammongkolchai, T.; Frucht, S.J. Medical treatment of dystonia. J. Clin. Mov. Disord., 2016, 3, 19.
[http://dx.doi.org/10.1186/s40734-016-0047-6] [PMID: 28031858]
[18]
Cloud, L.J.; Jinnah, H.A. Treatment strategies for dystonia. Expert Opin. Pharmacother., 2010, 11(1), 5-15.
[http://dx.doi.org/10.1517/14656560903426171] [PMID: 20001425]
[19]
Reese, R.; Volkmann, J. Deep brain stimulation for the dystonias: Evidence, knowledge gaps, and practical considerations. Mov. Disord. Clin. Pract., 2017, 4(4), 486-494.
[http://dx.doi.org/10.1002/mdc3.12519]
[20]
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association, 2013.
[21]
Johnson, K.A.; Worbe, Y.; Foote, K.D.; Butson, C.R.; Gunduz, A.; Okun, M.S. Tourette syndrome: Clinical features, pathophysiology, and treatment. Lancet Neurol., 2022, 4422(22), 1-12.
[22]
Martino, D.; Hedderly, T. Tics and stereotypies: A comparative clinical review. Parkinsonism Relat. Disord., 2019, 59, 117-124.
[http://dx.doi.org/10.1016/j.parkreldis.2019.02.005]
[23]
Martino, D.; Mink, J.W. Tic disorders. Continuum , 2013, 19(5), 1287-1311.
[http://dx.doi.org/10.1212/01.CON.0000436157.31662.af]
[24]
Cothros, N.; Medina, A.; Pringsheim, T. Current pharmacotherapy for tic disorders. Expert Opin. Pharmacother., 2020, 21(5), 567-580.
[http://dx.doi.org/10.1080/14656566.2020.1721465]
[25]
Pringsheim, T.; Okun, M.S.; Müller-Vahl, K.; Martino, D.; Jankovic, J.; Cavanna, A.E.; Woods, D.W.; Robinson, M.; Jarvie, E.; Roessner, V.; Oskoui, M.; Holler-Managan, Y.; Piacentini, J. Practice guideline recommendations summary: Treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology, 2019, 92(19), 896-906.
[http://dx.doi.org/10.1212/WNL.0000000000007466]
[26]
Roessner, V.; Eichele, H.; Stern, J.S.; Skov, L.; Rizzo, R.; Debes, N.M.; Nagy, P.; Cavanna, A.E.; Termine, C.; Ganos, C.; Münchau, A.; Szejko, N.; Cath, D.; Müller-Vahl, K.R.; Verdellen, C.; Hartmann, A.; Rothenberger, A.; Hoekstra, P.J.; Plessen, K.J. European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part III: Pharmacological treatment. Eur. Child Adolesc. Psychiatry, 2022, 31(3), 425-441.
[http://dx.doi.org/10.1007/s00787-021-01899-z]
[27]
Mogwitz, S.; Buse, J.; Wolff, N.; Roessner, V. Update on the pharmacological treatment of tics with dopamine-modulating agents. ACS Chem. Neurosci., 2018, 9(4), 651-672.
[http://dx.doi.org/10.1021/acschemneuro.7b00460]
[28]
Behling, E.; Farhat, L.C.; Landeros-Weisenberger, A.; Bloch, M.H. META‐ANALYSIS: Efficacy and tolerability of vesicular monoamine transporter type 2 inhibitors in the treatment of tic disorders. Mov. Disord., 2022, 37(4), 684-693.
[http://dx.doi.org/10.1002/mds.28957]
[29]
Chen, J.J.; Ondo, W.G.; Dashtipour, K.; Swope, D.M. Tetrabenazine for the treatment of hyperkinetic movement disorders: A review of the literature. Clin. Ther., 2012, 34(7), 1487-1504.
[http://dx.doi.org/10.1016/j.clinthera.2012.06.010]
[30]
Billnitzer, A.; Jankovic, J. Current Management of Tics and Tourette Syndrome: Behavioral, Pharmacologic, and Surgical Treatments. Neurotherapeutics. Springer Science and Business Media Deutschland GmbH, 2020, 17, 1681-1693.
[31]
Roessner, V.; Eichele, H.; Stern, J.S.; Skov, L.; Rizzo, R.; Debes, N.M. European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part III: pharmacological treatment.European Child and Adolescent Psychiatry. Springer Science and Business Media Deutschland GmbH, 2022, 31, 425-441.
[32]
Martinez-Ramirez, D.; Jimenez-Shahed, J.; Leckman, J.F.; Porta, M.; Servello, D.; Meng, F.G.; Kuhn, J.; Huys, D.; Baldermann, J.C.; Foltynie, T.; Hariz, M.I.; Joyce, E.M.; Zrinzo, L.; Kefalopoulou, Z.; Silburn, P.; Coyne, T.; Mogilner, A.Y.; Pourfar, M.H.; Khandhar, S.M.; Auyeung, M.; Ostrem, J.L.; Visser-Vandewalle, V.; Welter, M-L.; Mallet, L.; Karachi, C.; Houeto, J.L.; Klassen, B.T.; Ackermans, L.; Kaido, T.; Temel, Y.; Gross, R.E.; Walker, H.C.; Lozano, A.M.; Walter, B.L.; Mari, Z.; Anderson, W.S.; Changizi, B.K.; Moro, E.; Zauber, S.E.; Schrock, L.E.; Zhang, J-G.; Hu, W.; Rizer, K.; Monari, E.H.; Foote, K.D.; Malaty, I.A.; Deeb, W.; Gunduz, A.; Okun, M.S. Efficacy and safety of deep brain stimulation in tourette syndrome. The international tourette syndrome deep brain stimulation public database and registry. JAMA Neurol., 2018, 75(3), 353-359.
[http://dx.doi.org/10.1001/jamaneurol.2017.4317]
[33]
Baldermann, J.C.; Kuhn, J.; Schüller, T.; Kohl, S.; Andrade, P.; Schleyken, S.; Prinz-Langenohl, R.; Hellmich, M.; Barbe, M.T.; Timmermann, L.; Visser-Vandewalle, V.; Huys, D. Thalamic deep brain stimulation for tourette syndrome: A naturalistic trial with brief randomized, double-blinded sham-controlled periods. Brain Stimul., 2021, 14(5), 1059-1067.
[http://dx.doi.org/10.1016/j.brs.2021.07.003]
[34]
Factor, S.A. Management of tardive syndrome: Medications and surgical treatments. Neurotherapeutics, 2020, 17(4), 1694-1712.
[http://dx.doi.org/10.1007/s13311-020-00898-3]
[35]
Szota, A.M.; Scheel-Krüger, J. The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: Preclinical and clinical results. Behav. Pharmacol., 2020, 31(6), 511-523.
[http://dx.doi.org/10.1097/FBP.0000000000000563]
[36]
Zutshi, D.; Cloud, L.J.; Factor, S.A. Tardive syndromes are rarely reversible after discontinuing dopamine receptor blocking agents: Experience from a university-based movement disorder clinic. Tremor Other Hyperkinet. Mov. , 2014, 4, 266.
[http://dx.doi.org/10.5334/tohm.199]
[37]
Pinninti, N.R.; Faden, J.; Adityanjee, A. Are second-generation antipsychotics useful in tardive dystonia? Clin. Neuropharmacol., 2015, 38(5), 183-197.
[http://dx.doi.org/10.1097/WNF.0000000000000106]
[38]
Mulroy, E.; Balint, B.; Bhatia, K.P. Tardive syndromes. Pract. Neurol., 2020, 20(5), 368-376.
[http://dx.doi.org/10.1136/practneurol-2020-002566]
[39]
Bhidayasiri, R.; Jitkritsadakul, O.; Friedman, J.H.; Fahn, S. Updating the recommendations for treatment of tardive syndromes: A systematic review of new evidence and practical treatment algorithm. J. Neurol. Sci., 2018, 389, 67-75.
[http://dx.doi.org/10.1016/j.jns.2018.02.010]
[40]
Mentzel, T; van der Snoek, R; Lieverse, R; Oorschot, M; Viechtbauer, W; Bloemen, O Clozapine monotherapy as a treatment for antipsychotic-induced tardive dyskinesia: A meta-analysis. J. Clin. Psychiatry, , 2018, 79(6), 17r11852 .
[41]
Anderson, K.E.; Stamler, D.; Davis, M.D.; Factor, S.A.; Hauser, R.A.; Isojärvi, J.; Jarskog, L.F.; Jimenez-Shahed, J.; Kumar, R.; McEvoy, J.P.; Ochudlo, S.; Ondo, W.G.; Fernandez, H.H. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Psychiatry, 2017, 4(8), 595-604.
[http://dx.doi.org/10.1016/S2215-0366(17)30236-5]
[42]
Fernandez, H.H.; Factor, S.A.; Hauser, R.A.; Jimenez-Shahed, J.; Ondo, W.G.; Jarskog, L.F.; Meltzer, H.Y.; Woods, S.W.; Bega, D.; LeDoux, M.S.; Shprecher, D.R.; Davis, C.; Davis, M.D.; Stamler, D.; Anderson, K.E. Randomized controlled trial of deutetrabenazine for tardive dyskinesia. Neurology, 2017, 88(21), 2003-2010.
[http://dx.doi.org/10.1212/WNL.0000000000003960]
[43]
Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol., 2021, 20(12), 1048-1056.
[http://dx.doi.org/10.1016/S1474-4422(21)00249-0]
[44]
Pappa, S.; Tsouli, S.; Apostolou, G.; Mavreas, V.; Konitsiotis, S. Effects of amantadine on tardive dyskinesia. Clin. Neuropharmacol., 2010, 33(6), 271-275.
[http://dx.doi.org/10.1097/WNF.0b013e3181ffde32]
[45]
Lin, C-C.; Ondo, W.G. Non-VMAT2 inhibitor treatments for the treatment of tardive dyskinesia. J. Neurol. Sci., 2018, 389, 48-54.
[http://dx.doi.org/10.1016/j.jns.2018.02.014]
[46]
Cornett, E.M.; Novitch, M.; Kaye, A.D.; Kata, V.; Kaye, A.M. Medication-induced tardive dyskinesia: A review and update. Ochsner J., 2017, 17(2), 162-174.
[PMID: 28638290]
[47]
Krause, P.; Kroneberg, D.; Gruber, D.; Koch, K.; Schneider, G.H.; Kühn, A.A. Long-term effects of pallidal deep brain stimulation in tardive dystonia: A follow-up of 5–14 years. J. Neurol., 2022, 269(7), 3563-3568.
[http://dx.doi.org/10.1007/s00415-022-10965-8]
[48]
Macerollo, A.; Deuschl, G. Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis. J. Neurol. Sci., 2018, 389, 55-60.
[http://dx.doi.org/10.1016/j.jns.2018.02.013]
[49]
van den Heuvel, C.N.A.M.; Tijssen, M.A.J.; van de Warrenburg, B.P.C.; Delnooz, C.C.S. The symptomatic treatment of acquired dystonia: A systematic review. Mov. Disord. Clin. Pract., 2016, 3(6), 548-558.
[http://dx.doi.org/10.1002/mdc3.12400]
[50]
Gruber, D.; Südmeyer, M.; Deuschl, G.; Falk, D.; Krauss, J.K.; Mueller, J. Neurostimulation in tardive dystonia/dyskinesia: A delayed start, sham stimulation-controlled randomized trial. Brain Stimulation; Elsevier Inc., 2018, 11, 1368-1377.
[51]
Stahl, S.M. Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectr., 2018, 23(1), 1-6.
[http://dx.doi.org/10.1017/S1092852917000621]
[52]
Claassen, D.O.; Carroll, B.; De Boer, L.M.; Wu, E.; Ayyagari, R.; Gandhi, S.; Stamler, D. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J. Clin. Mov. Disord., 2017, 4(1), 3.
[http://dx.doi.org/10.1186/s40734-017-0051-5]
[53]
Mehanna, R.; Hunter, C.; Davidson, A.; Jimenez-Shahed, J.; Jankovic, J. Analysis of CYP2D6 genotype and response to tetrabenazine. Mov. Disord., 2013, 28(2), 210-215.
[http://dx.doi.org/10.1002/mds.25278]
[54]
Prestwick Pharmaceuticals, Inc. 2008. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021894lbl.pdf (cited: 7th of November 2022)
[55]
Teva Pharmaceuticals, USA, Inc. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209885lbl.pdf (cited: 7th of November 2022).
[56]
Neurocrine Biosciences, Inc. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209241lbl.pdf (cited: 7th of November 2022).
[57]
Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin. Pharmacother., 2016, 17(18), 2461-2470.
[http://dx.doi.org/10.1080/14656566.2016.1258063]
[58]
Kaur, N.; Kumar, P.; Jamwal, S.; Deshmukh, R.; Gauttam, V. Tetrabenazine: Spotlight on drug review. Ann. Neurosci., 2016, 23(3), 176-185.
[59]
Wisidagama, S.; Selladurai, A.; Wu, P.; Isetta, M.; Serra-Mestres, J. Recognition and management of antipsychotic-induced parkinsonism in older adults: A narrative review. Medicines , 2021, 8(6), 24.
[http://dx.doi.org/10.3390/medicines8060024]
[60]
Blanchet, K. Drug-induced parkinsonism: diagnosis and management. J. Parkinson. Restl. Leg. Syndr., 2016 2016. Available from: www.dovepress.com
[61]
Bashir, H.; Jankovic, J. Treatment options for chorea.Exp. Rev. Neurotherap; Taylor and Francis Ltd, 2018, 18, 51-63.
[http://dx.doi.org/10.1080/14737175.2018.1403899]
[62]
Preskorn, S.H.; Fahnestock, P.A.; Carpenter, D.; Ross, R.; Docherty, J.P.; Alexopoulos, S. The roadmap for antipsychotic psychopharmacology: An overview. J. Clin. Psychiatry, 2007, 68.
[63]
Gardner, D.M.; Baldessarini, R.J.; Waraich, P. Modern antipsychotic drugs: A critical overview. Canad. Med. Assoc. J., 2005, 172, 1703-1711.
[64]
Waln, O.; Jankovic, J.; Cambridge, H.; Arnold, W.; Wilkins, W.B. An update on tardive dyskinesia: From phenomenology to treatment. Tremor Other Hyperkinet. Mov., 2013, 3, 03.
[http://dx.doi.org/10.5334/tohm.165]
[65]
Aguilar-Henriquez, A.; Mbbs, T.T.; Andrés, A.H.; Luba, L.; James, M. Psychotropic idiosyncratic drug reactions: A brief review of proposed mechanisms; In:; Int. J. Psychiatr. Res, 2019, p. 2.
[66]
Strawn, J.R.; Keck, P.E.; Caroff, S.N. Treatment in psychiatry neuroleptic malignant syndrome scope and nature of neuroleptic malignant syndrome. Am. J. Psychiatry, 2007, 164.
[67]
Jankovic, J. Medical treatment of dystonia. Mov. Disord., 2013, 28(7), 1001-1012.
[http://dx.doi.org/10.1002/mds.25552]
[68]
Wong, J.; Delva, N. Clozapine-induced seizures: Recognition and treatment. Can. J. Psychiatry, 2007, 52(7), 457-463.
[http://dx.doi.org/10.1177/070674370705200708]
[69]
Osborne, I.J.; McIvor, R.J. Clozapine-induced myoclonus: A case report and review of the literature. Ther. Adv. Psychopharmacol., 2015, 5(6), 351-356.
[http://dx.doi.org/10.1177/2045125315612015]
[70]
Hampe, C.S.; Mitoma, H.; Manto, M. GABA and Glutamate: Their transmitter role in the CNS and pancreatic islets.In: GABA And Glutamate - New Developments In Neurotransmission Research; InTech, , 2018.
[71]
Excitatory, H.; John, M.S.; Adron, H.R. GABA and the GABAa receptor. J. Neurochem., 1997, 21, 1-27-131.
[72]
Soyka, M. Treatment of benzodiazepine dependence. N. Engl. J. Med., 2017, 376(12), 1147-1157.
[http://dx.doi.org/10.1056/NEJMra1611832]
[73]
de las Cuevas, C.; Sanz, E.; de la Fuente, J. Benzodiazepines: More “behavioural” addiction than dependence. Psychopharmacology , 2003, 167(3), 297-303.
[http://dx.doi.org/10.1007/s00213-002-1376-8]
[74]
Gracies, J.M.; Nance, P.; Elovic, E.; McGuire, J.; Simpson, D.M. Traditional pharmacological treatments for spasticity part II: General and regional treatments. Muscle Nerve, 1997, 20(S6), 92-120.
[http://dx.doi.org/10.1002/(SICI)1097-4598(1997)6+<92:AID-MUS7>3.0.CO;2-E]
[75]
Jinnah, H.A.; Factor, S.A. Diagnosis and treatment of dystonia. Neurol. Clin., 2015, 33(1), 77-100.
[http://dx.doi.org/10.1016/j.ncl.2014.09.002]
[76]
Holm, K.J.; Goa, K.L.; Cluydts, R. Zolpidem: An update of its pharmacology, therapeutic efficacy and tolerability in the treatment of insomnia. Drugs, 2000, 59(4), 865-889.
[77]
Huang, M.C.; Lin, H.Y.; Chen, C.H. Dependence on zolpidem. Psychiatry Clin. Neurosci., 2007, 61(2), 207-208.
[http://dx.doi.org/10.1111/j.1440-1819.2007.01644.x]
[78]
Romito, J.W.; Turner, E.R.; Rosener, J.A.; Coldiron, L.; Udipi, A.; Nohrn, L.; Tausiani, J.; Romito, B.T. Baclofen therapeutics, toxicity, and withdrawal: A narrative review. SAGE Open Med., 2021, 9.
[http://dx.doi.org/10.1177/20503121211022197]
[79]
Caulfield, MP. Birdsall, NJM International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev., 1998, 50(2), 279-290.
[80]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov. Nature Publishing Group, 2014, 13, 549-560.
[81]
Miller, C.A. Anticholinergics: The good and the bad. Geriatr. Nurs., 2002, 23(5), 286-287.
[http://dx.doi.org/10.1067/mgn.2002.128791]
[82]
Downs, A.M.; Fan, X.; Donsante, C.; Jinnah, H.A.; Hess, E.J. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiol. Dis., 2019, 125, 115-122.
[http://dx.doi.org/10.1016/j.nbd.2019.01.012]
[83]
Galarraga, E.; Herná Ndez-Ló Pez, S.; Reyes, A.; Miranda, I.; Bermudez-Rattoni, F.; Vilchis, C. Cholinergic modulation of neostriatal output: A functional antagonism between different types of muscarinic receptors. J. Neurosci., 1999, 19(9), 3629-3638.
[http://dx.doi.org/10.1523/JNEUROSCI.19-09-03629.1999]
[84]
Bergman, H.; Soares-Weiser, K. Anticholinergic medication for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst. Rev., 2018, 1(1), CD000204.
[http://dx.doi.org/10.1002/14651858.CD000204.pub2]
[85]
Artukoglu, B.B.; Li, F.; Szejko, N.; Bloch, M.H. Pharmacologic treatment of tardive dyskinesia: A meta-analysis and systematic review. J. Clin. Psychiatry., 2020, 81(4), 19r12798.
[http://dx.doi.org/10.4088/JCP.19r12798]
[86]
Stroup, T.S.; Gray, N. Management of common adverse effects of antipsychotic medications. World Psychiatry, 2018, 17(3), 341-356.
[http://dx.doi.org/10.1002/wps.20567]
[87]
López-Álvarez, J.; Sevilla-Llewellyn-Jones, J.; Agüera-Ortiz, L. Anticholinergic drugs in geriatric psychopharmacology. Front. Neurosci., 2019, 13, 1309.
[88]
Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm., 2014, 121(8), 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8]
[89]
Sanacora, G.; Zarate, C.A.; Krystal, J.H.; Manji, H.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov., 2008, 7(5), 426-437.
[http://dx.doi.org/10.1038/nrd2462]
[90]
Meldrum, BS. Glutamate and glutamine in the brain glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr., 2000, 130(4S), 1007S-1015S.
[91]
Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders.The Lancet Neurology; Elsevier, 2021, 20, 1048-1056.
[92]
Dragašević-Mišković, N.; Petrović, I.; Stanković, I.; Kostić, V.S. Chemical management of levodopa-induced dyskinesia in Parkinson’s disease patients. Expert Opinion on Pharmacotherapy; Taylor and Francis Ltd,, 2019, 20, 219-230.
[93]
Caroff, S.N.; Jr, MJ.F. Revisiting amantadine as a treatment for drug-induced movement disorders. Ann. Clin. Psychiatry, 2020, 32(3), 198-208.
[94]
Kubo, S.; Iwatake, A.; Ebihara, N.; Murakami, A.; Hattori, N. Visual impairment in Parkinson’s disease treated with amantadine: Case report and review of the literature. Parkinsonism Relat. Disord., 2008, 14(2), 166-169.
[http://dx.doi.org/10.1016/j.parkreldis.2007.03.003]
[95]
Chang, C.; Ramphul, K. In: StatPearls; StatPearls Publishing, 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499953/ (cited: 14th November 2022).
[96]
Siniscalchi, A.; Gallelli, L.; De Sarro, G. Use of antiepileptic drugs for hyperkinetic movement disorders. Curr. Neuropharmacol., 2010, 8(4), 359-366.
[http://dx.doi.org/10.2174/157015910793358187]
[97]
Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82.
[http://dx.doi.org/10.1038/nrd2997]
[98]
Yu, L.; Yan, J.; Wen, F.; Wang, F.; Liu, J.; Cui, Y.; Li, Y. Revisiting the efficacy and tolerability of topiramate for tic disorders: A meta-analysis. J. Child Adolesc. Psychopharmacol., 2020, 30(5), 316-325.
[http://dx.doi.org/10.1089/cap.2019.0161]
[99]
Walia, K.S.; Khan, E.A.; Ko, D.H.; Raza, S.S.; Khan, Y.N. Side effects of antiepileptics: A review. Pain Pract., 2004, 4(3), 194-203.
[http://dx.doi.org/10.1111/j.1533-2500.2004.04304.x]
[100]
Mutanana, N.; Tsvere, M.; Chiweshe, M.K. General side effects and challenges associated with anti-epilepsy medication: A review of related literature. Afr. J. Prim. Health Care Fam. Med., 2020, 12(1), e1-e5.
[http://dx.doi.org/10.4102/phcfm.v12i1.2162]
[101]
Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S. Botulinum toxin as a biological weapon medical and public health management. JAMA, 2001, 285(8), 1059-1070.
[102]
Dressler, D.; Adib Saberi, F. Botulinum toxin: Mechanisms of action. Eur. Neurol., 2005, 53(1), 3-9.
[http://dx.doi.org/10.1159/000083259]
[103]
Marsh, W.A.; Monroe, D.M.; Brin, M.F.; Gallagher, C.J. Systematic review and meta-analysis of the duration of clinical effect of onabotulinumtoxinA in cervical dystonia. BMC Neurol., 2014, 14(1), 91.
[http://dx.doi.org/10.1186/1471-2377-14-91]
[104]
Anandan, C.; Jankovic, J. Botulinum toxin in movement disorders: An update. Toxins , 2021, 13(1), 42.
[http://dx.doi.org/10.3390/toxins13010042]
[105]
Kassir, M.; Gupta, M.; Galadari, H.; Kroumpouzos, G.; Katsambas, A.; Lotti, T. Complications of botulinum toxin and fillers: A narrative review. J. Cosmet. Dermatol., 2020, 19(3), 570-573.
[http://dx.doi.org/10.1111/jocd.13266]
[106]
Kroumpouzos, G.; Kassir, M.; Gupta, M.; Patil, A.; Goldust, M. Complications of Botulinum toxin A: An update review. J. Cosmet. Dermatol., 2021, 20, 1585-15920.
[107]
Witmanowski, H.; Błochowiak, K. The whole truth about botulinum toxin: A review. Postepy Dermatologii i Alergologii. Termedia Publishing House Ltd, 2021, 37, 853-861.
[108]
Jinnah, H.A. Medical and surgical treatments for dystonia. Neurol. Clin., 2020, 38(2), 325-348.
[http://dx.doi.org/10.1016/j.ncl.2020.01.003]
[109]
George, E.; Shneyder, N. Reduction in post-botulinum toxin flu-like symptoms after injection with incobotulinum toxin. Neurology, 2014, 2014(08), 82.
[110]
Baizabal-Carvallo, J.F.; Jankovic, J.; Pappert, E. Flu-like symptoms following botulinum toxin therapy. Toxicon, 2011, 58(1), 1-7.
[http://dx.doi.org/10.1016/j.toxicon.2011.04.019]
[111]
Albrecht, P.; Jansen, A.; Lee, J.I.; Moll, M.; Ringelstein, M.; Rosenthal, D.; Bigalke, H.; Aktas, O.; Hartung, H-P.; Hefter, H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology, 2019, 92(1), e48-e54.
[http://dx.doi.org/10.1212/WNL.0000000000006688]
[112]
Ho, W.W.S.; Albrecht, P.; Calderon, P.E.; Corduff, N.; Loh, D.; Martin, M.U.; Park, J-Y.; Suseno, L.S.; Tseng, F-W.; Vachiramon, V.; Wanitphakdeedecha, R.; Won, C-H.; Yu, J.N.T.; Dingley, M. Emerging trends in botulinum neurotoxin a resistance: An international multidisciplinary review and consensus. Plast. Reconstr. Surg. Glob. Open, 2022, 10(6), e4407.
[http://dx.doi.org/10.1097/GOX.0000000000004407]
[113]
Farr, S.T. Resistance to botulinum toxins in aesthetics. Botulinum Toxins and Botulism; Nova Science Publishers, Inc., 2015, pp. 1-15.
[114]
Ashkan, K.; Rogers, P.; Bergman, H.; Ughratdar, I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. Nature Publishing Group, 2017, 13, 548-554.
[115]
Chan, D.T.M.; Zhu, X.L.; Yeung, J.H.M.; Mok, V.C.T.; Wong, E.; Lau, C. Complications of deep brain stimulation: A collective review. Asian J. Surgery. Elsevier. Pte Ltd: Singapore, 2009, 32, 258-263.
[116]
Patel, D.M.; Walker, H.C.; Brooks, R.; Omar, N.; Ditty, B.; Guthrie, B.L. Adverse events associated with deep brain stimulation for movement disorders: Analysis of 510 consecutive cases. Oper. Neurosurg. , 2015, 11(1), 190-199.
[http://dx.doi.org/10.1227/NEU.0000000000000659]
[117]
Jung, I.H.; Chang, K.W.; Park, S.H.; Chang, W.S.; Jung, H.H.; Chang, J.W. Complications after deep brain stimulation: A 21-year experience in 426 patients. Front. Aging Neurosci., 2022, 14, 819730.
[http://dx.doi.org/10.3389/fnagi.2022.819730]
[118]
Zarzycki, M.Z.; Domitrz, I. Stimulation-induced side effects after deep brain stimulation: A systematic review. Acta Neuropsychiatrica; Cambridge University Press,; , 2020, 32, pp. 57-64.
[119]
Strotzer, Q.D.; Kohl, Z.; Anthofer, J.M.; Faltermeier, R.; Schmidt, N.O.; Torka, E.; Greenlee, M.W.; Fellner, C.; Schlaier, J.R.; Beer, A.L. Structural connectivity patterns of side effects induced by subthalamic deep brain stimulation for Parkinson’s disease. Brain Connect., 2022, 12(4), 374-384.
[http://dx.doi.org/10.1089/brain.2021.0051]
[120]
Reese, R.; Volkmann, J. Deep brain stimulation for the dystonias: Evidence, knowledge gaps, and practical considerations. Movement Disorders Clinical Practice; Wiley-Blackwell, 2017, 4, 486-494.
[121]
Zarzycki, M.Z.; Domitrz, I. Stimulation-induced side effects after deep brain stimulation: A systematic review. . Acta Neuropsychiatrica; Cambridge University Press, ; , 2020, 32, pp. 57-64.
[122]
Au, K.L.K.; Wong, J.K.; Tsuboi, T.; Eisinger, R.S.; Moore, K.; Lemos Melo Lobo Jofili Lopes, J.; Holland, M.T.; Holanda, V.M.; Peng-Chen, Z.; Patterson, A.; Foote, K.D.; Ramirez-Zamora, A.; Okun, M.S.; Almeida, L. Globus pallidus internus (GPi) deep brain stimulation for Parkinson’s disease: Expert review and commentary. Neurol. Ther., 2021, 10(1), 7-30.
[http://dx.doi.org/10.1007/s40120-020-00220-5]
[123]
Buhmann, C.; Huckhagel, T.; Engel, K.; Gulberti, A.; Hidding, U.; Poetter-Nerger, M.; Goerendt, I.; Ludewig, P.; Braass, H.; Choe, C.; Krajewski, K.; Oehlwein, C.; Mittmann, K.; Engel, A.K.; Gerloff, C.; Westphal, M.; Köppen, J.A.; Moll, C.K.E.; Hamel, W. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS One, 2017, 12(7), e0178984.
[http://dx.doi.org/10.1371/journal.pone.0178984]
[124]
An Open-label Study to Define the Safety, Tolerability and Clinical Activity of Deutetrabenazine (AUstedo) in Adult Study Subjects With DYsTonia (AUDYT). 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04173260 (Cited: 21st December 2022).
[125]
Bledsoe, I.O.; Viser, A.C.; San Luciano, M. Treatment of dystonia: Medications, neurotoxins, neuromodulation, and rehabilitation. Neurotherapeutics, 2020, 17(4), 1622-1644.
[http://dx.doi.org/10.1007/s13311-020-00944-0]
[126]
Solish, N.; Carruthers, J.; Kaufman, J.; Rubio, R.G.; Gross, T.M.; Gallagher, C.J. Overview of daxibotulinumtoxina for injection: A novel formulation of botulinum toxin type A. Drugs, 2021, 81(18), 2091-2101.
[http://dx.doi.org/10.1007/s40265-021-01631-w]
[127]
Berweck, S.; Feldkamp, A.; Francke, A.; Nehles, J.; Schwerin, A.; Heinen, F. Sonography-guided injection of botulinum toxin a in children with cerebral palsy. Neuropediatrics, 2002, 33(4), 221-223.
[http://dx.doi.org/10.1055/s-2002-34500]
[128]
Chen, HWW. Ultrasound-guided botulinum toxin injections and EMG biofeedback therapy the lower limb muscle spasm after cerebral infarction. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(9), 1696-1699.
[129]
Sung, D.H.; Choi, J.Y.; Kim, D.H.; Kim, E.S.; Son, Y.I.; Cho, Y.S.; Lee, S.J.; Lee, K-H.; Kim, B-T. Localization of dystonic muscles with 18F-FDG PET/CT in idiopathic cervical dystonia. J. Nucl. Med., 2007, 48(11), 1790-1795.
[http://dx.doi.org/10.2967/jnumed.107.044024]
[130]
Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W. Technology of deep brain stimulation: Current status and future directions. Nat. Rev. Neurol., 2021, 17, 75-87.
[131]
Horisawa, S.; Yamaguchi, T.; Abe, K.; Hori, H.; Sumi, M.; Konishi, Y.; Taira, T. A single case of MRI-guided focused ultrasound ventro-oral thalamotomy for musician’s dystonia. J. Neurosurg., 2019, 131(2), 384-386.
[http://dx.doi.org/10.3171/2018.5.JNS173125]
[132]
Fasano, A.; Llinas, M.; Munhoz, R.P.; Hlasny, E.; Walter Kucharczyk, M. Lozano, AM MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes. Neurology, 2017, 89(8), 771-775.
[http://dx.doi.org/10.1212/WNL.0000000000004268]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy