Abstract
Trihaloisocyanuric acids [1,3,5-trihalo-1,3,5-triazine-2,4,6-(1H,3H,5H)-triones] are commercially available or easily prepared solids. They are highly reactive, stable, easily handled, and have an excellent atom economy, transferring up to three halogen atoms to organic substrates. In these regards, the present review summarizes their synthetic applications as safe and convenient reagents. Therefore, electrophilic halogenation reactions of alkenes, alkynes, arenes, heteroarenes, carbonyl compounds, and heteroatoms, as well as radical halogenation involving saturated substrates and in situ halogenated intermediates for Appel-type reactions are presented and discussed. Remarkably, applications of trihaloisocyanuric acids in processes for the construction of heteroarene scaffolds based on electrophilic halo- and oxidative cyclization, multicomponent reactions, and telescopic reactions are also given.
Graphical Abstract
[http://dx.doi.org/10.24820/ark.5550190.p010.610]
[http://dx.doi.org/10.1021/jm3012068] [PMID: 23145854];
(b) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev., 2016, 116(4), 2478-2601.
[http://dx.doi.org/10.1021/acs.chemrev.5b00484] [PMID: 26812185];
(c) Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking back, looking forward at halogen bonding in drug discovery. Molecules, 2017, 22(9), 1397.
[http://dx.doi.org/10.3390/molecules22091397] [PMID: 28837116]
[http://dx.doi.org/10.1002/0471238961.0308121502182501.a01.pub2]
(b) Wisniak, J. The history of catalysis. From the beginning to nobel prizes. Educ. Quím., 2010, 21(1), 60-69.
[http://dx.doi.org/10.1016/S0187-893X(18)30074-0]
[http://dx.doi.org/10.1098/rstl.1825.0022];
(b) Newell, L.C. Faraday’s discovery of benzene. J. Chem. Educ., 1926, 3(11), 1248-1253.
[http://dx.doi.org/10.1021/ed003p1248]
[http://dx.doi.org/10.1002/jlac.18571040217]
[http://dx.doi.org/10.1023/A:1016390721218];
(b) Gołebiewski, W.; Gucma, M. Applications of N-chlorosuccinimide in organic synthesis. Synthesis, 2007, 2007(23), 3599-3619.
[http://dx.doi.org/10.1055/s-2007-990871];
(c) Bera, S.; Mondal, D.; Chatterjee, B. Application of N-bromosuccinimide in carbohydrate chemistry. SynOpen, 2023, 7(4), 501-510.
[http://dx.doi.org/10.1055/s-0042-1751501]
[http://dx.doi.org/10.2174/138527211794474474];
(b) Phukan, P.; Rajbongshi, K.; Borah, A. N,N-Dibromo-p-toluenesulfonamide (TsNBr2): A promising alternative bromo-organic reagent. Synlett, 2016, 27(11), 1618-1634.
[http://dx.doi.org/10.1055/s-0035-1562024]
[http://dx.doi.org/10.1590/S0100-40422006000500028];
(b) Sharma, K.; Jain, I.; Sharma, V.K. N-Halosaccharin: A novel and versatile reagent. Oxid. Commun., 2015, 38(2), 631-647.
[http://dx.doi.org/10.1021/ol102850m] [PMID: 21244044];
(b) Nagao, Y.; Katagiri, S. The chlorination of amides (imides) with 1,3,5-trichloro-1,3,5-triazines-2,4,6(1H,3H,5H)-trione. Sci. Rep. Hirosaki Univ, 1991, 38, 20-23.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[http://dx.doi.org/10.1128/am.28.6.1004-1008.1974] [PMID: 4451360];
(b) Aukema, K.G.; Tassoulas, L.J.; Robinson, S.L.; Konopatski, J.F.; Bygd, M.D.; Wackett, L.P. Cyanuric acid biodegradation via biuret: Physiology, taxonomy, and geospatial distribution. Appl. Environ. Microbiol., 2020, 86(2), e01964-19.
[http://dx.doi.org/10.1128/AEM.01964-19] [PMID: 31676480]
[http://dx.doi.org/10.1590/S0103-50532007000400002]
[http://dx.doi.org/10.1016/j.saa.2015.06.070] [PMID: 26142656];
(b) Liang, X.; Pu, X.; Zhou, H.; Wong, N.B.; Tian, A. Keto–enol tautomerization of cyanuric acid in the gas phase and in water and methanol. J. Mol. Struct. THEOCHEM, 2007, 816(1-3), 125-136.
[http://dx.doi.org/10.1016/j.theochem.2007.04.010]
[http://dx.doi.org/10.1039/CT9028100191]
[http://dx.doi.org/10.2105/AJPH.64.2.155] [PMID: 4594286];
(b) Manju, M.; Suresh, S.; Vivekanand, P.A.; Gunasekaran, S.; Srinivasan, S.; Biju, C.S. Vibrational spectroscopic investigation and antibacterial activity studies on Trichloroisocyanuric acid. Mater. Today Proc., 2021, 36(4), 857-862.
[http://dx.doi.org/10.1016/j.matpr.2020.07.018]
[http://dx.doi.org/10.1007/BF00909031]
[http://dx.doi.org/10.1007/BF00909880]
[http://dx.doi.org/10.1016/j.tetlet.2007.10.011]
[http://dx.doi.org/10.1590/S0103-50532012000200006]
[http://dx.doi.org/10.1002/jlac.19425510103]
[http://dx.doi.org/10.1021/op010103h];
(b) Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255];
(c) Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Trichloroisocyanuric acid: A versatile and efficient chlorinating and oxidizing reagent. Eur. J. Org. Chem., 2019, 2019(22), 3544-3552.
[http://dx.doi.org/10.1002/ejoc.201900449]
[http://dx.doi.org/10.2174/2213346101999140109142834];
(b) Day, D.P.; Alsenani, N.I. Dibromoisocyanuric acid: Applications in brominations and oxidation processes for the synthesis of high value compounds. Asian J. Org. Chem., 2020, 9(8), 1162-1171.
[http://dx.doi.org/10.1002/ajoc.202000249]
[http://dx.doi.org/10.1055/s-1993-26022]
[http://dx.doi.org/10.2183/pjab1945.32.585];
(b) Mukawa, F. Steroids XVIII. The addition of hypochlorous acid to Δ-steroids with isocyanuric chloride. Nippon kagaku zassi, 1957, 78(4), 452-454.
[http://dx.doi.org/10.1246/nikkashi1948.78.452];
c) Morita, K. The oxidation and hypobromous acid addition of steroids by means of isocyanur bromide. Bull. Chem. Soc. Jpn., 1958, 31(3), 347-351.
[http://dx.doi.org/10.1246/bcsj.31.347]
[http://dx.doi.org/10.1590/S0103-50532007000800020]
[http://dx.doi.org/10.1590/S0103-50532003000500021]
[http://dx.doi.org/10.1590/S0103-50532002000500028]
[http://dx.doi.org/10.1080/00397910701555790]
[http://dx.doi.org/10.1016/j.tetlet.2014.01.123];
(b) Okamoto, N.; Sueda, T.; Minami, H.; Miwa, Y.; Yanada, R. Regioselective iodoazidation of alkynes: Synthesis of α,α-diazidoketones. Org. Lett., 2015, 17(5), 1336-1339.
[http://dx.doi.org/10.1021/acs.orglett.5b00395] [PMID: 25719992];
(c) Streuff, J.; Riedel, S.; Beck, T.; Haller, H. Brominations with Pr4NBr9 as a solid reagent with high reactivity and selectivity. Synthesis, 2014, 46(6), 740-747.
[http://dx.doi.org/10.1055/s-0033-1340705];
(d) Deng, D.; Huang, D.; Sun, X.; Gao, B. Recent advances in the tandem difunctionalization of alkynes: Mechanism-based classification. Synthesis, 2021, 53(19), 3522-3534.
[http://dx.doi.org/10.1055/a-1486-2158]
[http://dx.doi.org/10.1081/SCC-120021025];
(b) Crespo, L.T.C.; Senra, M.R.; Esteves, P.M.; de Mattos, M.C.S. Tribromoisocyanuric acid as a green cohalogenating reagent: an efficient transformation of alkynes into α,α-dibromoketones and vicinal dibromoalkenes. Lett. Org. Chem., 2019, 16(8), 627-632.
[http://dx.doi.org/10.2174/1570178615666180803152951]
[http://dx.doi.org/10.1016/j.tet.2017.05.075]
[http://dx.doi.org/10.1002/ejoc.201701640]
[http://dx.doi.org/10.1002/anie.201405348] [PMID: 25147077]
[http://dx.doi.org/10.1016/j.jfluchem.2023.110214]
[http://dx.doi.org/10.1021/acs.chemrev.0c00813] [PMID: 33200917]
[http://dx.doi.org/10.5935/0103-5053.20130027]
[http://dx.doi.org/10.1007/s00706-020-02673-8]
[http://dx.doi.org/10.1002/adsc.201701116]
[http://dx.doi.org/10.1039/C4RA02416H];
b) Radhika, S.; Harry, N.A.; Neetha, M.; Anilkumar, G. Recent trends and applications of the Cadiot–Chodkiewicz reaction. Org. Biomol. Chem., 2019, 17(41), 9081-9094.
[http://dx.doi.org/10.1039/C9OB01757G] [PMID: 31596306]
[http://dx.doi.org/10.2174/157017941205150821130712]
[http://dx.doi.org/10.1021/jo00828a039];
(b) Rosevear, J.; Wilshire, J.F.K. The chlorination of some N,N-Dimethylanilines with 1,3,5-trichloro-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (Trichloroisocyanuric acid). Aust. J. Chem., 1980, 33(4), 843-852.
[http://dx.doi.org/10.1071/CH9800843]
[http://dx.doi.org/10.1590/S0100-40422008000400017]
[http://dx.doi.org/10.1590/S0103-50532008000700002]
[http://dx.doi.org/10.1039/D0GC00137F];
(b) Motati, D.R.; Uredi, D.; Watkins, E.B. A general method for the metal-free, regioselective, remote C–H halogenation of 8-substituted quinolines. Chem. Sci., 2018, 9(7), 1782-1788.
[http://dx.doi.org/10.1039/C7SC04107A] [PMID: 29675222]
[http://dx.doi.org/10.1002/ejoc.201403463];
(b) Chen, C.M.; Chen, J.X.; To, C.T. Solvent-free mechanochemical chlorination of pyrazoles with trichloroisocyanuric acid. Green Chem., 2023, 25(7), 2559-2562.
[http://dx.doi.org/10.1039/D3GC00170A]
[http://dx.doi.org/10.1055/s-0036-1589149];
(b) Sanabria, C.M.; do Casal, M.T.; de Souza, R.B.A.; de Aguiar, L.C.S.; de Mattos, M.C.S. Highly regioselective iodination of N-phenylureas with iodine / trichloroisocyanuric acid. Synthesis, 2017, 49(7), 1648-1654.
[http://dx.doi.org/10.1039/D1MD00058F] [PMID: 34355177];
(b) Ghosh, A.K.; Brindisi, M. Urea derivatives in modern drug discovery and medicinal chemistry. J. Med. Chem., 2020, 63(6), 2751-2788.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01541] [PMID: 31789518];
(c) Jagtap, A.; Kondekar, N.; Sadani, A.; Chern, J.W. Ureas: Applications in drug design. Curr. Med. Chem., 2017, 24(6), 622-651.
[http://dx.doi.org/10.2174/0929867323666161129124915] [PMID: 27897114]
[http://dx.doi.org/10.1021/jm501680m] [PMID: 25621531];
(b) Luzina, E.L.; Popov, A.V. Anticancer activity of N-bis(trifluoromethyl)alkyl-N′-(polychlorophenyl) and N′-(1,2,4-triazolyl) ureas. Eur. J. Med. Chem., 2010, 45(11), 5507-5512.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.057] [PMID: 20850204]
[http://dx.doi.org/10.1071/CH07261]
[http://dx.doi.org/10.1016/j.apcata.2011.05.017]
[http://dx.doi.org/10.1055/s-0032-1317795]
[http://dx.doi.org/10.1590/S0103-50532005000500003]
[http://dx.doi.org/10.1016/j.tetlet.2009.02.010]
[http://dx.doi.org/10.1016/j.tetlet.2013.09.029];
(b) Canto, K.; da Silva Ribeiro, R.; Biajoli, A.F.P.; Correia, C.R.D. Expeditious synthesis of the marine natural products prepolycitrin A and polycitrins A and B through Heck arylations. Eur. J. Org. Chem., 2013, 2013(35), 8004-8013.
[http://dx.doi.org/10.1002/ejoc.201301108];
(c) Benz, S.; Nötzli, S.; Siegel, J.S.; Eberli, D.; Jessen, H.J. Controlled oxygen release from pyridone endoperoxides promotes cell survival under anoxic conditions. J. Med. Chem., 2013, 56(24), 10171-10182.
[http://dx.doi.org/10.1021/jm4016137] [PMID: 24299550];
(d) Liu, J-Q.; Qian, C.; Chen, X-Z. A facile chiral pool synthesis of (S)-6-nitroindoline-2-carboxylic acid from L-phenylalanine. Synthesis, 2010, (3), 403-406.;
(e) Martens, S.C.; Zschieschang, U.; Wadepohl, H.; Klauk, H.; Gade, L.H. Tetrachlorinated tetraazaperopyrenes (TAPPs): Highly fluorescent dyes and semiconductors for air-stable organic n-channel transistors and complementary circuits. Chemistry, 2012, 18(12), 3498-3509.
[http://dx.doi.org/10.1002/chem.201103158] [PMID: 22354835]
[http://dx.doi.org/10.1023/A:1013435608182]
[http://dx.doi.org/10.2174/1570179416666190206141028] [PMID: 31984932];
(b) Ratnasamy, P.; Singh, A.P.; Sharma, S. Halogenation over zeolite catalysts. Appl. Catal. A Gen., 1996, 135(1), 25-55.
[http://dx.doi.org/10.1016/0926-860X(95)00210-3];
(c) van Santen, R.A.; Kramer, G.J. Reactivity theory of zeolitic Broensted acidic sites. Chem. Rev., 1995, 95(3), 637-660.
[http://dx.doi.org/10.1021/cr00035a008]
[http://dx.doi.org/10.1016/j.apcata.2013.04.017]
[http://dx.doi.org/10.1016/j.apcata.2012.09.021]
[http://dx.doi.org/10.1039/C6GC00731G]
[http://dx.doi.org/10.1039/D3CS00366C] [PMID: 37975853]
[http://dx.doi.org/10.1021/acs.orglett.9b01414] [PMID: 31140821]
[http://dx.doi.org/10.1021/acscatal.6b02227]
[http://dx.doi.org/10.1021/ja302631j] [PMID: 22548632]
[http://dx.doi.org/10.1080/00397918508063816]
[http://dx.doi.org/10.1016/j.tetlet.2008.11.045]
[http://dx.doi.org/10.1590/S0103-50532011000200024]
[http://dx.doi.org/10.6023/cjoc201712042]
[http://dx.doi.org/10.1021/acsomega.1c04640] [PMID: 34870012]
[http://dx.doi.org/10.1021/ol5024568] [PMID: 25197943]
[http://dx.doi.org/10.1055/s-0039-1690819]
[http://dx.doi.org/10.3184/030823407780199667]
[http://dx.doi.org/10.1016/j.jorganchem.2006.12.032]
[http://dx.doi.org/10.1081/SCC-100104331]
[http://dx.doi.org/10.1080/10426507.2020.1799369]
[http://dx.doi.org/10.1080/00397910701356942]
[http://dx.doi.org/10.1081/SCC-100000205]
[http://dx.doi.org/10.3184/030823410X12744466896732]
[http://dx.doi.org/10.1081/SCC-100104062]
[http://dx.doi.org/10.1139/v91-219]
[http://dx.doi.org/10.1081/SCC-200066703];
(b) De Luca, L.; Giacomelli, G.; Nieddu, G. A simple protocol for efficient n-chlorination of amides and carbamates. Synlett, 2005, (2), 223-226.
[http://dx.doi.org/10.1055/s-2004-830896]
[http://dx.doi.org/10.1016/j.tetlet.2008.11.091] [PMID: 20157342];
(b) Shiri, A.; Khoramabadi-zad, A. Preparation of several active n-chloro compounds from trichloroisocyanuric acid. Synthesis, 2009, (16), 2797-2801.
[http://dx.doi.org/10.2174/1385272823666191021115508]
[http://dx.doi.org/10.1081/SCC-200066695];
(b) Miranda, L.S.M.; da Silva, T.R.; Crespo, L.T.; Esteves, P.M.; de Matos, L.F.; Diederichs, C.C.; de Souza, R.O.M.A. TBCA mediated microwave-assisted Hofmann rearrangement. Tetrahedron Lett., 2011, 52(14), 1639-1640.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.126]
[http://dx.doi.org/10.1016/j.tetlet.2021.153422];
(b) Gambacorta, G.; Baxendale, I.R. Continuous-flow hofmann rearrangement using trichloroisocyanuric acid for the preparation of 2-benzoxazolinone. Org. Process Res. Dev., 2022, 26(2), 422-430.
[http://dx.doi.org/10.1021/acs.oprd.1c00440];
(c) Katuri, J.V.P.; Ekkundi, V.S.; Nagarajan, K. A simple and expedient procedure for the preparation of gabapentin lactam (2-Aza-spiro[4,5]decan-3-one). Org. Process Res. Dev., 2016, 20(10), 1828-1832.
[http://dx.doi.org/10.1021/acs.oprd.6b00246]
[http://dx.doi.org/10.1039/D3QO01730C]
[http://dx.doi.org/10.3390/pr8040443]
[http://dx.doi.org/10.1002/9783527827992.ch57]
[http://dx.doi.org/10.1021/jacs.9b04413] [PMID: 31260287]
[http://dx.doi.org/10.1016/j.xcrp.2021.100545]
[http://dx.doi.org/10.1021/acs.iecr.0c05972]
[http://dx.doi.org/10.1039/C7NJ01164D];
(b) Melo, I.L.; Lube, L.M.; Neves, E.S.; Terra, W.S.; Fernandes, C.; Matos, C.R.R.; Franco, R.W.A.; Resende, J.A.L.C.; Valente, D.C.A.; Horta, B.A.C.; Cardozo, T.M.; Horn, A., Jr Experimental and theoretical studies of a greener catalytic system for saturated hydrocarbon chlorination composed by trichloroisocyanuric acid and a copper(II) compound. Appl. Catal. A Gen., 2018, 562, 150-158.
[http://dx.doi.org/10.1016/j.apcata.2018.06.003];
(c) Neves, E.S.; Fernandes, C.; Horn, A., Jr Study of cyclohexane and methylcyclohexane functionalization promoted by manganese(III) compounds. Inorganics, 2023, 11(3), 105.
[http://dx.doi.org/10.3390/inorganics11030105]
[http://dx.doi.org/10.1021/acs.joc.6b02829] [PMID: 28106993]
[http://dx.doi.org/10.1016/j.tetlet.2015.10.081]
[http://dx.doi.org/10.1002/slct.201801168]
[http://dx.doi.org/10.1021/acs.orglett.5b01579] [PMID: 26161512];
(b) Gaspa, S.; Raposo, I.; Pereira, L.; Mulas, G.; Ricci, P.C.; Porcheddu, A.; De Luca, L. Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. New J. Chem., 2019, 43(27), 10711-10715.
[http://dx.doi.org/10.1039/C9NJ01984G]
[http://dx.doi.org/10.1016/j.tetlet.2017.05.030]
[http://dx.doi.org/10.1039/C5NJ01372K]
[http://dx.doi.org/10.1002/ejoc.202300786]
[http://dx.doi.org/10.1039/C9QO01508F]
[http://dx.doi.org/10.2174/1570179412666150305231358]
[http://dx.doi.org/10.1081/SCC-120006034]
[http://dx.doi.org/10.5935/0103-5053.20140055]
[http://dx.doi.org/10.1081/SCC-200025580]
[http://dx.doi.org/10.1055/s-0035-1560408]
[http://dx.doi.org/10.1016/j.carres.2023.108976] [PMID: 37871478]
[http://dx.doi.org/10.1002/ajoc.202300044]
[http://dx.doi.org/10.1016/j.tetlet.2005.06.127];
(b) Sindra, H.C.; Mattos, M.C.S. Appel reaction of carboxylic acids with tribromoisocyanuric acid / triphenylphosphine: A mild and acid-free preparation of esters and amides. J. Braz. Chem. Soc., 2016, 27(6), 1129-1136.
[http://dx.doi.org/10.5935/0103-5053.20160006]
[http://dx.doi.org/10.1055/s-0037-1611724]
[http://dx.doi.org/10.1139/cjc-2011-0493]
[http://dx.doi.org/10.1055/s-0039-1691583]
[http://dx.doi.org/10.5562/cca2381]
[http://dx.doi.org/10.1071/CH14037]
[http://dx.doi.org/10.1080/10426507.2015.1085038]
[http://dx.doi.org/10.1080/17415993.2013.801476]
[http://dx.doi.org/10.3987/COM-04-10245]
[http://dx.doi.org/10.1007/s10311-021-01232-9]
[http://dx.doi.org/10.1039/C4NP00013G] [PMID: 24589860]
[http://dx.doi.org/10.1007/978-81-322-1850-0]
[http://dx.doi.org/10.1055/s-0037-1611746]
[http://dx.doi.org/10.1021/acs.joc.7b02934] [PMID: 29268606]
[http://dx.doi.org/10.1002/ejoc.200800397]
[http://dx.doi.org/10.1021/ol502751k] [PMID: 25338291]
[http://dx.doi.org/10.1039/D2NJ06043D]
[http://dx.doi.org/10.1016/j.gresc.2021.12.003]
[http://dx.doi.org/10.1002/ejoc.202200775]
[http://dx.doi.org/10.1002/hc.10200]
[http://dx.doi.org/10.1002/jhet.2627]
[http://dx.doi.org/10.1002/jhet.4667]
[http://dx.doi.org/10.1016/j.tetlet.2023.154494]
[http://dx.doi.org/10.2174/1385272826666220822124705]
[http://dx.doi.org/10.1007/s00706-012-0830-5]
[http://dx.doi.org/10.1135/cccc2011021]
[http://dx.doi.org/10.1080/00304948.2018.1468982]
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1697]
[http://dx.doi.org/10.1016/j.cclet.2009.06.024]
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118];
(b) Andrade, V.; Mattos, M. The telescopic approach as a green chemistry tool. Quim. Nova, 2021, 44(7), 912-918.
[http://dx.doi.org/10.21577/0100-4042.20170731]
[http://dx.doi.org/10.1055/a-1874-6399]
[http://dx.doi.org/10.1055/s-0040-1719867]
[http://dx.doi.org/10.1039/C4RA04961F]
[http://dx.doi.org/10.2174/2452273202666180719124023]
[http://dx.doi.org/10.1002/cber.188702002200]
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[http://dx.doi.org/10.2174/1570178617999200707110940]
[http://dx.doi.org/10.1016/j.tetlet.2020.152164]
[http://dx.doi.org/10.1055/s-0037-1610243]
[http://dx.doi.org/10.1002/ps.6786] [PMID: 34994047]
[http://dx.doi.org/10.25135/acg.oc.93.2009.1800]