Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Layer-by-layer Fabrication of Gold Nanoparticles/Polyaniline Modified Gold Electrodes for Direct Non-enzymatic Oxidation of Glucose

Author(s): Waleed A. El-Said*, Ahmad Alsulmi and Wael Alshitari

Volume 20, Issue 9, 2024

Published on: 13 May, 2024

Page: [663 - 673] Pages: 11

DOI: 10.2174/0115734110296331240503100544

Price: $65

Abstract

Background: Non-enzymatic direct glucose biofuel cell is a promising technology to harness sustainable renewable energy. Furthermore, monitoring glucose levels is essential for human lives with age. Thus, there is an increasing need to develop highly efficient and stable modified electrodes.

Methods: This study reported the manufacture of gold nanoparticles/polyaniline/modified gold electrodes (Au NPs/PANI/Au electrode) based on the electrochemical polymerization method followed by the deposition of gold nanoparticles. The shapes and chemical constitution of the electrodes were examined by using different techniques including SEM, FTIR, XRD, EDS, and Raman spectroscopy techniques. The electrocatalytic efficiency of the present electrodes toward direct glucose oxidation was evaluated by applying cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry techniques.

Results: The results exhibited high electrocatalytic performance for direct glucose electrooxidation in alkaline media. The modified electrodes show the ability to electrooxidation of various glucose concentrations (1 μM ̶ 100 μM) with a limit of detection and limit of quantitation of 140 nM and 424 nM, respectively. Furthermore, the Au NPs/PANI/Au electrode showed higher durability, sensitivity, and selectivity toward glucose oxidation than the Au NPs/ Au electrode, which confirmed the role of the PANI layer in enhancing the stability of the modified electrode.

Conclusion: Moreover, the molar fraction of glucose to KOH has a crucial role in the output current. Hence, the modified electrodes are great candidates for direct glucose biofuel cell application.

Graphical Abstract

[1]
Torigoe, K.; Takahashi, M.; Tsuchiya, K.; Iwabata, K.; Ichihashi, T.; Sakaguchi, K.; Sugawara, F.; Abe, M. High-power abiotic direct glucose fuel cell using a gold–platinum bimetallic anode catalyst. ACS Omega, 2018, 3(12), 18323-18333.
[http://dx.doi.org/10.1021/acsomega.8b02739] [PMID: 31458409]
[2]
Houghton, J.T. Global Warming, The Complete Briefing, 5th ed; Cambridge University Press, 2015.
[http://dx.doi.org/10.1017/CBO9781316134245]
[3]
Gao, M.; Liu, X.; Irfan, M.; Shi, J.; Wang, X.; Zhang, P. Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy, 2018, 43(3), 1805-1815.
[http://dx.doi.org/10.1016/j.ijhydene.2017.11.114]
[4]
Barbir, F. Preface to the second edition. In: PEM fuel cells, 2nd ed; Academic Press: Boston, 2013.
[5]
Santiago, Ó.; Navarro, E.; Raso, M.A.; Leo, T.J. Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts. Appl. Energy, 2016, 179, 497-522.
[http://dx.doi.org/10.1016/j.apenergy.2016.06.136]
[6]
Sharma, A.; Singh, G.; Arya, S.K. Biofuel cell nanodevices. Int. J. Hydrogen Energy, 2021, 46(4), 3270-3288.
[http://dx.doi.org/10.1016/j.ijhydene.2020.02.164]
[7]
Kumar, A.; Sharma, S.; Pandey, L.M.; Chandra, P. Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications. Mater. Sci. Energy Technol., 2018, 1(1), 38-48.
[http://dx.doi.org/10.1016/j.mset.2018.04.001]
[8]
Liu, X-W.; Li, W-W.; Yu, H-Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev., 2013, 43.
[PMID: 23959403]
[9]
Freguia, S.; Virdis, B.; Harnisch, F.; Keller, J. Bioelectrochemical systems: Microbial versus enzymatic catalysis. Electrochim. Acta, 2012, 82, 165-174.
[http://dx.doi.org/10.1016/j.electacta.2012.03.014]
[10]
An, L.; Zhao, T.S.; Shen, S.Y.; Wu, Q.X.; Chen, R. Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources, 2011, 196(1), 186-190.
[http://dx.doi.org/10.1016/j.jpowsour.2010.05.069]
[11]
Chen, J.; Zhao, C.X.; Zhi, M.M.; Wang, K.; Deng, L.; Xu, G. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim. Acta, 2012, 66, 133-138.
[http://dx.doi.org/10.1016/j.electacta.2012.01.071]
[12]
Rapoport, B.I.; Kedzierski, J.T.; Sarpeshkar, R. A glucose fuel cell for implantable brain-machine interfaces. PLoS One, 2012, 7(6), e38436.
[http://dx.doi.org/10.1371/journal.pone.0038436] [PMID: 22719888]
[13]
Gong, S.; Du, S.; Kong, J.; Zhai, Q.; Lin, F.; Liu, S.; Cameron, N.R.; Cheng, W. Skin‐like stretchable fuel cell based on gold‐nanowire‐impregnated porous polymer scaffolds. Small, 2020, 16(39), 2003269.
[http://dx.doi.org/10.1002/smll.202003269] [PMID: 32864831]
[14]
Gong, S.; Cheng, W. Toward soft skin‐like wearable and implantable energy devices. Adv. Energy Mater., 2017, 7(23), 1700648.
[http://dx.doi.org/10.1002/aenm.201700648]
[15]
Brouzgou, A.; Tsiakaras, P. Electrocatalysts for glucose electrooxidation reaction: A review. Top. Catal., 2015, 58(18-20), 1311-1327.
[http://dx.doi.org/10.1007/s11244-015-0499-1]
[16]
Liu, H.; Liang, D. A review of clean energy innovation and technology transfer in China. Renew. Sustain. Energy Rev., 2013, 18, 486-498.
[http://dx.doi.org/10.1016/j.rser.2012.10.041]
[17]
Dong, F.; Liu, X.; Irfan, M.; Yang, L.; Li, S.; Ding, J.; Li, Y.; Khan, I.U.; Zhang, P. Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell. Int. J. Hydrogen Energy, 2019, 44(16), 8178-8187.
[http://dx.doi.org/10.1016/j.ijhydene.2019.02.031]
[18]
Liu, X.; Hao, M.; Feng, M.; Zhang, L.; Zhao, Y.; Du, X.; Wang, G. A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Appl. Energy, 2013, 106, 176-183.
[http://dx.doi.org/10.1016/j.apenergy.2013.01.073]
[19]
Lemoine, C.; Dubois, L.; Napporn, T.W.; Servat, K.; Kokoh, K.B. Electrochemical energy conversion from direct oxidation of glucose on active electrode materials. Electrocatalysis, 2020, 11(2), 170-179.
[http://dx.doi.org/10.1007/s12678-019-00570-1]
[20]
El-Said, W.A.; Kim, T.H.; Chung, Y.H.; Choi, J.W. Fabrication of new single cell chip to monitor intracellular and extracellular redox state based on spectroelectrochemical method. Biomaterials, 2015, 40, 80-87.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.023] [PMID: 25433609]
[21]
El-Said, W.A.; Al-Bogami, A.S.; Alshitari, W.; El-Hady, D.A.; Saleh, T.S.; El-Mokhtar, M.A.; Choi, J.W. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. Biochip J., 2021, 15(3), 287-295.
[http://dx.doi.org/10.1007/s13206-021-00030-3] [PMID: 34394845]
[22]
Kim, T.H.; El-Said, W.A.; Choi, J.W. Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosens. Bioelectron., 2012, 32(1), 266-272.
[http://dx.doi.org/10.1016/j.bios.2011.12.035] [PMID: 22226411]
[23]
El-Said, W.A.; Yea, C-H.; Kwon, I-K.; Choi, J-W. Fabrication of electrical cell chip for the detection of anticancer drugs and environmental toxicants effect. Biochip J., 2009, 3(2), 105-112.
[24]
Khalifa, M.M.; Elkhawaga, A.A.; Hassan, M.A.; Zahran, A.M.; Fathalla, A.M.; El-Said, W.A.; El-Badawy, O. Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers: A comparative study. Sci. Rep., 2019, 9(1), 18320.
[http://dx.doi.org/10.1038/s41598-019-54667-0] [PMID: 31797959]
[25]
El-Said, W.A.; Lee, J.H.; Oh, B.K.; Choi, J.W. Electrochemical sensor to detect neurotransmitter using gold nano-island coated ITO electrode. J. Nanosci. Nanotechnol., 2011, 11(7), 6539-6543.
[http://dx.doi.org/10.1166/jnn.2011.4377] [PMID: 22121752]
[26]
El-Said, W.A.; Abd El-Hameed, K.; Abo El-Maali, N.; Sayyed, H.G. Label‐free electrochemical sensor for ex‐vivo monitoring of alzheimer’s disease biomarker. Electroanalysis, 2017, 29(3), 748-755.
[http://dx.doi.org/10.1002/elan.201600467]
[27]
El-Said, W.A.; Kim, T.H.; Kim, H.; Choi, J.W. Three-dimensional mesoporous gold film to enhance the sensitivity of electrochemical detection. Nanotechnology, 2010, 21(45), 455501.
[http://dx.doi.org/10.1088/0957-4484/21/45/455501] [PMID: 20947947]
[28]
Chen, J.; Zheng, H.; Kang, J.; Yang, F.; Cao, Y.; Xiang, M. An alkaline direct oxidation glucose fuel cell using three-dimensional structural Au/Ni-foam as catalytic electrodes. RSC Advances, 2017, 7(5), 3035-3042.
[http://dx.doi.org/10.1039/C6RA27586A]
[29]
Ferriday, T.B.; Middleton, P.H. Alkaline fuel cell technology - A review. Int. J. Hydrogen Energy, 2021, 46(35), 18489-18510.
[http://dx.doi.org/10.1016/j.ijhydene.2021.02.203]
[30]
Hamada, A.T.; Orhan, M.F.; Kannan, A.M. Alkaline fuel cells: Status and prospects. Energy Rep., 2023, 9, 6396-6418.
[http://dx.doi.org/10.1016/j.egyr.2023.05.276]
[31]
Rafaïdeen, T.; Baranton, S.; Coutanceau, C. Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Appl. Catal. B, 2019, 243, 641-656.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.006]
[32]
Haan, J.M.; Ragadi, J.R.; Hohl, K.; Hernandez, L.; Haan, J.L. High performance direct liquid fuel cells powered by xylose or glucose. Int. J. Hydrogen Energy, 2023, 48(47), 18041-18053.
[http://dx.doi.org/10.1016/j.ijhydene.2023.01.250]
[33]
Zhu, B.; Gong, S.; Cheng, W. Softening gold for elastronics. Chem. Soc. Rev., 2019, 48(6), 1668-1711.
[http://dx.doi.org/10.1039/C8CS00609A] [PMID: 30484794]
[34]
Zhang, J.; Guan, P.; Li, Y.; Li, W.; Guo, Q. Polyaniline/cerium oxide hybrid modified carbon paste electrode for non‐enzymatic glucose detection. Bull. Korean Chem. Soc., 2016, 37(7), 985-986.
[http://dx.doi.org/10.1002/bkcs.10813]
[35]
El-Said, W.A.; Yea, C.H.; Choi, J.W.; Kwon, I.K. Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect. Thin Solid Films, 2009, 518(2), 661-667.
[http://dx.doi.org/10.1016/j.tsf.2009.07.062]
[36]
Hansen, B.; Hocevar, M.A.; Ferreira, C.A. A facile and simple polyaniline-poly(ethylene oxide) based glucose biosensor. Synth. Met., 2016, 222, 224-231.
[http://dx.doi.org/10.1016/j.synthmet.2016.10.028]
[37]
El-Said, W.A.; Abdelshakour, M.; Choi, J.H.; Choi, J.W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules, 2020, 25(2), 307.
[http://dx.doi.org/10.3390/molecules25020307] [PMID: 31940924]
[38]
El-Said, W.A.; Choi, J.W. Electrochemical biosensor consisted of conducting polymer layer on gold nanodots patterned indium tin oxide electrode for rapid and simultaneous determination of purine bases. Electrochim. Acta, 2014, 123, 51-57.
[http://dx.doi.org/10.1016/j.electacta.2013.12.144]
[39]
El-Said, W.A.; Alshitari, W.; Choi, J. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117890.
[http://dx.doi.org/10.1016/j.saa.2019.117890] [PMID: 31839573]
[40]
Al-Sulami, A.I.; Fatima, A.; Al-Sulami, F.M.H.; Sami, A.; Aldahiri, R.H.; Khan, M.; Al-Ghamdi, A.A.; Akhtar, N.; El Said, W.A. C-entrapped Cu nanoparticles-infused polyaniline-modified cellulose nanofibers for the precise monitoring of xanthine in urine samples. New J. Chem., 2024, 48(6), 2817-2824.
[http://dx.doi.org/10.1039/D3NJ05380F]
[41]
Alahmadi, N.; El-Said, W.A. Electrochemical sensing of dopamine using polypyrrole/molybdenum oxide bilayer-modified ITO electrode. Biosensors, 2023, 13(6), 578.
[http://dx.doi.org/10.3390/bios13060578] [PMID: 37366943]
[42]
Zayed, M.A.; Hussein, M.A.; El-Shishtawy, R.M.; Albukhari, S.M.; El-Said, W.A.; Elshehy, E.A. Molybdenum oxide grafted-polyaniline nanocomposite modified ITO electrode for electrochemical sensing of arsenic oxyanion. J. Mater. Res. Technol., 2023, 24, 503-513.
[http://dx.doi.org/10.1016/j.jmrt.2023.02.195]
[43]
Abdel-Rahman, M.A.; El-Said, W.A.; Sayed, E.M.; Abdel-Wahab, A.M.A. Synthesis, characterization of some conductive aromatic polyamides/Fe3O4 NPs/ITO, and their utilization for methotrexate sensing. Surfaces, 2023, 6(1), 83-96.
[http://dx.doi.org/10.3390/surfaces6010007]
[44]
El-Said, W.A.; Nasr, O.; Soliman, A.I.A.; Elshehy, E.A.; Khan, Z.A.; Abdel-Wadood, F.K. Fabrication of polypyrrole/Au nanoflowers modified gold electrode for highly sensitive sensing of paracetamol in pharmaceutical formulation. Appl. Surf. Sci. Adv., 2021, 4, 100065.
[http://dx.doi.org/10.1016/j.apsadv.2021.100065]
[45]
Tucceri, R.; Arnal, P.M.; Scian, A.N. Spectroscopic characterization of poly(orthoaminophenol) film electrodes: A review article. J. Spectrosc., 2013, 2013, 1-26.
[http://dx.doi.org/10.1155/2013/951604]
[46]
Trchová, M.; Morávková, Z.; Bláha, M.; Stejskal, J. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta, 2014, 122, 28-38.
[http://dx.doi.org/10.1016/j.electacta.2013.10.133]
[47]
Šeděnková, I.; Trchová, M.; Dybal, J.; Stejskal, J. Interaction of polyaniline film with dibutyl phosphonate versus phosphite: Enhanced thermal stability. Polym. Degrad. Stabil., 2016, 134, 357-365.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.11.005]
[48]
Pereira da Silva, J.E.; de Faria, D.L.A.; Córdoba de Torresi, S.I.; Temperini, M.L.A. Influence of thermal treatment on doped polyaniline studied by resonance raman spectroscopy. Macromolecules, 2000, 33(8), 3077-3083.
[http://dx.doi.org/10.1021/ma990801q]
[49]
Rozlívková, Z.; Trchová, M.; Šeděnková, I.; Špírková, M.; Stejskal, J. Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Films, 2011, 519(18), 5933-5941.
[http://dx.doi.org/10.1016/j.tsf.2011.03.025]
[50]
Choi, J.H.; El-Said, W.A.; Choi, J.W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Appl. Surf. Sci., 2020, 506, 144669.
[http://dx.doi.org/10.1016/j.apsusc.2019.144669]
[51]
Kyomuhimbo, H.D.; Feleni, U. Electroconductive green metal‐polyaniline nanocomposites: Synthesis and application in sensors. Electroanalysis, 2023, 35(2), e202100636.
[http://dx.doi.org/10.1002/elan.202100636]
[52]
Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta, 2010, 55(20), 5561-5568.
[http://dx.doi.org/10.1016/j.electacta.2010.04.069]
[53]
Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci., 2010, 5(9), 1246-1301.
[http://dx.doi.org/10.1016/S1452-3981(23)15359-4]
[54]
Viswanathan, P.; Park, J.; Kang, D.K.; Hong, J.D. Polydopamine-wrapped Cu/Cu(II) nano-heterostructures: An efficient electrocatalyst for non-enzymatic glucose detection. Colloids Surf. A Physicochem. Eng. Asp., 2019, 580, 123689.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123689]
[55]
Chu, T.F.; Rajendran, R.; Kuznetsova, I.; Wang, G.J. High-power, non-enzymatic glucose biofuel cell based on a nano/micro hybrid-structured Au anode. J. Power Sources, 2020, 453, 227844.
[http://dx.doi.org/10.1016/j.jpowsour.2020.227844]
[56]
Elkholy, A.E.; Heakal, F.E.T.; El-Said, W.A. Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Appl. Catal. A Gen., 2019, 580, 28-33.
[http://dx.doi.org/10.1016/j.apcata.2019.04.032]
[57]
Chen, H.; Sun, P.; Qiu, M.; Jiang, M.; Zhao, J.; Han, D.; Niu, L.; Cui, G. Co-P decorated nanoporous copper framework for high performance flexible non-enzymatic glucose sensors. J. Electroanal. Chem., 2019, 841, 119-128.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.036]
[58]
Tsai, P.J.; Chuang, K.L.; Yang, C.J.; Lee, H.T.; Lu, F.H. Synthesis of Cu–Co bimetallic nanoparticles using TiN-coated electrodes for glucose-sensing applications. J. Alloys Compd., 2019, 785, 191-199.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.141]
[59]
Wang, L.; Zhuang, S.; Wang, L.; Wang, N.; Mo, H.; Tang, Y.; Chen, Y.; Sun, Y.; Wan, P. One step synthesis of hierarchical Cu nanoparticles-Co(OH)2 nanoflakes/Nifoam electrode for ultrasensitive detection of glucose. Appl. Surf. Sci., 2019, 467-468, 773-781.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.124]
[60]
Xia, K.; Yang, C.; Chen, Y.; Tian, L.; Su, Y.; Wang, J.; Li, L. In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens. Actuators B Chem., 2017, 240, 979-987.
[http://dx.doi.org/10.1016/j.snb.2016.09.077]
[61]
Wang, B.; Wu, Y.; Chen, Y.; Weng, B.; Li, C. Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sens. Actuators B Chem., 2017, 238, 802-808.
[http://dx.doi.org/10.1016/j.snb.2016.07.137]
[62]
Li, R.; Liu, X.; Wang, H.; Wu, Y.; Chan, K.C.; Lu, Z. Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. Electrochim. Acta, 2019, 299, 470-478.
[http://dx.doi.org/10.1016/j.electacta.2019.01.033]
[63]
Luo, Y.; Kong, F.Y.; Li, C.; Shi, J.J.; Lv, W.X.; Wang, W. One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sens. Actuators B Chem., 2016, 234, 625-632.
[http://dx.doi.org/10.1016/j.snb.2016.05.046]
[64]
Guo, S.; Zhang, C.; Yang, M.; Zhou, Y.; Bi, C.; Lv, Q.; Ma, N. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide. Anal. Chim. Acta, 2020, 1109, 130-139.
[http://dx.doi.org/10.1016/j.aca.2020.02.037] [PMID: 32252896]
[65]
Shahhoseini, L.; Mohammadi, R.; Ghanbari, B.; Shahrokhian, S. Ni(II) 1D-coordination polymer/C60-modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor. Appl. Surf. Sci., 2019, 478, 361-372.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.240]
[66]
Ding, L.; Yan, J.; Zhao, Z.; Li, D. Synthesis of NiGa2O4 nanosheets for non-enzymatic glucose electrochemical sensor. Sens. Actuators B Chem., 2019, 296, 126705.
[http://dx.doi.org/10.1016/j.snb.2019.126705]
[67]
Lipińska, W.; Siuzdak, K.; Karczewski, J.; Dołęga, A.; Grochowska, K. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens. Actuators B Chem., 2021, 330, 129409.
[http://dx.doi.org/10.1016/j.snb.2020.129409]
[68]
Anshori, I.; Heriawan, E.V.; Suhayat, P.Y.; Wicaksono, D.H.B.; Kusumocahyo, S.P.; Satriawan, A.; Shalannanda, W.; Dwiyanti, L.; Setianingsih, C.; Handayani, M. Fabric-based electrochemical glucose sensor with integrated millifluidic path from a hydrophobic batik wax. Sensors, 2023, 23(13), 5833.
[http://dx.doi.org/10.3390/s23135833] [PMID: 37447683]
[69]
Singh, A.; Sharma, A.; Arya, S. Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring. J. Anal. Sci. Technol., 2022, 13(1), 11.
[http://dx.doi.org/10.1186/s40543-022-00320-x]
[70]
Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci., 2018, 442, 332-341.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.124]
[71]
Zhao, C.; Li, X.; Wu, Q.; Liu, X. A thread-based wearable sweat nanobiosensor. Biosens. Bioelectron., 2021, 188, 113270.
[http://dx.doi.org/10.1016/j.bios.2021.113270] [PMID: 34074569]
[72]
Liu, X.; Cai, Z.; Gao, N.; Ye, S.; Tao, T.; He, H.; Chang, G.; He, Y. Controllable preparation of (200) facets preferential oriented silver nanowires for non-invasive detection of glucose in human sweat. Smart Mater. Med., 2021, 2, 150-157.
[http://dx.doi.org/10.1016/j.smaim.2021.05.002]
[73]
Murugan, P.; Annamalai, J.; Atchudan, R.; Govindasamy, M.; Nallaswamy, D.; Ganapathy, D.; Reshetilov, A.; Sundramoorthy, A.K. Electrochemical sensing of glucose using glucose oxidase/PEDOT: 4-sulfocalix[4]arene/mxene composite modified electrode. Micromachines, 2022, 13(2), 304.
[http://dx.doi.org/10.3390/mi13020304] [PMID: 35208428]
[74]
Arif, D.; Hussain, Z.; Sohail, M.; Liaqat, M.A.; Khan, M.A.; Noor, T. A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) Nanocomposite. Front Chem., 2020, 8, 573510.
[http://dx.doi.org/10.3389/fchem.2020.573510] [PMID: 33195063]
[75]
Haghparas, Z.; Kordrostami, Z.; Sorouri, M.; Rajabzadeh, M.; Khalifeh, R. Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures. Sci. Rep., 2021, 11(1), 344.
[http://dx.doi.org/10.1038/s41598-020-79460-2] [PMID: 33431992]
[76]
Lee, J.H.; El-Said, W.A.; Oh, B.K.; Choi, J.W. Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode. J. Nanosci. Nanotechnol., 2014, 14(11), 8432-8438.
[http://dx.doi.org/10.1166/jnn.2014.9921] [PMID: 25958541]
[77]
Cai, B.; Zhou, Y.; Zhao, M.; Cai, H.; Ye, Z.; Wang, L.; Huang, J. Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Appl. Phys., A Mater. Sci. Process., 2015, 118(3), 989-996.
[http://dx.doi.org/10.1007/s00339-014-8855-8]
[78]
Ghanbari, K.; Babaei, Z. Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal. Biochem., 2016, 498, 37-46.
[http://dx.doi.org/10.1016/j.ab.2016.01.006] [PMID: 26778527]
[79]
Li, M.; Bo, X.; Mu, Z.; Zhang, Y.; Guo, L. Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem., 2014, 192, 261-268.
[http://dx.doi.org/10.1016/j.snb.2013.10.140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy