Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Phytochemicals: Promising Inhibitors of Human Rhinovirus Type 14 3C Protease as a Strategy to Fight the Common Cold

Author(s): Nefeli Theodora Tsilimingkra and Christos Papaneophytou*

Volume 24, Issue 15, 2024

Published on: 02 May, 2024

Page: [1343 - 1358] Pages: 16

DOI: 10.2174/0115680266308561240427065854

Price: $65

Abstract

Background: Human rhinovirus 3C protease (HRV-3Cpro) plays a crucial role in viral proliferation, establishing it as a prime target for antiviral therapy. However, research on identifying HRV-3Cpro inhibitors is still limited.

Objective: This study had two primary objectives: first, to validate the efficacy of an end-point colorimetric assay, previously developed by our team, for identifying potential inhibitors of HRV-3Cpro; and second, to discover phytochemicals in medicinal plants that inhibit the enzyme's activity.

Methods: Rupintrivir, a well-known inhibitor of HRV-3Cpro, was used to validate the colorimetric assay. Following this, we conducted a two-step in silico screening of 2532 phytochemicals, which led to the identification of eight active compounds: apigenin, carnosol, chlorogenic acid, kaempferol, luteolin, quercetin, rosmarinic acid, and rutin. We subsequently evaluated these candidates in vitro. To further investigate the inhibitory potential of the most promising candidates, namely, carnosol and rosmarinic acid, molecular docking studies were performed to analyze their binding interactions with HRV-3Cpro.

Results: The colorimetric assay we previously developed is effective in identifying compounds that selectively inhibit HRV-3Cpro. Carnosol and rosmarinic acid emerged as potent inhibitors, inhibiting HRV-3Cpro activity in vitro by over 55%. Our analysis indicated that carnosol and rosmarinic acid exert their inhibitory effects through a competitive mechanism. Molecular docking confirmed their competitive binding to the enzyme's active site.

Conclusion: Carnosol and rosmarinic acid warrant additional investigation for their potential in the development of common cold treatment. By highlighting these compounds as effective HRV-3Cpro inhibitors, our study presents a promising approach for discovering phytochemical inhibitors against proteases from similar pathogens.

« Previous
Graphical Abstract

[1]
Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis., 2005, 5(11), 718-725.
[http://dx.doi.org/10.1016/S1473-3099(05)70270-X] [PMID: 16253889]
[2]
Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of respiratory viral infections. Annu. Rev. Virol., 2020, 7(1), 83-101.
[http://dx.doi.org/10.1146/annurev-virology-012420-022445] [PMID: 32196426]
[3]
Wat, D. The common cold: A review of the literature. Eur. J. Intern. Med., 2004, 15(2), 79-88.
[http://dx.doi.org/10.1016/j.ejim.2004.01.006] [PMID: 15172021]
[4]
Greenberg, S.B.; Allen, M.; Wilson, J.; Atmar, R.L. Respiratory viral infections in adults with and without chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2000, 162(1), 167-173.
[http://dx.doi.org/10.1164/ajrccm.162.1.9911019] [PMID: 10903237]
[5]
Hendley, J.O. Epidemiology, pathogenesis, and treatment of the common cold. Semin. Pediatr. Infect. Dis., 1998, 9(1), 50-55.
[http://dx.doi.org/10.1016/S1045-1870(98)80051-4] [PMID: 32288450]
[6]
Tuthill, T.J.; Groppelli, E.; Hogle, J.M.; Rowlands, D.J. Picornaviruses. Curr. Top. Microbiol. Immunol., 2010, 343, 43-89.
[http://dx.doi.org/10.1007/82_2010_37] [PMID: 20397067]
[7]
Passioti, M.; Maggina, P.; Megremis, S.; Papadopoulos, N.G. The common cold: Potential for future prevention or cure. Curr. Allergy Asthma Rep., 2014, 14(2), 413.
[http://dx.doi.org/10.1007/s11882-013-0413-5] [PMID: 24415465]
[8]
Palmenberg, A.C.; Spiro, D.; Kuzmickas, R.; Wang, S.; Djikeng, A.; Rathe, J.A.; Liggett, F.C.M.; Liggett, S.B. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science, 2009, 324(5923), 55-59.
[http://dx.doi.org/10.1126/science.1165557] [PMID: 19213880]
[9]
Andrup, L.; Krogfelt, K.A.; Hansen, K.S.; Madsen, A.M. Transmission route of rhinovirus - the causative agent for common cold. A systematic review. Am. J. Infect. Control, 2023, 51(8), 938-957.
[http://dx.doi.org/10.1016/j.ajic.2022.12.005] [PMID: 36535318]
[10]
Allan, G.M.; Arroll, B. Prevention and treatment of the common cold: Making sense of the evidence. CMAJ, 2014, 186(3), 190-199.
[http://dx.doi.org/10.1503/cmaj.121442] [PMID: 24468694]
[11]
Fendrick, A.M.; Monto, A.S.; Nightengale, B.; Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med., 2003, 163(4), 487-494.
[http://dx.doi.org/10.1001/archinte.163.4.487] [PMID: 12588210]
[12]
Sauro, A.; Barone, F.; Blasio, G.; Russo, L.; Santillo, L. Do influenza and acute respiratory infective diseases weigh heavily on general practitioners’ daily practice? Eur. J. Gen. Pract., 2006, 12(1), 34-36.
[http://dx.doi.org/10.1080/13814780600757153] [PMID: 16945870]
[13]
Cohen, S.; Tyrrell, D.A.J.; Smith, A.P. Psychological stress and susceptibility to the common cold. N. Engl. J. Med., 1991, 325(9), 606-612.
[http://dx.doi.org/10.1056/NEJM199108293250903] [PMID: 1713648]
[14]
Cohen, S.; Doyle, W.J.; Alper, C.M.; Deverts, J.D.; Turner, R.B. Sleep habits and susceptibility to the common cold. Arch. Intern. Med., 2009, 169(1), 62-67.
[http://dx.doi.org/10.1001/archinternmed.2008.505] [PMID: 19139325]
[15]
Ball, T.M.; Holberg, C.J.; Aldous, M.B.; Martinez, F.D.; Wright, A.L. Influence of attendance at day care on the common cold from birth through 13 years of age. Arch. Pediatr. Adolesc. Med., 2002, 156(2), 121-126.
[http://dx.doi.org/10.1001/archpedi.156.2.121] [PMID: 11814371]
[16]
Pitkäranta, A.; Virolainen, A.; Jero, J.; Arruda, E.; Hayden, F.G. Detection of rhinovirus, respiratory syncytial virus, and coronavirus infections in acute otitis media by reverse transcriptase polymerase chain reaction. Pediatrics, 1998, 102(2), 291-295.
[http://dx.doi.org/10.1542/peds.102.2.291] [PMID: 9685428]
[17]
Tam, J.C.H.; Bidgood, S.R.; McEwan, W.A.; James, L.C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science, 2014, 345(6201), 1256070.
[http://dx.doi.org/10.1126/science.1256070] [PMID: 25190799]
[18]
Matthews, D.A.; Smith, W.W.; Ferre, R.A.; Condon, B.; Budahazi, G.; Slsson, W.; Villafranca, J.E.; Janson, C.A.; McElroy, H.E.; Gribskov, C.L.; Worland, S. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell, 1994, 77(5), 761-771.
[http://dx.doi.org/10.1016/0092-8674(94)90059-0] [PMID: 7515772]
[19]
Yuan, S.; Fan, K.; Chen, Z.; Sun, Y.; Hou, H.; Zhu, L. Structure of the HRV-C 3C-rupintrivir complex provides new insights for inhibitor design. Virol. Sin., 2020, 35(4), 445-454.
[http://dx.doi.org/10.1007/s12250-020-00196-4] [PMID: 32103448]
[20]
Matthews, D.A.; Dragovich, P.S.; Webber, S.E.; Fuhrman, S.A.; Patick, A.K.; Zalman, L.S.; Hendrickson, T.F.; Love, R.A.; Prins, T.J.; Marakovits, J.T.; Zhou, R.; Tikhe, J.; Ford, C.E.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; Binford, S.L.; Brothers, M.A.; DeLisle, D.M.; Worland, S.T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci., 1999, 96(20), 11000-11007.
[http://dx.doi.org/10.1073/pnas.96.20.11000] [PMID: 10500114]
[21]
Binford, S.L.; Maldonado, F.; Brothers, M.A.; Weady, P.T.; Zalman, L.S.; Meador, J.W., III; Matthews, D.A.; Patick, A.K. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob. Agents Chemother., 2005, 49(2), 619-626.
[http://dx.doi.org/10.1128/AAC.49.2.619-626.2005] [PMID: 15673742]
[22]
Fan, X.; Li, X.; Zhou, Y.; Mei, M.; Liu, P.; Zhao, J.; Peng, W.; Jiang, Z.B.; Yang, S.; Iverson, B.L.; Zhang, G.; Yi, L. Quantitative analysis of the substrate specificity of human rhinovirus 3C protease and exploration of its substrate recognition mechanisms. ACS Chem. Biol., 2020, 15(1), 63-73.
[http://dx.doi.org/10.1021/acschembio.9b00539] [PMID: 31613083]
[23]
Mello, C.; Aguayo, E.; Rodriguez, M.; Lee, G.; Jordan, R.; Cihlar, T.; Birkus, G. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob. Agents Chemother., 2014, 58(3), 1546-1555.
[http://dx.doi.org/10.1128/AAC.01746-13] [PMID: 24366736]
[24]
Wang, M.Q.; Chen, S.H. Human rhinovirus 3C protease as a potential target for the development of antiviral agents. Curr. Protein Pept. Sci., 2007, 8(1), 19-27.
[http://dx.doi.org/10.2174/138920307779941523] [PMID: 17305557]
[25]
Baxter, A.; Chambers, M.; Edfeldt, F.; Edman, K.; Freeman, A.; Johansson, C.; King, S.; Morley, A.; Petersen, J.; Rawlins, P.; Spadola, L.; Thong, B.; Poël, H.V.; Williams, N. Non-covalent inhibitors of rhinovirus 3C protease. Bioorg. Med. Chem. Lett., 2011, 21(2), 777-780.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.110] [PMID: 21183345]
[26]
Binford, S.L.; Weady, P.T.; Maldonado, F.; Brothers, M.A.; Matthews, D.A.; Patick, A.K. in vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother., 2007, 51(12), 4366-4373.
[http://dx.doi.org/10.1128/AAC.00905-07] [PMID: 17908951]
[27]
Theerawatanasirikul, S.; Thangthamniyom, N.; Kuo, C.J.; Semkum, P.; Phecharat, N.; Chankeeree, P.; Lekcharoensuk, P. Natural phytochemicals, luteolin and isoginkgetin, inhibit 3C protease and infection of FMDV, in silico and in vitro. Viruses, 2021, 13(11), 2118.
[http://dx.doi.org/10.3390/v13112118] [PMID: 34834926]
[28]
Patick, A.K.; Brothers, M.A.; Maldonado, F.; Binford, S.; Maldonado, O.; Fuhrman, S.; Petersen, A.; Smith, G.J., III; Zalman, L.S.; Burns-Naas, L.A.; Tran, J.Q. in vitro antiviral activity and single- dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother., 2005, 49(6), 2267-2275.
[http://dx.doi.org/10.1128/AAC.49.6.2267-2275.2005] [PMID: 15917520]
[29]
Hayden, F.G.; Turner, R.B.; Gwaltney, J.M.; Burris, C.K.; Gersten, M.; Hsyu, P.; Patick, A.K.; Smith, G.J., III; Zalman, L.S. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob. Agents Chemother., 2003, 47(12), 3907-3916.
[http://dx.doi.org/10.1128/AAC.47.12.3907-3916.2003] [PMID: 14638501]
[30]
Smith, A.; Matthews, O. Aromatic ointments for the common cold: What does the science say? Drugs Context, 2022, 11, 2022-5-2022-6.
[http://dx.doi.org/10.7573/dic.2022-5-6]
[31]
Mammari, N.; Albert, Q.; Devocelle, M.; Kenda, M.; Glavač, K.N.; Dolenc, S.M.; Mercolini, L.; Tóth, J.; Milan, N.; Czigle, S.; Varbanov, M. Natural products for the prevention and treatment of common cold and viral respiratory infections. Pharmaceuticals, 2023, 16(5), 662.
[http://dx.doi.org/10.3390/ph16050662] [PMID: 37242445]
[32]
Ciprandi, G.; Tosca, M.A. Non-pharmacological remedies for post-viral acute cough. Monaldi Arch. Chest Dis., 2021, 92(1), 1821.
[PMID: 34461702]
[33]
Onyeogaziri, F.C.; Papaneophytou, C. A general guide for the optimization of enzyme assay conditions using the design of experiments approach. SLAS Discov., 2019, 24(5), 587-596.
[http://dx.doi.org/10.1177/2472555219830084] [PMID: 30802413]
[34]
Antoniou, G.; Papakyriacou, I.; Papaneophytou, C. Optimization of soluble expression and purification of recombinant human rhinovirus type-14 3C protease using statistically designed experiments: Isolation and characterization of the enzyme. Mol. Biotechnol., 2017, 59(9-10), 407-424.
[http://dx.doi.org/10.1007/s12033-017-0032-9] [PMID: 28801725]
[35]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.Chemical Biology: Methods and Protocols; Hempel, J.E.; Williams, C.H.; Hong, C.C., Eds.; Springer New York: New York, NY, 2015, pp. 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[36]
Theerawatanasirikul, S.; Lekcharoensuk, P. Virtual screening of natural compounds targeting proteases of coronaviruses and picornaviruses.in silico Modeling of Drugs against Coronaviruses: Computational Tools and Protocols; Roy, K., Ed.; Springer US: New York, NY, 2021, pp. 661-681.
[http://dx.doi.org/10.1007/7653_2020_63]
[37]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[38]
Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Federhen, S.; Feolo, M.; Fingerman, I.M.; Geer, L.Y.; Helmberg, W.; Kapustin, Y.; Landsman, D.; Lipman, D.J.; Lu, Z.; Madden, T.L.; Madej, T.; Maglott, D.R.; Bauer, M.A.; Miller, V.; Mizrachi, I.; Ostell, J.; Panchenko, A.; Phan, L.; Pruitt, K.D.; Schuler, G.D.; Sequeira, E.; Sherry, S.T.; Shumway, M.; Sirotkin, K.; Slotta, D.; Souvorov, A.; Starchenko, G.; Tatusova, T.A.; Wagner, L.; Wang, Y.; Wilbur, W.J.; Yaschenko, E.; Ye, J. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 2011, 39(Database), D38-D51.
[http://dx.doi.org/10.1093/nar/gkq1172] [PMID: 21097890]
[39]
Gallo, K.; Kemmler, E.; Goede, A.; Becker, F.; Dunkel, M.; Preissner, R.; Banerjee, P. SuperNatural 3.0—A database of natural products and natural product-based derivatives. Nucleic Acids Res., 2023, 51(D1), D654-D659.
[http://dx.doi.org/10.1093/nar/gkac1008] [PMID: 36399452]
[40]
Copeland, R.A. Reversible inhibitors.Enzymes: A practical introduction to structure, mechanism, and data analysis, 2nd ed; Wiley-VCH: Weinheim, 2000, pp. 266-304.
[http://dx.doi.org/10.1002/0471220639.ch8]
[41]
Vlasiou, M.; Nicolaidou, V.; Papaneophytou, C. Targeting lactate dehydrogenase-B as a strategy to fight cancer: Identification of potential inhibitors by in silico analysis and in vitro screening. Pharmaceutics, 2023, 15(10), 2411.
[http://dx.doi.org/10.3390/pharmaceutics15102411] [PMID: 37896171]
[42]
Dragovich, P.S.; Prins, T.J.; Zhou, R.; Johnson, T.O.; Hua, Y.; Luu, H.T.; Sakata, S.K.; Brown, E.L.; Maldonado, F.C.; Tuntland, T.; Lee, C.A.; Fuhrman, S.A.; Zalman, L.S.; Patick, A.K.; Matthews, D.A.; Wu, E.Y.; Guo, M.; Borer, B.C.; Nayyar, N.K.; Moran, T.; Chen, L.; Rejto, P.A.; Rose, P.W.; Guzman, M.C.; Dovalsantos, E.Z.; Lee, S.; McGee, K.; Mohajeri, M.; Liese, A.; Tao, J.; Kosa, M.B.; Liu, B.; Batugo, M.R.; Gleeson, J.P.R.; Wu, Z.P.; Liu, J.; Meador, J.W., III; Ferre, R.A. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics. J. Med. Chem., 2003, 46(21), 4572-4585.
[http://dx.doi.org/10.1021/jm030166l] [PMID: 14521419]
[43]
Mohutsky, M.; Hall, S.D. Irreversible enzyme inhibition kinetics and drug–drug interactions.Enzyme Kinetics in drug Metabolism: Fundamentals and Applications; Nagar, S.; Argikar, U.A.; Tweedie, D.J., Eds.; Humana Press: Totowa, NJ, 2014, pp. 57-91.
[http://dx.doi.org/10.1007/978-1-62703-758-7_5]
[44]
Chojnacka, K.; Krowiak, W.A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods, 2020, 73, 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[45]
Heikkinen, T.; Järvinen, A. The common cold. Lancet, 2003, 361(9351), 51-59.
[http://dx.doi.org/10.1016/S0140-6736(03)12162-9] [PMID: 12517470]
[46]
Zephyr, J.; Yilmaz, K.N.; Schiffer, C.A. Viral proteases: Structure, mechanism and inhibition. Enzymes, 2021, 50, 301-333.
[http://dx.doi.org/10.1016/bs.enz.2021.09.004] [PMID: 34861941]
[47]
Duechler, M.; Skern, T.; Sommergruber, W.; Neubauer, C.; Gruendler, P.; Fogy, I.; Blaas, D.; Kuechler, E. Evolutionary relationships within the human rhinovirus genus: Comparison of serotypes 89, 2, and 14. Proc. Natl. Acad. Sci., 1987, 84(9), 2605-2609.
[http://dx.doi.org/10.1073/pnas.84.9.2605] [PMID: 3033653]
[48]
Hughes, P.J.; North, C.; Jellis, C.H.; Minor, P.D.; Stanway, G. The nucleotide sequence of human rhinovirus 1B: Molecular relationships within the rhinovirus genus. J. Gen. Virol., 1988, 69(1), 49-58.
[http://dx.doi.org/10.1099/0022-1317-69-1-49] [PMID: 2826669]
[49]
Lee, W.M.; Wang, W.; Rueckert, R.R. Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group. Virus Genes, 1995, 9(2), 177-181.
[http://dx.doi.org/10.1007/BF01702661] [PMID: 7732663]
[50]
Skern, T.; Sommergruber, W.; Blaas, D.; Gruendler, P.; Fraundorfer, F.; Pieler, C.; Fogy, I.; Kuechler, E. Human rhinovirus 2: Complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res., 1985, 13(6), 2111-2126.
[http://dx.doi.org/10.1093/nar/13.6.2111] [PMID: 2987843]
[51]
Stanway, G.; Hughes, P.J.; Mountford, R.C.; Minor, P.D.; Almond, J.W. The complete nucleotide sequence of a common cold virus: Human rhinovlrus 14. Nucleic Acids Res., 1984, 12(20), 7859-7875.
[http://dx.doi.org/10.1093/nar/12.20.7859] [PMID: 6093056]
[52]
Werner, G.; Rosenwirth, B.; Bauer, E.; Seifert, J.M.; Werner, F.J.; Besemer, J. Molecular cloning and sequence determination of the genomic regions encoding protease and genome-linked protein of three picornaviruses. J. Virol., 1986, 57(3), 1084-1093.
[http://dx.doi.org/10.1128/jvi.57.3.1084-1093.1986] [PMID: 3512851]
[53]
Buthelezi, N.M.; Machaba, K.E.; Soliman, M.E. The Identification of potential human rhinovirus inhibitors: Exploring the binding landscape of HRV-3C protease through PRED pharmacophore screening. Future Virol., 2017, 12(12), 747-759.
[http://dx.doi.org/10.2217/fvl-2017-0084]
[54]
Reich, S.H.; Johnson, T.; Wallace, M.B.; Kephart, S.E.; Fuhrman, S.A.; Worland, S.T.; Matthews, D.A.; Hendrickson, T.F.; Chan, F.; Meador, J., III; Ferre, R.A.; Brown, E.L.; DeLisle, D.M.; Patick, A.K.; Binford, S.L.; Ford, C.E. Substituted benzamide inhibitors of human rhinovirus 3C protease: Structure-based design, synthesis, and biological evaluation. J. Med. Chem., 2000, 43(9), 1670-1683.
[http://dx.doi.org/10.1021/jm9903242] [PMID: 10794684]
[55]
Sawant, R.T.; Waghmode, S.B. Organocatalytic enantioselective formal synthesis of HRV 3C-protease inhibitor (1R,3S)-thysanone. Tetrahedron, 2009, 65(8), 1599-1602.
[http://dx.doi.org/10.1016/j.tet.2008.12.060]
[56]
Singh, S.B.; Cordingley, M.G.; Ball, R.G.; Smith, J.L.; Dombrowski, A.W.; Goetz, M.A. Structure of stereochemistry of thysanone: A novel human rhinovirus 3C-protease inhibitor from Thysanophora penicilloides. Tetrahedron Lett., 1991, 32(39), 5279-5282.
[http://dx.doi.org/10.1016/S0040-4039(00)92364-5]
[57]
Jeong, Y.J.; Sperry, J.; Taylor, J.A.; Brimble, M.A. Synthesis and evaluation of 9-deoxy analogues of (−)-thysanone, an inhibitor of HRV 3C protease. Eur. J. Med. Chem., 2014, 87, 220-227.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.063] [PMID: 25259514]
[58]
Dragovich, P.S.; Prins, T.J.; Zhou, R.; Webber, S.E.; Marakovits, J.T.; Fuhrman, S.A.; Patick, A.K.; Matthews, D.A.; Lee, C.A.; Ford, C.E.; Burke, B.J.; Rejto, P.A.; Hendrickson, T.F.; Tuntland, T.; Brown, E.L.; Meador, J.W., III; Ferre, R.A.; Harr, J.E.V.; Kosa, M.B.; Worland, S.T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements. J. Med. Chem., 1999, 42(7), 1213-1224.
[http://dx.doi.org/10.1021/jm9805384] [PMID: 10197965]
[59]
Jain, S.; Amin, S.A.; Adhikari, N.; Jha, T.; Gayen, S. Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: Identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study. J. Biomol. Struct. Dyn., 2020, 38(1), 66-77.
[http://dx.doi.org/10.1080/07391102.2019.1566093] [PMID: 30646829]
[60]
Nakano, Y.; Watari, T.; Adachi, K.; Watanabe, K.; Otsuki, K.; Amano, Y.; Takaki, Y.; Onigata, K. Survey of potentially inappropriate prescriptions for common cold symptoms in Japan: A cross- sectional study. PLoS One, 2022, 17(5), e0265874.
[http://dx.doi.org/10.1371/journal.pone.0265874] [PMID: 35552542]
[61]
Catarino, M.D.; Talhi, O.; Rabahi, A.; Silva, A.M.S.; Cardoso, S.M. The antiinflammatory potential of flavonoids: Mechanistic aspects. In: Stud. Nat. Prod. Chem; Atta ur, R., Ed.; Elsevier: Cambridge, MA, US, 2016; 48, pp. 65-99.
[62]
Lo, A.H.; Liang, Y.C.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis, 2002, 23(6), 983-991.
[http://dx.doi.org/10.1093/carcin/23.6.983] [PMID: 12082020]
[63]
Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett., 2011, 305(1), 1-7.
[http://dx.doi.org/10.1016/j.canlet.2011.02.005] [PMID: 21382660]
[64]
Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules, 2022, 27(10), 3292.
[http://dx.doi.org/10.3390/molecules27103292] [PMID: 35630768]
[65]
Panayi, T.; Sarigiannis, Y.; Mourelatou, E.; Hapeshis, E.; Papaneophytou, C. Anti-quorum-sensing potential of ethanolic extracts of aromatic plants from the flora of cyprus. Plants, 2022, 11(19), 2632.
[http://dx.doi.org/10.3390/plants11192632] [PMID: 36235498]
[66]
Nadeem, M.; Imran, M.; Gondal, A.T.; Imran, A.; Shahbaz, M.; Amir, M.R.; Sajid, W.M.; Qaisrani, B.T.; Atif, M.; Hussain, G.; Salehi, B.; Ostrander, A.E.; Martorell, M.; Rad, S.J.; Cho, C.W.; Martins, N. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci., 2019, 9(15), 3139.
[http://dx.doi.org/10.3390/app9153139]
[67]
Jheng, J.R.; Hsieh, C.F.; Chang, Y.H.; Ho, J.Y.; Tang, W.F.; Chen, Z.Y.; Liu, C.J.; Lin, T.J.; Huang, L.Y.; Chern, J.H.; Horng, J.T. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. J. Microbiol. Immunol. Infect., 2022, 55(4), 598-610.
[http://dx.doi.org/10.1016/j.jmii.2022.04.012] [PMID: 35650006]
[68]
Lin, W.Y.; Yu, Y.J.; Jinn, T.R. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol. J., 2019, 16(1), 94.
[http://dx.doi.org/10.1186/s12985-019-1203-z] [PMID: 31366366]
[69]
Patel, U.; Desai, K.; Dabhi, R.C.; Maru, J.J.; Shrivastav, P.S. Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): A computational study. J. Mol. Model., 2023, 29(5), 161.
[http://dx.doi.org/10.1007/s00894-023-05569-6] [PMID: 37115321]
[70]
Tumskiy, R.S.; Tumskaia, A.V.; Klochkova, I.N.; Richardson, R.J. SARS-CoV-2 proteases Mpro and PLpro: Design of inhibitors with predicted high potency and low mammalian toxicity using artificial neural networks, ligand-protein docking, molecular dynamics simulations, and ADMET calculations. Comput. Biol. Med., 2023, 153, 106449.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106449] [PMID: 36586228]
[71]
Hossain, A.; Rahman, M.E.; Rahman, M.S.; Nasirujjaman, K.; Matin, M.N.; Faruqe, M.O.; Rabbee, M.F. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS- CoV-2 main protease (Mpro) using molecular docking and deep learning methods. Comput. Biol. Med., 2023, 157, 106785.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106785] [PMID: 36931201]
[72]
Mahmood, R.A.; Hasan, A.; Rahmatullah, M.; Paul, A.K.; Jahan, R.; Jannat, K.; Bondhon, T.A.; Mahboob, T.; Nissapatorn, V.; Pereira, L.M.; Paul, T.K.; Rumi, O.H.; Wiart, C.; Wilairatana, P. Solanaceae family phytochemicals as inhibitors of 3C-like protease of SARS-CoV-2: An in silico analysis. Molecules, 2022, 27(15), 4739.
[http://dx.doi.org/10.3390/molecules27154739] [PMID: 35897915]
[73]
Sweeney, T.R.; Rosell, R.N.; Birtley, J.R.; Leatherbarrow, R.J.; Curry, S. Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. J. Virol., 2007, 81(1), 115-124.
[http://dx.doi.org/10.1128/JVI.01587-06] [PMID: 17065215]
[74]
Leong, L.E.; Walker, P.A.; Porter, A.G. Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5′-noncoding region of the viral RNA. Evidence that 3Cpro has different domains for the RNA binding and proteolytic activities. J. Biol. Chem., 1993, 268(34), 25735-25739.
[http://dx.doi.org/10.1016/S0021-9258(19)74451-2] [PMID: 8245010]
[75]
Lin, Y.J.; Chang, Y.C.; Hsiao, N.W.; Hsieh, J.L.; Wang, C.Y.; Kung, S.H.; Tsai, F.J.; Lan, Y.C.; Lin, C.W. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J. Virol. Methods, 2012, 182(1-2), 93-98.
[http://dx.doi.org/10.1016/j.jviromet.2012.03.020] [PMID: 22465253]
[76]
Smith, E.; Gardner, D.M.E.; Ordonez, G.R.D.; Nguyen, T.T.; Hull, M.; Chen, E.; Yu, X.; Bannister, T.D.; Baillargeon, P.; Scampavia, L.; Griffin, P.; Farzan, M.; Spicer, T.P. High throughput screening for drugs that inhibit 3C-like protease in SARS-CoV-2. SLAS Discov., 2023, 28(3), 95-101.
[http://dx.doi.org/10.1016/j.slasd.2023.01.001] [PMID: 36646172]
[77]
Brown, A.S.; Ackerley, D.F.; Calcott, M.J. High-throughput screening for inhibitors of the SARS-CoV-2 protease using a FRET-biosensor. Molecules, 2020, 25(20), 4666.
[http://dx.doi.org/10.3390/molecules25204666] [PMID: 33066278]
[78]
Rothan, H.A.; Teoh, T.C. Cell-based high-throughput screening protocol for discovering antiviral inhibitors against SARS-CoV-2 main protease (3CLpro). Mol. Biotechnol., 2021, 63(3), 240-248.
[http://dx.doi.org/10.1007/s12033-021-00299-7] [PMID: 33464543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy