Abstract
The essential need for efficacious conveyance of therapeutics to specific tissues or cells, refinement of drug formulations, and the scalability of industrial production drives the pre-sent-day demand for enhanced drug delivery systems (DDS). Newly devised drugs often exhibit suboptimal biopharmaceutical properties, resulting in diminished patient adherence and adverse side effects. The paramount importance of site-specific drug delivery lies in its capacity to facili-tate the targeted administration of diverse therapeutic agents, catering to both localized ailments and systemic treatments. Alongside targeted drug delivery strategies encompassing ligand-based targeting and stimuli-responsive systems, the advent of cutting-edge nanotechnologies such as nanoparticles, liposomes, and micelles has marked a paradigm shift. Additionally, personalized medicines have emerged as a consequential facet of drug delivery, emphasizing the customization of treatment approaches. Researchers have explored an excess of methodologies in the advance-ment of these formulation technologies, including stimuli-responsive drug delivery, 3D printing, gene delivery, and various other innovative approaches. This comprehensive review aims to pro-vide a holistic understanding of the past, present, and future of drug delivery systems, offering in-sights into the transformative potential of emerging technologies.