Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Improving Tamoxifen Performance in Inducing Apoptosis and Hepatoprotection by Loading on a Dual Nanomagnetic Targeting System

Author(s): Yanfang Zhao, Wanbao Ding, Peixian Zhang, Lei Deng, Yi Long, Jiuqin Lu*, Fereshteh Shiri and Mostafa Heidari Majd

Volume 24, Issue 13, 2024

Published on: 29 April, 2024

Page: [1016 - 1028] Pages: 13

DOI: 10.2174/0118715206289666240423091244

Price: $65

Abstract

Background: Although tamoxifen (TMX) belongs to selective estrogen receptor modulators (SERMs) and selectively binds to estrogen receptors, it affects other estrogen-producing tissues due to passive diffusion and non-differentiation of normal and cancerous cells and leads to side effects.

Methods: The problems expressed about tamoxifen (TMX) encouraged us to design a new drug delivery system based on magnetic nanoparticles (MNPs) to simultaneously target two receptors on cancer cells through folic acid (FA) and hyaluronic acid (HA) groups. The mediator of binding of two targeting agents to MNPs is a polymer linker, including dopamine, polyethylene glycol, and terminal amine (DPN).

Results: Zeta potential, dynamic light scattering (DLS), and Field emission scanning electron microscopy (FESEM) methods confirmed that MNPs-DPN-HA-FA has a suitable size of ~105 nm and a surface charge of -41 mV, and therefore, it can be a suitable option for carrying TMX and increasing its solubility. The cytotoxic test showed that the highest concentration of MNPs-DPN-HA-FA-TMX decreased cell viability to about 11% after 72 h of exposure compared to the control. While the protective effect of modified MNPs on normal cells was evident, unlike tamoxifen, the survival rate of liver cells, even after 180 min of treatment, was not significantly different from the control group. The protective effect of MNPs was also confirmed by examining the amount of malondialdehyde, and no significant difference was observed in the amount of lipid peroxidation caused by modified MNPs compared to the control. Flow cytometry proved that TMX loaded onto modified MNPs can induce apoptosis by targeting the overexpressed receptors on cancer cells. Real-time PCR showed that the modified MNPs activated the intrinsic and extrinsic mitochondrial pathways of apoptosis, so the Bak1/Bclx ratio for MNPs-DPN-HAFA- TMX and free TMX was 70.82 and 0.38, respectively. Also, the expression of the caspase-3 gene increased 430 times compared to the control. On the other hand, only TNF gene expression, which is responsible for metastasis in some tumors, was decreased by both free TMX and MNPs-DPN-HA-FA-TMX. Finally, molecular docking proved that MNPs-DPN-HA-FA-TMX could provide a very stable interaction with both CD44 and folate receptors, induce apoptosis in cancer cells, and reduce hepatotoxicity.

Conclusion: All the results showed that MNPs-DPN-HA-FA-TMX can show good affinity to cancer cells using targeting agents and induce apoptosis in metastatic breast ductal carcinoma T-47D cell lines. Also, the protective effects of MNPs on hepatocytes are quite evident, and they can reduce the side effects of TMX.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[PMID: 33538338]
[2]
Dehghani, F.; Farhadian, N.; Golmohammadzadeh, S.; Biriaee, A.; Ebrahimi, M.; Karimi, M. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci., 2017, 96, 479-489.
[PMID: 27693298]
[3]
Majd, M.H. Dual-targeting and specific delivery of tamoxifen to cancer cells by modified magnetic nanoparticles using hyaluronic acid and folic acid. Tumor Discovery, 2022, 1(1), 41.
[4]
Majd, M.; Akbarzadeh, A.; Sargazi, A. Evaluation of host-guest system to enhance the tamoxifen efficiency. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 441-447.
[PMID: 27012732]
[5]
Nguyen, S.M.; Pham, A.T.; Nguyen, L.M.; Cai, H.; Tran, T.V.; Shu, X.O.; Tran, H.T.T. Chemotherapy-induced toxicities and their associations with clinical and non-clinical factors among breast cancer patients in vietnam. Curr. Oncol., 2022, 29(11), 8269-8284.
[http://dx.doi.org/10.3390/curroncol29110653] [PMID: 36354713]
[6]
Song, D.; Hu, Y.; Diao, B.; Miao, R.; Zhang, B.; Cai, Y.; Zeng, H.; Zhang, Y.; Hu, X. Effects of Tamoxifen vs. Toremifene on fatty liver development and lipid profiles in breast Cancer. BMC Cancer, 2021, 21(1), 798.
[PMID: 34246237]
[7]
Bhagwat, G.S.; Athawale, R.B.; Gude, R.P.; Md, S.; Alhakamy, N.A.; Fahmy, U.A.; Kesharwani, P. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front. Pharmacol., 2020, 11, 614290.
[8]
Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine, 2015, 10, 2101-2114.
[PMID: 25844039]
[9]
Day, C.M.; Hickey, S.M.; Song, Y.; Plush, S.E.; Garg, S. Novel tamoxifen nanoformulations for improving breast cancer treatment: Old wine in new bottles. Molecules, 2020, 25(5), 1182.
[http://dx.doi.org/10.3390/molecules25051182] [PMID: 32151063]
[10]
Sani, A.; Pourmadadi, M.; Shaghaghi, M.; Mahdi Eshaghi, M.; Shahmollaghamsary, S.; Arshad, R.; Fathi-karkan, S.; Rahdar, A.; Medina, D.I.; Pandey, S. Revolutionizing anticancer drug delivery: Exploring the potential of tamoxifen-loaded nanoformulations. J. Drug Deliv. Sci. Technol., 2023, 86, 104642.
[http://dx.doi.org/10.1016/j.jddst.2023.104642]
[11]
Kempe, S.; Mäder, K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.016] [PMID: 22543012]
[12]
Azizi, S.; Nosrati, H.; Danafar, H. Simple surface functionalization of magnetic nanoparticles with methotrexate-conjugated bovine serum albumin as a biocompatible drug delivery vehicle. Appl. Organomet. Chem., 2020, 34(4), e5479.
[13]
Chang, B.Y.; Kim, S.A.; Malla, B.; Kim, S.Y. The effect of selective estrogen receptor modulators (SERMs) on the tamoxifen resistant breast cancer cells. Toxicol. Res., 2011, 27(2), 85-93.
[http://dx.doi.org/10.5487/TR.2011.27.2.085] [PMID: 24278556]
[14]
Chekhun, V.F.; Lukianova, N.Y.; Chekhun, S.V.; Bezdieniezhnykh, N.O.; Zadvorniy, T.V.; Borikun, T.V.; Polishchuk, L.Z.; Klyusov, O.M. Association of CD44+CD24-/low with markers of aggressiveness and plasticity of cell lines and tumors of patients with breast cancer. Exp. Oncol., 2017, 39(3), 203-211.
[http://dx.doi.org/10.31768/2312-8852.2017.39(3):203-211] [PMID: 28967645]
[15]
Carthy, J.M.; Sundqvist, A.; Heldin, A. van DAM, H.; Kletsas, D.; Heldin, C.H.; Moustakas, A. Tamoxifen inhibits TGF‐β‐mediated activation of myofibroblasts by blocking non‐smad signaling through ERK1/2. J. Cell. Physiol., 2015, 230(12), 3084-3092.
[http://dx.doi.org/10.1002/jcp.25049] [PMID: 26096876]
[16]
Williams, M.M.; Lee, L.; Werfel, T.; Joly, M.M.M.; Hicks, D.J.; Rahman, B.; Elion, D.; McKernan, C.; Sanchez, V.; Estrada, M.V.; Massarweh, S.; Elledge, R.; Duvall, C.; Cook, R.S. Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell Death Dis., 2018, 9(2), 21.
[http://dx.doi.org/10.1038/s41419-017-0072-x] [PMID: 29343814]
[17]
Sargazi, A.; Azhoogh, M.; Allahdad, S.; Majd, M. Evaluation of supramolecule conjugated magnetic nanoparticles as a simultaneous carrier for methotrexate and tamoxifen. J. Drug Deliv. Sci. Technol., 2018, 47, 115-122.
[http://dx.doi.org/10.1016/j.jddst.2018.07.006]
[18]
Sargazi, A.; Shiri, F.; Keikha, S.; Majd, M.H. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf. B Biointerfaces, 2018, 171, 150-158.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.025] [PMID: 30025377]
[19]
Sargazi, A.; Kamali, N.; Shiri, F.; Majd, M. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 500-509.
[http://dx.doi.org/10.1080/21691401.2017.1324462] [PMID: 28503952]
[20]
Nijiati, S.; Zeng, F.; Zuo, C.; Zhang, Q.; Du, C.; Shi, C.; Gao, J.; Zhou, Z. Fe(II)-targeted PET/19 F MRI dual-modal molecular imaging probe for early evaluation of anticancer drug-induced acute kidney injury. Mol. Pharm., 2023, 20(10), 5185-5194.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00531] [PMID: 37711135]
[21]
Dou, J.; Mi, Y.; Daneshmand, S.; Majd, M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. Arab. J. Chem., 2022, 15(12), 104307.
[http://dx.doi.org/10.1016/j.arabjc.2022.104307]
[22]
Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; Omidi, Y. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces, 2013, 106, 117-125.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.051] [PMID: 23434700]
[23]
Khan, Z.; Sattar, S.; Abubakar, M.; Arshed, M.J.; Aslam, R.; Shah, S.T.A.; Javed, S.; Tariq, A.; Manzoor, S.; Bostan, N. Preparation and in vitro evaluation of tamoxifen-conjugated, eco-friendly, agar-based hybrid magnetic nanoparticles for their potential use in breast cancer treatment. ACS Omega, 2023, 8(29), 25808-25816.
[http://dx.doi.org/10.1021/acsomega.3c00844] [PMID: 37521645]
[24]
Mansouri-Torshizi, H.; Zareian-Jahromi, S.; Ghahghaei, A.; Shahraki, S.; Khosravi, F.; Majd, M. Palladium(II) complexes of biorelevant ligands. Synthesis, structures, cytotoxicity and rich DNA/HSA interaction studies. J. Biomol. Struct. Dyn., 2018, 36(11), 2787-2806.
[http://dx.doi.org/10.1080/07391102.2017.1372309] [PMID: 28849726]
[25]
Sorinezami, Z.; Mansouri-Torshizi, H.; Aminzadeh, M.; Ghahghaei, A.; Jamgohari, N.; Majd, M. Synthesis of new ultrasonic-assisted palladium oxide nanoparticles: An in vitro evaluation on cytotoxicity and DNA/BSA binding properties. J. Biomol. Struct. Dyn., 2019, 37(16), 4238-4250.
[http://dx.doi.org/10.1080/07391102.2018.1546619] [PMID: 30600777]
[26]
Shahraki, S.; Shiri, F.; Majd, M.; Dahmardeh, S. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. J. Biomol. Struct. Dyn., 2019, 37(8), 2072-2085.
[http://dx.doi.org/10.1080/07391102.2018.1476266] [PMID: 29768984]
[27]
Charni-Natan, M.; Goldstein, I. Protocol for primary mouse hepatocyte isolation. STAR Protocols, 2020, 1(2), 100086.
[http://dx.doi.org/10.1016/j.xpro.2020.100086] [PMID: 33111119]
[28]
Shahraki, S.; Shiri, F.; Majd, M.H.; Razmara, Z. Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co(dipic)2Ni(OH2)5]·2H2O (dipic = dipicolinate) with two carrier proteins. J. Pharm. Biomed. Anal., 2017, 145, 273-282.
[http://dx.doi.org/10.1016/j.jpba.2017.06.067] [PMID: 28700971]
[29]
Sargazi, A.; Barani, A.; Majd, M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of bak1 and bclx for cancer therapy. Bionanoscience, 2020, 10(3), 683-689.
[http://dx.doi.org/10.1007/s12668-020-00753-x]
[30]
Habibi K, S.M.; Ghodsi, F.; Arezomandan, H.; Shahraki, M.; Omidikia, N.; Hashemzaei, M.; Heidari M, M. In vitro apoptosis evaluation and kinetic modeling onto cyclodextrin-based host–guest magnetic nanoparticles containing methotrexate and tamoxifen. Bionanoscience, 2021, 11(3), 667-677.
[http://dx.doi.org/10.1007/s12668-021-00877-8]
[31]
He, C.; Majd, M.; Shiri, F.; Shahraki, S. Palladium and platinum complexes of folic acid as new drug delivery systems for treatment of breast cancer cells. J. Mol. Struct., 2021, 1229, 129806.
[http://dx.doi.org/10.1016/j.molstruc.2020.129806]
[32]
Yu, C.; Majd, M.; Shiri, F.; Shahraki, S.; Karimi, P. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol. Divers., 2022, 26(3), 1545-1555.
[PMID: 34417716]
[33]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[34]
Teriete, P.; Banerji, S.; Noble, M.; Blundell, C.D.; Wright, A.J.; Pickford, A.R.; Lowe, E.; Mahoney, D.J.; Tammi, M.I.; Kahmann, J.D.; Campbell, I.D.; Day, A.J.; Jackson, D.G. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol. Cell, 2004, 13(4), 483-496.
[http://dx.doi.org/10.1016/S1097-2765(04)00080-2] [PMID: 14992719]
[35]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[36]
Yadav, N.; Francis, A.P.; Priya, V.V.; Patil, S.; Mustaq, S.; Khan, S.S.; Alzahrani, K.J.; Banjer, H.J.; Mohan, S.K.; Mony, U.; Rajagopalan, R. Polysaccharide-drug conjugates: A tool for enhanced cancer therapy. Polymers, 2022, 14(5), 950.
[http://dx.doi.org/10.3390/polym14050950] [PMID: 35267773]
[37]
Dheer, D.; Arora, D.; Jaglan, S.; Rawal, R.K.; Shankar, R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J. Drug Target., 2017, 25(1), 1-16.
[http://dx.doi.org/10.3109/1061186X.2016.1172589] [PMID: 27030377]
[38]
Wang, X.; Li, C.; Wang, Y.; Chen, H.; Zhang, X.; Luo, C.; Zhou, W.; Li, L.; Teng, L.; Yu, H.; Wang, J. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B, 2022, 12(11), 4098-4121.
[http://dx.doi.org/10.1016/j.apsb.2022.08.013] [PMID: 36386470]
[39]
Behdarvand, N.; Torbati, M.B.; Shaabanzadeh, M.J.J.o.N.R. Tamoxifen-loaded PLA/DPPE-PEG lipid-polymeric nanocapsules for inhibiting the growth of estrogen-positive human breast cancer cells through cell cycle arrest. J. Nanopart. Res., 2020, 22(262), 1-15.
[40]
Saei, A.A.; Barzegari, A.; Majd, M.H.; Asgari, D.; Omidi, Y. Fe3O4 nanoparticles engineered for plasmid DNA delivery to Escherichia coli. J. Nanopart. Res., 2014, 16(8), 2521.
[http://dx.doi.org/10.1007/s11051-014-2521-0]
[41]
Yang, Y.; Li, Y.; Chen, K.; Zhang, L.; Qiao, S.; Tan, G.; Chen, F.; Pan, W. Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-ss-vitamin e succinate polymer for precise cancer therapy. Int. J. Nanomedicine, 2020, 15, 2885-2902.
[http://dx.doi.org/10.2147/IJN.S249205] [PMID: 32425522]
[42]
Huang, D.; Sun, L.; Huang, L.; Chen, Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J. Pers. Med., 2021, 11(2), 124.
[http://dx.doi.org/10.3390/jpm11020124] [PMID: 33672813]
[43]
Yu, W.; Liu, R.; Zhou, Y.; Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci., 2020, 6(2), 100-116.
[http://dx.doi.org/10.1021/acscentsci.9b01139] [PMID: 32123729]
[44]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[45]
Ahlawat, J.; Guillama, B. G.; Masoudi Asil, S.; Alvarado, M.; Armendariz, I.; Bernal, J.; Carabaza, X.; Chavez, S.; Cruz, P.; Escalante, V.; Estorga, S.; Fernandez, D.; Lozano, C.; Marrufo, M.; Ahmad, N.; Negrete, S.; Olvera, K.; Parada, X.; Portillo, B.; Ramirez, A.; Ramos, R.; Rodriguez, V.; Rojas, P.; Romero, J.; Suarez, D.; Urueta, G.; Viel, S.; Narayan, M. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities. ACS Omega, 2020, 5(22), 12583-12595.
[http://dx.doi.org/10.1021/acsomega.0c01592] [PMID: 32548442]
[46]
Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4), 883.
[http://dx.doi.org/10.3390/pharmaceutics14040883] [PMID: 35456717]
[47]
Hu, S.; Shi, X.; Liu, Y.; He, Y.; Du, Y.; Zhang, G.; Yang, C.; Gao, F. CD44 cross-linking increases malignancy of breast cancer via upregulation of p-Moesin. Cancer Cell Int., 2020, 20(1), 563.
[http://dx.doi.org/10.1186/s12935-020-01663-4] [PMID: 33292278]
[48]
Vargas-Castro, R.; García-Becerra, R.; Díaz, L.; Avila, E.; Ordaz-Rosado, D.; Bernadez-Vallejo, S.V.; Cano-Colín, S.; Camacho, J.; Larrea, F.; García-Quiroz, J. Enhancing tamoxifen therapy with α-mangostin: synergistic antiproliferative effects on breast cancer cells and potential reduced endometrial impact. Pharmaceuticals, 2023, 16(11), 1576.
[http://dx.doi.org/10.3390/ph16111576] [PMID: 38004441]
[49]
Elefsiniotis, I.S.; Pantazis, K.D.; Ilias, A.; Pallis, L.; Mariolis, A.; Glynou, I.; Kada, H.; Moulakakis, A. Tamoxifen induced hepatotoxicity in breast cancer patients with pre-existing liver steatosis. Eur. J. Gastroenterol. Hepatol., 2004, 16(6), 593-598.
[http://dx.doi.org/10.1097/00042737-200406000-00013] [PMID: 15167162]
[50]
Hu, M.; Huang, L. Nanomaterial manipulation of immune microenvironment in the diseased liver. Adv. Funct. Mater., 2019, 29(7), 1805760.
[http://dx.doi.org/10.1002/adfm.201805760]
[51]
Singh, R.K.; Knowles, J.C.; Kim, H.W. Advances in nanoparticle development for improved therapeutics delivery: Nanoscale topographical aspect. J. Tissue Eng., 2019, 10
[http://dx.doi.org/10.1177/2041731419877528] [PMID: 31555432]
[52]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[53]
Adikwu, E.; Ebinyo, N.; Benalayefa, O.J.B.; Journal, B.R. Protective effect of lycopene against tamoxifen-induced hepatotoxicity in albino rats. Biomed. Biotechnol. Res. J., 2020, 4(1), 69-75.
[54]
Ou, X.; Shahraki, J.; Heidari Majd, M. Investigation on protective effects of magnetic nanoparticles containing methotrexate and tamoxifen in inhibition of hepatocyte toxicity and induction of apoptosis. Lat. Am. J. Pharm., 2021, 40, 2219-2225.
[55]
Yan, M.; Majd, M.H. Evaluation of induced apoptosis by biosynthesized zinc oxide nanoparticles in MCF-7 breast cancer cells using Bak1 and Bclx expression. Dokl. Biochem. Biophys., 2021, 500(1), 360-367.
[http://dx.doi.org/10.1134/S1607672921050148] [PMID: 34697744]
[56]
Kawiak, A.; Kostecka, A. Regulation of Bcl-2 family proteins in estrogen receptor-positive breast cancer and their implications in endocrine therapy. Cancers, 2022, 14(2), 279.
[http://dx.doi.org/10.3390/cancers14020279] [PMID: 35053443]
[57]
Lewoniewska, S.; Oscilowska, I.; Forlino, A.; Palka, J. Understanding the role of estrogen receptor status in PRODH/POX-dependent apoptosis/survival in breast cancer cells. Biology, 2021, 10(12), 1314.
[http://dx.doi.org/10.3390/biology10121314] [PMID: 34943229]
[58]
Xavier, M.A.; de Oliveira, M.T.; Baranoski, A.; Mantovani, M.S. Effects of folic acid on the antiproliferative efficiency of doxorubicin, camptothecin and methyl methanesulfonate in MCF-7 cells by mRNA endpoints. Saudi J. Biol. Sci., 2018, 25(8), 1568-1576.
[http://dx.doi.org/10.1016/j.sjbs.2016.02.005] [PMID: 30581319]
[59]
Cao, D.Z.; Sun, W.H.; Ou, X.L.; Yu, Q.; Yu, T.; Zhang, Y.Z.; Wu, Z.Y.; Xue, Q.P.; Cheng, Y.L.J.W.J.o.G.W. Effects of folic acid on epithelial apoptosis and expression of Bcl-2 and p53 in premalignant gastric lesions. World J. Gastroenterol., 2005, 11(11), 1571-1576.
[60]
Majd, M.H.; Guo, X. Investigation of the apoptosis inducing and β-catenin silencing by tetradentate schiff base Zinc(II) complex on the T-47D breast cancer cells. Anticancer. Agents Med. Chem., 2023, 23(15), 1740-1746.
[http://dx.doi.org/10.2174/1871520623666230511124547] [PMID: 37171012]
[61]
Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol., 2022, 12, 985363.
[http://dx.doi.org/10.3389/fonc.2022.985363] [PMID: 36313628]
[62]
Morris, J.L.; Gillet, G.; Prudent, J.; Popgeorgiev, N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int. J. Mol. Sci., 2021, 22(7), 3730.
[http://dx.doi.org/10.3390/ijms22073730] [PMID: 33918511]
[63]
Cheng, W.; Ren, Y.; Yu, C.; Zhou, T.; Zhang, Y.; Lu, L.; Liu, Y.; Xu, D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. Fish Shellfish Immunol., 2024, 147, 109400.
[http://dx.doi.org/10.1016/j.fsi.2024.109400] [PMID: 38253137]
[64]
Mandlekar, S.; Hebbar, V.; Christov, K.; Kong, A.N. Pharmacodynamics of tamoxifen and its 4-hydroxy and N-desmethyl metabolites: Activation of caspases and induction of apoptosis in rat mammary tumors and in human breast cancer cell lines. Cancer Res., 2000, 60(23), 6601-6606.
[PMID: 11118041]
[65]
Mandlekar, S.; Kong, A.N.T. Mechanisms of tamoxifen-induced apoptosis. Apoptosis, 2001, 6(6), 469-477.
[http://dx.doi.org/10.1023/A:1012437607881] [PMID: 11595837]
[66]
Archana, M.; Bastian, T. Various methods available for detection of apoptotic cells a review. Indian J. Cancer, 2013, 50(3), 274-283.
[PMID: 24061471]
[67]
Sharma, R.; Iovine, C.; Agarwal, A.; Henkel, R. TUNEL assay—Standardized method for testing sperm DNA fragmentation. Andrologia, 2021, 53(2), e13738.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy