[1]
An L, Ji F, Zhao E, Liu Y, Liu Y. Measuring cell deformation by microfluidics. Front Bioeng Biotechnol 2023; 11: 1214544.
[http://dx.doi.org/10.3389/fbioe.2023.1214544] [PMID: 37434754]
[http://dx.doi.org/10.3389/fbioe.2023.1214544] [PMID: 37434754]
[2]
Sun J, Huang X, Chen J, et al. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst (Lond) 2023; 148(20): 4922-38.
[http://dx.doi.org/10.1039/D3AN01150J] [PMID: 37743834]
[http://dx.doi.org/10.1039/D3AN01150J] [PMID: 37743834]
[3]
Urbanska M, Muñoz HE, Shaw Bagnall J, et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 2020; 17(6): 587-93.
[http://dx.doi.org/10.1038/s41592-020-0818-8] [PMID: 32341544]
[http://dx.doi.org/10.1038/s41592-020-0818-8] [PMID: 32341544]
[4]
Chen H, Guo J, Bian F, Zhao Y. Microfluidic technologies for cell deformability cytometry. Smart Medicine 2022; 1(1): e20220001.
[http://dx.doi.org/10.1002/SMMD.20220001]
[http://dx.doi.org/10.1002/SMMD.20220001]
[5]
Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. Microfluidic analysis of red blood cell deformability. J Biomech 2014; 47(8): 1767-76.
[http://dx.doi.org/10.1016/j.jbiomech.2014.03.038] [PMID: 24767871]
[http://dx.doi.org/10.1016/j.jbiomech.2014.03.038] [PMID: 24767871]
[6]
Han X, Liu Z, Zhao L, et al. Microfluidic cell deformability assay for rapid and efficient kinase screening with the CRISPR‐Cas9 system. Angew Chem Int Ed 2016; 55(30): 8561-5.
[http://dx.doi.org/10.1002/anie.201601984] [PMID: 27258939]
[http://dx.doi.org/10.1002/anie.201601984] [PMID: 27258939]
[7]
Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF. Microfluidics-based assessment of cell deformability. Anal Chem 2012; 84(15): 6438-43.
[http://dx.doi.org/10.1021/ac300264v] [PMID: 22746217]
[http://dx.doi.org/10.1021/ac300264v] [PMID: 22746217]
[8]
Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2023; 251: 123815.
[http://dx.doi.org/10.1016/j.talanta.2022.123815] [PMID: 35952505]
[http://dx.doi.org/10.1016/j.talanta.2022.123815] [PMID: 35952505]
[9]
Zhao Q, Cui H, Wang Y, Du X. Microfluidic platforms toward rational material fabrication for biomedical applications. Small 2020; 16(9): 1903798.
[http://dx.doi.org/10.1002/smll.201903798] [PMID: 31650698]
[http://dx.doi.org/10.1002/smll.201903798] [PMID: 31650698]
[10]
Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 2023; 23(4): 714-26.
[http://dx.doi.org/10.1039/D2LC00692H] [PMID: 36472226]
[http://dx.doi.org/10.1039/D2LC00692H] [PMID: 36472226]
[11]
Ledvina V, Klepárník K, Legartová S, Bártová E. A device for investigation of natural cell mobility and deformability. Electrophoresis 2020; 41(13-14): 1238-44.
[http://dx.doi.org/10.1002/elps.201900357] [PMID: 32358820]
[http://dx.doi.org/10.1002/elps.201900357] [PMID: 32358820]
[12]
Recktenwald SM, Lopes MGM, Peter S, et al. Erysense, a lab-on-a-chip-based point-of-care device to evaluate red blood cell flow properties with multiple clinical applications. Front Physiol 2022; 13: 884690.
[http://dx.doi.org/10.3389/fphys.2022.884690] [PMID: 35574449]
[http://dx.doi.org/10.3389/fphys.2022.884690] [PMID: 35574449]
[13]
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-based microfluidics: Applications in pharmaceuticals. Pharmaceuticals 2023; 16(7): 937.
[http://dx.doi.org/10.3390/ph16070937] [PMID: 37513850]
[http://dx.doi.org/10.3390/ph16070937] [PMID: 37513850]
[14]
Verma A, Bhattacharyya S. Microfluidics-the state-of-the-art technology for pharmaceutical application. Adv Pharm Bull 2022; 12(4): 700-11.
[PMID: 36415637]
[PMID: 36415637]
[15]
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. Nanoscale 2023; 15(32): 13346-58.
[http://dx.doi.org/10.1039/D3NR02404K] [PMID: 37526589]
[http://dx.doi.org/10.1039/D3NR02404K] [PMID: 37526589]
[16]
Manz XD, Albers HJ, Symersky P, et al. In vitro microfluidic disease model to study whole blood-endothelial interactions and blood clot dynamics in real-time. J Vis Exp 2020; (159): e61068.
[PMID: 32510519]
[PMID: 32510519]
[17]
Dusny C, Grünberger A. Microfluidic single-cell analysis in biotechnology: From monitoring towards understanding. Curr Opin Biotechnol 2020; 63: 26-33.
[http://dx.doi.org/10.1016/j.copbio.2019.11.001] [PMID: 31809975]
[http://dx.doi.org/10.1016/j.copbio.2019.11.001] [PMID: 31809975]
[18]
Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 2021; 1186: 339115.
[http://dx.doi.org/10.1016/j.aca.2021.339115] [PMID: 34756251]
[http://dx.doi.org/10.1016/j.aca.2021.339115] [PMID: 34756251]
[19]
Grigorev G, Lebedev A, Wang X, Qian X, Maksimov G, Lin L. Advances in microfluidics for single red blood cell analysis. Biosensors 2023; 13(1): 117.
[http://dx.doi.org/10.3390/bios13010117] [PMID: 36671952]
[http://dx.doi.org/10.3390/bios13010117] [PMID: 36671952]
[20]
Su H, Zhang H, Zhang D, Wang H, Wang H. Black phosphorus-loaded inverse opal microspheres for intelligent drug delivery. J Drug Deliv Sci Technol 2024; 92: 105374.
[http://dx.doi.org/10.1016/j.jddst.2024.105374]
[http://dx.doi.org/10.1016/j.jddst.2024.105374]
[21]
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: A label-free method for high-throughput cell analysis. Microsyst Nanoeng 2023; 9(1): 116.
[http://dx.doi.org/10.1038/s41378-023-00562-8] [PMID: 37744264]
[http://dx.doi.org/10.1038/s41378-023-00562-8] [PMID: 37744264]
[22]
Ning L. Microfluidic devices for cell separation and sample concentration. Doctoral thesis, Nanyang Technological University, Singapore 2018.
[23]
Hosic S, Murthy SK, Koppes AN. Microfluidic sample preparation for single cell analysis. Anal Chem 2016; 88(1): 354-80.
[http://dx.doi.org/10.1021/acs.analchem.5b04077] [PMID: 26567589]
[http://dx.doi.org/10.1021/acs.analchem.5b04077] [PMID: 26567589]
[24]
Ito H, Kaneko M. On-chip cell manipulation and applications to deformability measurements. ROBOMECH J 2020; 7(1): 3.
[http://dx.doi.org/10.1186/s40648-020-0154-x]
[http://dx.doi.org/10.1186/s40648-020-0154-x]
[25]
Lin CH, Wang CK, Chen YA, Peng CC, Liao WH, Tung YC. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Sci Rep 2016; 6(1): 36425.
[http://dx.doi.org/10.1038/srep36425] [PMID: 27812019]
[http://dx.doi.org/10.1038/srep36425] [PMID: 27812019]
[26]
Yu J, Zhou J, Sutherland A, et al. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem 2014; 7(1): 275-95.
[http://dx.doi.org/10.1146/annurev-anchem-071213-020323] [PMID: 24896308]
[http://dx.doi.org/10.1146/annurev-anchem-071213-020323] [PMID: 24896308]
[27]
Rajawat A, Tripathi S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry. Biomed Eng Lett 2020; 10(2): 241-57.
[http://dx.doi.org/10.1007/s13534-019-00144-6] [PMID: 32431954]
[http://dx.doi.org/10.1007/s13534-019-00144-6] [PMID: 32431954]
[28]
Lindsey ML, Mayr M, Gomes AV, et al. Transformative impact of proteomics on cardiovascular health and disease: A scientific statement from the American Heart Association. Circulation 2015; 132(9): 852-72.
[http://dx.doi.org/10.1161/CIR.0000000000000226] [PMID: 26195497]
[http://dx.doi.org/10.1161/CIR.0000000000000226] [PMID: 26195497]
[29]
Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. Visualization and measurements of blood cells flowing in microfluidic systems and blood rheology: A personalized medicine perspective. J Pers Med 2020; 10(4): 249.
[http://dx.doi.org/10.3390/jpm10040249] [PMID: 33256123]
[http://dx.doi.org/10.3390/jpm10040249] [PMID: 33256123]