Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Unveiling Current Advances in Bioelectronic Medicine: A Comprehensive Review

Author(s): Sanjeevani S. Deshkar*, Kalyani G. Ovhal, Lata P. Kothapalli, Satish V. Shirolkar and Roshani R. Pagar

Volume 14, Issue 3, 2024

Published on: 29 April, 2024

Page: [198 - 210] Pages: 13

DOI: 10.2174/0122103031288230240424043423

Price: $65

Abstract

Background: Bioelectronic medicine is an emerging therapy that makes use of neural signals and the nervous system to help in the treatment of injuries and diseases. The nervous system consists of disciplined circuits that involve the communication of every major organ of the human body as all the organs of the human body are regulated and controlled by neural circuits.

Objective: The objective of this review is to overview the current implementations of bioelectron-ic medicines within the human body. The main target is to heal the body without administering a wide array of exogenous drugs. On understanding these neural circuits at a molecular level, it could be possible to understand, manipulate, and modify the body’s functioning with the help of electrical impulses to modify neural impulses.

Methods: The literature related to bioelectronic medicines, and their applications was collected through different websites, academic research portals, and databases, sorted, and presented in this review.

Result: Bioelectronic medicine is emerging as a cutting-edge area in healthcare, demonstrating its potential to transform the diagnosis and management of inflammation and related conditions. With established efficacy in a variety of disorders and marketed available treatments, it highlights an enormous shift toward individualized and specialized therapeutic approaches, providing promise for improved outcomes and a higher quality of life for patients worldwide.

Conclusion: The study focuses on potential advances in bioelectronic medicine for alleviating inflammation and inflammatory disorders such as rheumatoid arthritis, diabetes, and spinal cord injury. Bioelectronic treatments provide innovative therapeutic options with the potential for considerable clinical effects

[1]
Blume, S. Kirk Jeffrey, Machines in our hearts: The cardiac pacemaker, the implantable defibrillator, and American health care, Baltimore and London, Johns Hopkins University Press, 2001, pp. xiii, 370, illus., £33.00 (hardback 0-8018-6579-4). Med. Hist., 2003, 47(3), 390-391.
[http://dx.doi.org/10.1017/S0025727300057136]
[2]
Wilson, B.S.; Dorman, M.F. The surprising performance of present-day cochlear implants. IEEE Trans Biomed Eng, 2007, 54(6), 969-972.
[http://dx.doi.org/10.1109/TBME.2007.893505]
[3]
Niketeghad, S.; Pouratian, N. Brain machine interfaces for vision restoration: The current state of cortical visual prosthetics. Neurotherapeutics, 2019, 16(1), 134-143.
[http://dx.doi.org/10.1007/s13311-018-0660-1] [PMID: 30194614]
[4]
Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; Stieglitz, T.; Petrini, F.M.; Rossini, P.M.; Micera, S. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron, 2018, 100(1), 37-45.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.08.033] [PMID: 30244887]
[5]
Famm, K.; Litt, B.; Tracey, K.J.; Boyden, E.S.; Slaoui, M. A jump-start for electroceuticals. Nature, 2013, 496(7444), 159-161.
[http://dx.doi.org/10.1038/496159a] [PMID: 23579662]
[6]
Pavlov, V.A.; Tracey, K.J. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron, 2022, 110(21), 3627-3644.
[http://dx.doi.org/10.1016/j.neuron.2022.09.003] [PMID: 36174571]
[7]
Nori, L.; Kiran, M.S.S. Bioelectronic medicine: A new vista for chronic diseases. Pharma. Times, 2022, 54(11), 7-13.
[8]
Spitler, R. Drug delivery systems: Possibilities and challenges World Scientific Series: From Biomaterials Towards Medical Devices Drug Delivery Systems, 2018, 1-51.
[http://dx.doi.org/10.1142/9789813201057_0001]
[9]
Schmidt, C. Bioelectronics: The bionic material. Nature, 2012, 483(7389), S37.
[http://dx.doi.org/10.1038/483S37a] [PMID: 22419210]
[10]
Fritz, J.R.; Huston, J.M. The neural tourniquet. Bioelectron. Med., 2014, 1(1), 25-29.
[http://dx.doi.org/10.15424/bioelectronmed.2014.00006]
[11]
Koopman, F. Ab1318-Hpr vagus nerve stimulation in patients with rheumatoid arthritis: 48 month safety and efficacy. Ann. Rheumat. Dis., 2020, 79(S1), 1948-1949.
[http://dx.doi.org/10.1136/annrheumdis-2020-eular.2914]
[12]
Sadek, M.M.; Ramirez, F.D.; Nery, P.B.; Golian, M.; Redpath, C.J.; Nair, G.M.; Birnie, D.H. Completely nonfluoroscopic catheter ablation of left atrial arrhythmias and ventricular tachycardia. J. Cardiovasc. Electrophysiol., 2019, 30(1), 78-88.
[http://dx.doi.org/10.1111/jce.13735] [PMID: 30203499]
[13]
Chuang, A.T.; Margo, C.E.; Greenberg, P.B. Retinal implants: A systematic review: Table 1. Br. J. Ophthalmol., 2014, 98(7), 852-856.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303708 ] [PMID: 24403565]
[14]
Loizou, P.C. Introduction to cochlear implants. IEEE Eng. Med. Biol. Mag., 1999, 18(1), 32-42.
[http://dx.doi.org/10.1109/51.740962] [PMID: 9934598]
[15]
Kim, B.S.; Kim, M.K.; Cho, Y.; Hamed, E.E.; Gillette, M.U.; Cha, H.; Miljkovic, N.; Aakalu, V.K.; Kang, K.; Son, K.N.; Schachtschneider, K.M.; Schook, L.B.; Hu, C.; Popescu, G.; Park, Y.; Ballance, W.C.; Yu, S. Im, S.G.; Lee, J.; Lee, C.H.; Kong, H. Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices. Sci. Adv., 2020, 6(42), eabc5630.
[http://dx.doi.org/10.1126/sciadv.abc5630] [PMID: 33067233]
[16]
Cai, Y.; Reddy, R.D.; Varshney, V.; Chakravarthy, K.V. Spinal cord stimulation in Parkinson’s disease: A review of the preclinical and clinical data and future prospects. Bioelectron. Med., 2020, 6(1), 5.
[http://dx.doi.org/10.1186/s42234-020-00041-9] [PMID: 32232113]
[17]
Kennedy, P.R.; Bakay, R.A.E. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport, 1998, 9(8), 1707-1711.
[http://dx.doi.org/10.1097/00001756-199806010-00007 ] [PMID: 9665587]
[18]
Lowe, A.L.; Thakor, N.V. Cut wires: The electrophysiology of regenerated tissue. Bioelectron. Med., 2021, 7(1), 1.
[http://dx.doi.org/10.1186/s42234-021-00062-y] [PMID: 33618774]
[19]
Koopman, F.A.; van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med., 2017, 282(1), 64-75.
[http://dx.doi.org/10.1111/joim.12626] [PMID: 28547815]
[20]
Löffler, S.; Melican, K.; Nilsson, K.P.R.; Dahlfors, R.A. Organic bioelectronics in medicine. J. Intern. Med., 2017, 282(1), 24-36.
[http://dx.doi.org/10.1111/joim.12595] [PMID: 28181720]
[21]
Khodagholy, D.; Gelinas, J.N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G.G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci., 2015, 18(2), 310-315.
[http://dx.doi.org/10.1038/nn.3905] [PMID: 25531570]
[22]
Davis, N. ‘Smart bandage’ with biosensors could help chronic wounds heal, study claims. 2023. Available from: https://www.theguardian.com/science/2023/mar/24/smart-bandage-withbiosensors-could-help-chronic-wounds-heal-study-claims
[23]
Bloodworth, M.; Honeywell, M.; Colquitt, C. The ReBuilder. US Pharm., 2007, 32(12), 66-67.
[24]
The drug-free solution for migraine and cluster headache. Available from: https://www.gammacore.com/
[25]
Support Healing with HealFast. Available from: https://healfastproducts.com/
[26]
Smart insole™ heel pain reliefsmart insole device illustration. Available from: https://www.bielcorp.com/products/smart-insole/
[27]
ActiPatch® musculoskeletal pain relief. Available from: https://www.bielcorp.com/products/actipatch/
[28]
RecoveryRx® postoperative pain & edema recovery & pain management. Available from: https://www.bielcorp.com/products/recoveryrx/
[29]
Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973), 1603-1607.
[http://dx.doi.org/10.1126/science.1182383] [PMID: 20339064]
[30]
Researchers use flexible bioelectronics to help wounds heal better. Available from: www.tasnimnews.com/en/news/2018/08/22/1809141/researchers-use-flexible-bioelectronics-to-help-wounds-heal-better (Accessed on: Oct. 14, 2023)
[31]
Medgadget. Vagus nerve stimulator gets FDA emergency OK for asthmatics with COVID. Available from: https://www.medgadget.com/2020/07/vagus-nerve-stimulator-gets-fda-emergency-ok-for-asthmatics-with-covid.html (Accessed on: Oct. 14, 2023).
[32]
gammacore. gammaCore Activates the Power of the Vagus Nerve. Available from: https://www.gammacore.com/about/how-gammacore-works/ (Accessed on: Mar. 07, 2024).
[33]
HealFast drug-free pain relief device. Available from: https://www.bielcorp.com/products/heal-fast/ (Accessed on: Mar. 07, 2024).
[34]
Arthritis pain, muscular pain, pain patches. Available from: https://actipatch.co.za/ (Accessed on: Mar. 07, 2024).
[35]
Nair, A.; Sahoo, R. ActiPatch: Can it be a tool to empower chronic pain patients? Indian J. Palliat. Care, 2020, 26(3), 392-393.
[http://dx.doi.org/10.4103/IJPC.IJPC_194_19] [PMID: 33311887]
[36]
Nathan, C. Points of control in inflammation. Nature, 2002, 420(6917), 846-852.
[http://dx.doi.org/10.1038/nature01320] [PMID: 12490957]
[37]
Tracey, K.J. The inflammatory reflex. Nature, 2002, 420(6917), 853-859.
[http://dx.doi.org/10.1038/nature01321] [PMID: 12490958]
[38]
Tracey, K.J. Reflex control of immunity. Nat. Rev. Immunol., 2009, 9(6), 418-428.
[http://dx.doi.org/10.1038/nri2566] [PMID: 19461672]
[39]
Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462.
[http://dx.doi.org/10.1038/35013070] [PMID: 10839541]
[40]
Pavlov, V.A.; Tracey, K.J. Neural circuitry and immunity. Immunol. Res., 2015, 63(1-3), 38-57.
[http://dx.doi.org/10.1007/s12026-015-8718-1] [PMID: 26512000]
[41]
Steins, H.; Mierzejewski, M.; Brauns, L.; Stumpf, A.; Kohler, A.; Heusel, G.; Corna, A.; Herrmann, T.; Jones, P.D.; Zeck, G.; von Metzen, R.; Stieglitz, T. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine. Microsyst. Nanoeng., 2022, 8(1), 131.
[http://dx.doi.org/10.1038/s41378-022-00466-z] [PMID: 36568135]
[42]
Tracey, K.J. The revolutionary future of bioelectronic medicine. Bioelectron. Med., 2014, 1(1), 1.
[http://dx.doi.org/10.15424/bioelectronmed.2014.00001]
[43]
Sethi, G.; Sung, B.; Aggarwal, B.B. TNF: A master switch for inflammation to cancer. Front. Biosci., 2008, 1(13), 5094-5107.
[http://dx.doi.org/10.2741/3066] [PMID: 18508572]
[44]
Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS crosstalk in inflammation. Trends Cell Biol., 2016, 26(4), 249-261.
[http://dx.doi.org/10.1016/j.tcb.2015.12.002] [PMID: 26791157]
[45]
Takeuchi, H.; Jin, S.; Wang, J.; Zhang, G.; Kawanokuchi, J.; Kuno, R.; Sonobe, Y.; Mizuno, T.; Suzumura, A. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem., 2006, 281(30), 21362-21368.
[http://dx.doi.org/10.1074/jbc.M600504200] [PMID: 16720574]
[46]
Croft, M.; Duan, W.; Choi, H.; Eun, S.Y.; Madireddi, S.; Mehta, A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol., 2012, 33(3), 144-152.
[http://dx.doi.org/10.1016/j.it.2011.10.004] [PMID: 22169337]
[47]
Berthoud, H.R.; Neuhuber, W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci., 2000, 85(1-3), 1-17.
[http://dx.doi.org/10.1016/S1566-0702(00)00215-0 ] [PMID: 11189015]
[48]
Thompson, N.; Mastitskaya, S.; Holder, D. Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J. Neurosci. Methods, 2019, 325, 108325.
[http://dx.doi.org/10.1016/j.jneumeth.2019.108325 ] [PMID: 31260728]
[49]
Pikov, V. Bioelectronic medicine for restoring autonomic balance in autoimmune diseases. Gut Microb. Integrat. Well., 2023, 1(2), 182.
[http://dx.doi.org/10.54844/gmiw.2022.0182] [PMID: 37155473]
[50]
Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P.; Cracowski, J-L.; Pellissier, S. Chronic vagus nerve stimulation in Crohn’s disease: A 6‐month follow‐up pilot study. Neurogastroenterol. Motil., 2016, 28(6), 948-953.
[http://dx.doi.org/10.1111/nmo.12792] [PMID: 26920654]
[51]
Renshaw, S.; Loynes, C.; Trushell, D.; Ingham, P.; Whyte, M.B. The molecular controls of resolution of inflammation: what can we learn from zebrafish? Eur. Respir. Rev., 2006, 15(101), 168-169.
[http://dx.doi.org/10.1183/09059180.00010108]
[52]
Lu, B.; Kwan, K.; Levine, Y.A.; Olofsson, P.S.; Yang, H.; Li, J.; Joshi, S.; Wang, H.; Andersson, U.; Chavan, S.S.; Tracey, K.J. α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol. Med., 2014, 20(1), 350-358.
[http://dx.doi.org/10.2119/molmed.2013.00117] [PMID: 24849809]
[53]
Pavlov, V.A.; Tracey, K.J. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nat. Neurosci., 2017, 20(2), 156-166.
[http://dx.doi.org/10.1038/nn.4477] [PMID: 28092663]
[54]
Silman, A.J. Epidemiology of rheumatoid arthritis. Acta Pathol. Microbiol. Scand. Suppl., 1994, 102(7-12), 721-728.
[http://dx.doi.org/10.1111/j.1699-0463.1994.tb05226.x ] [PMID: 7826600]
[55]
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[56]
Lipsky, P.E.; van der Heijde, D.M.; St Clair, E.W.; Furst, D.E.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Weisman, M.; Emery, P.; Feldmann, M.; Harriman, G.R.; Maini, R.N. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med., 2000, 343(22), 1594-1602.
[http://dx.doi.org/10.1056/NEJM200011303432202 ] [PMID: 11096166]
[57]
Edrees, A.; Misra, S.; Abdou, N. Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: Correlation of TNF-alpha serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clin. Exp. Rheumatol., 2005, 23(4), 469-474.
[58]
Upchurch, K.S.; Kay, J. Evolution of treatment for rheumatoid arthritis. Rheumatology, 2012, 51(S6), vi28-vi36.
[http://dx.doi.org/10.1093/rheumatology/kes278] [PMID: 23221584]
[59]
Inui, K.; Koike, T. Combination therapy with biologic agents in rheumatic diseases: current and future prospects. Ther. Adv. Musculoskelet. Dis., 2016, 8(5), 192-202.
[http://dx.doi.org/10.1177/1759720X16665330] [PMID: 27721905]
[60]
Mertens, M.; Singh, J.A. Anakinra for rheumatoid arthritis: A systematic review. J. Rheumatol., 2009, 36(6), 1118-1125.
[http://dx.doi.org/10.3899/jrheum.090074] [PMID: 19447938]
[61]
Emery, P.; Keystone, E.; Tony, H.P.; Cantagrel, A.; van Vollenhoven, R.; Sanchez, A.; Alecock, E.; Lee, J.; Kremer, J. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis., 2008, 67(11), 1516-1523.
[http://dx.doi.org/10.1136/ard.2008.092932] [PMID: 18625622]
[62]
Raimondo, M.G.; Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des. Devel. Ther., 2017, 11, 1593-1603.
[http://dx.doi.org/10.2147/DDDT.S100302] [PMID: 28579757]
[63]
Singh, J.A.; Hossain, A.; Ghogomu, T.E.; Mudano, A.S.; Maxwell, L.J.; Buchbinder, R.; Olivo, L.M.A.; Almazor, S.M.E.; Tugwell, P.; Wells, G.A. Biologics or tofacitinib for people with rheumatoid arthritis unsuccessfully treated with biologics: A systematic review and network meta-analysis. Cochrane Libr., 2017, 2017(3), CD012591.
[http://dx.doi.org/10.1002/14651858.CD012591] [PMID: 28282491]
[64]
Wasson, N.J.; Varley, C.D.; Schwab, P.; Fu, R.; Winthrop, K.L. Serious skin & soft tissue infections in rheumatoid arthritis patients taking anti-tumor necrosis factor alpha drugs: A nested case–control study. BMC Infect. Dis., 2013, 13(1), 533.
[http://dx.doi.org/10.1186/1471-2334-13-533] [PMID: 24498926]
[65]
Kanashiro, A.; Bassi, G.S.; Cunha, Q.F.; Ulloa, L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. Bioelectron. Med., 2018, 1(2), 151-165.
[http://dx.doi.org/10.2217/bem-2018-0001] [PMID: 30740246]
[66]
Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; Tracey, K.J.; Tak, P.P. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci., 2016, 113(29), 8284-8289.
[http://dx.doi.org/10.1073/pnas.1605635113] [PMID: 27382171]
[67]
Addorisio, M.E.; Imperato, G.H.; de Vos, A.F.; Forti, S.; Goldstein, R.S.; Pavlov, V.A.; van der Poll, T.; Yang, H.; Diamond, B.; Tracey, K.J.; Chavan, S.S. Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron. Med., 2019, 5(1), 4.
[http://dx.doi.org/10.1186/s42234-019-0020-4] [PMID: 32232095]
[68]
Blak, B.T.; Smith, H.T.; Hards, M.; Maguire, A.; Gimeno, V. A retrospective database study of insulin initiation in patients with Type 2 diabetes in UK primary care. Diabet. Med., 2012, 29(8), e191-e198.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03694.x ] [PMID: 22507537]
[69]
Rath, P.; Pandey, S.; Bisaralli, R. Role of neuroimmunomodulation by vagus nerve stimulation in rheumatoid arthritis: Are we heading towards a drug-free era? Indian J. Rheumatol., 2020, 15(4), 323.
[http://dx.doi.org/10.4103/injr.injr_92_20]
[70]
Masi, E.B.; Levy, T.; Tsaava, T.; Bouton, C.E.; Tracey, K.J.; Chavan, S.S.; Zanos, T.P. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectron. Med., 2019, 5(1), 9.
[http://dx.doi.org/10.1186/s42234-019-0025-z] [PMID: 32232099]
[71]
Jiman, A.A.; Chhabra, K.H.; Lewis, A.G.; Cederna, P.S.; Seeley, R.J.; Low, M.J.; Bruns, T.M. Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectron. Med., 2018, 4(1), 7.
[http://dx.doi.org/10.1186/s42234-018-0008-5] [PMID: 32232083]
[72]
Gonzalez, G.A.; Cummings, E.R.; Georgiou, P. Closed-loop bioelectronic medicine for diabetes management. Bioelectron. Med., 2020, 6(1), 11.
[http://dx.doi.org/10.1186/s42234-020-00046-4] [PMID: 32467827]
[73]
Dirr, E.W.; Urdaneta, M.E.; Patel, Y.; Johnson, R.D.; Thompson, C.M.; Otto, K.J. Designing a bioelectronic treatment for Type 1 diabetes: targeted parasympathetic modulation of insulin secretion. Bioelectron. Med., 2020, 3(2), 17-31.
[http://dx.doi.org/10.2217/bem-2020-0006] [PMID: 33169091]
[74]
Sacramento, J.F.; Chew, D.J.; Melo, B.F.; Donegá, M.; Dopson, W.; Guarino, M.P.; Robinson, A.; Lloret, P.J.; Patel, S.; Holinski, B.J.; Ramnarain, N.; Pikov, V.; Famm, K.; Conde, S.V. Bioelectronic modulation of carotid sinus nerve activity in the rat: A potential therapeutic approach for type 2 diabetes. Diabetologia, 2018, 61(3), 700-710.
[http://dx.doi.org/10.1007/s00125-017-4533-7] [PMID: 29332196]
[75]
Kumar, D.; Marshall, H.J. Diabetic peripheral neuropathy: Amelioration of pain with transcutaneous electrostimulation. Diabetes Care, 1997, 20(11), 1702-1705.
[http://dx.doi.org/10.2337/diacare.20.11.1702] [PMID: 9353612]
[76]
Strakosas, X.; Selberg, J.; Pansodtee, P.; Yonas, N.; Manapongpun, P.; Teodorescu, M.; Rolandi, M. A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci. Rep., 2019, 9(1), 10844.
[http://dx.doi.org/10.1038/s41598-019-46302-9] [PMID: 31350439]
[77]
Kovatchev, B. Automated closed-loop control of diabetes: The artificial pancreas. Bioelectron. Med., 2018, 4(1), 14.
[http://dx.doi.org/10.1186/s42234-018-0015-6] [PMID: 32232090]
[78]
Carroll, A.E.; Marrero, D.G.; Downs, S.M. The HealthPia Glucopack diabetes phone: A usability study. Diabetes Technol. Ther., 2007, 9(2), 158-164.
[http://dx.doi.org/10.1089/dia.2006.0002] [PMID: 17425441]
[79]
Lee, H.; Song, C.; Hong, Y.S.; Kim, M.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3(3), e1601314.
[http://dx.doi.org/10.1126/sciadv.1601314] [PMID: 28345030]
[80]
Fehlings, M.G.; Tetreault, L.A.; Wilson, J.R.; Kwon, B.K.; Burns, A.S.; Martin, A.R.; Hawryluk, G.; Harrop, J.S. A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Global Spine J., 2017, 7(S3), 84S-94S.
[http://dx.doi.org/10.1177/2192568217703387] [PMID: 29164036]
[81]
Calford, M.B.; Tweedale, R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature, 1988, 332(6163), 446-448.
[http://dx.doi.org/10.1038/332446a0] [PMID: 3352742]
[82]
Musienko, P.; van den Brand, R.; Märzendorfer, O.; Roy, R.R.; Gerasimenko, Y.; Edgerton, V.R.; Courtine, G. Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J. Neurosci., 2011, 31(25), 9264-9278.
[http://dx.doi.org/10.1523/JNEUROSCI.5796-10.2011 ] [PMID: 21697376]
[83]
Rossignol, S.; Giroux, N.; Chau, C.; Marcoux, J.; Brustein, E.; Reader, T.A. Pharmacological aids to locomotor training after spinal injury in the cat. J. Physiol., 2001, 533(Pt 1), 65-74.
[http://dx.doi.org/10.1111/j.1469-7793.2001.0065b.x]
[84]
Courtine, G.; Gerasimenko, Y.; van den Brand, R.; Yew, A.; Musienko, P.; Zhong, H.; Song, B.; Ao, Y.; Ichiyama, R.M.; Lavrov, I.; Roy, R.R.; Sofroniew, M.V.; Edgerton, V.R. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci., 2009, 12(10), 1333-1342.
[http://dx.doi.org/10.1038/nn.2401] [PMID: 19767747]
[85]
Asboth, L.; Friedli, L.; Beauparlant, J.; Gonzalez, M.C.; Anil, S.; Rey, E.; Baud, L.; Pidpruzhnykova, G.; Anderson, M.A.; Shkorbatova, P.; Batti, L.; Pagès, S.; Kreider, J.; Schneider, B.L.; Barraud, Q.; Courtine, G. Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci., 2018, 21(4), 576-588.
[http://dx.doi.org/10.1038/s41593-018-0093-5] [PMID: 29556028]
[86]
Ganzer, P.D.; Darrow, M.J.; Meyers, E.C.; Solorzano, B.R.; Ruiz, A.D.; Robertson, N.M.; Adcock, K.S.; James, J.T.; Jeong, H.S.; Becker, A.M.; Goldberg, M.P.; Pruitt, D.T.; Hays, S.A.; Kilgard, M.P.; Rennaker, R.L., II Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury. eLife, 2018, 7, e32058.
[http://dx.doi.org/10.7554/eLife.32058] [PMID: 29533186]
[87]
Hulsey, D.R.; Hays, S.A.; Khodaparast, N.; Ruiz, A.; Das, P.; Rennaker, R.L., II; Kilgard, M.P. Reorganization of motor cortex by vagus nerve stimulation requires cholinergic innervation. Brain Stimul., 2016, 9(2), 174-181.
[http://dx.doi.org/10.1016/j.brs.2015.12.007] [PMID: 26822960]
[88]
West, C.R.; Phillips, A.A.; Squair, J.W.; Williams, A.M.; Walter, M.; Lam, T.; Krassioukov, A.V. Association of epidural stimulation with cardiovascular function in an individual with spinal cord injury. JAMA Neurol., 2018, 75(5), 630-632.
[http://dx.doi.org/10.1001/jamaneurol.2017.5055] [PMID: 29459943]
[89]
Aslan, S.C.; Legg Ditterline, B.E.; Park, M.C.; Angeli, C.A.; Rejc, E.; Chen, Y.; Ovechkin, A.V.; Krassioukov, A.; Harkema, S.J. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front. Physiol., 2018, 9, 565.
[http://dx.doi.org/10.3389/fphys.2018.00565] [PMID: 29867586]
[90]
Harkema, S.J.; Legg Ditterline, B.; Wang, S.; Aslan, S.; Angeli, C.A.; Ovechkin, A.; Hirsch, G.A. Epidural spinal cord stimulation training and sustained recovery of cardiovascular function in individuals with chronic cervical spinal cord injury. JAMA Neurol., 2018, 75(12), 1569-1571.
[http://dx.doi.org/10.1001/jamaneurol.2018.2617] [PMID: 30242310]
[91]
Harkema, S.J. Normalization of blood pressure with spinal cord epidural stimulation after severe spinal cord injury. Front. Hum. Neurosci., 2018, 12, 83.
[http://dx.doi.org/10.3389/fnhum.2018.00083]
[92]
Mignardot, J.B.; Le Goff, C.G.; van den Brand, R.; Capogrosso, M.; Fumeaux, N.; Vallery, H.; Anil, S.; Lanini, J.; Fodor, I.; Eberle, G.; Ijspeert, A.; Schurch, B.; Curt, A.; Carda, S.; Bloch, J.; von Zitzewitz, J.; Courtine, G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci. Transl. Med., 2017, 9(399), eaah3621.
[http://dx.doi.org/10.1126/scitranslmed.aah3621] [PMID: 28724575]
[93]
Dominici, N.; Keller, U.; Vallery, H.; Friedli, L.; van den Brand, R.; Starkey, M.L.; Musienko, P.; Riener, R.; Courtine, G. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med., 2012, 18(7), 1142-1147.
[http://dx.doi.org/10.1038/nm.2845] [PMID: 22653117]
[94]
Capogrosso, M.; Milekovic, T.; Borton, D.; Wagner, F.; Moraud, E.M.; Mignardot, J.B.; Buse, N.; Gandar, J.; Barraud, Q.; Xing, D.; Rey, E.; Duis, S.; Jianzhong, Y.; Ko, W.K.D.; Li, Q.; Detemple, P.; Denison, T.; Micera, S.; Bezard, E.; Bloch, J.; Courtine, G. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature, 2016, 539(7628), 284-288.
[http://dx.doi.org/10.1038/nature20118] [PMID: 27830790]
[95]
Bonizzato, M.; Pidpruzhnykova, G.; DiGiovanna, J.; Shkorbatova, P.; Pavlova, N.; Micera, S.; Courtine, G. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat. Commun., 2018, 9(1), 3015.
[http://dx.doi.org/10.1038/s41467-018-05282-6] [PMID: 30068906]
[96]
Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Kabara, T.E.C.; Weber, D.J.; McMorland, A.J.C.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 2013, 381(9866), 557-564.
[http://dx.doi.org/10.1016/S0140-6736(12)61816-9 ] [PMID: 23253623]
[97]
Hochberg, L.R.; Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Simeral, J.D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S.S.; van der Smagt, P.; Donoghue, J.P. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 2012, 485(7398), 372-375.
[http://dx.doi.org/10.1038/nature11076] [PMID: 22596161]
[98]
Ajiboye, A.B.; Willett, F.R.; Young, D.R.; Memberg, W.D.; Murphy, B.A.; Miller, J.P.; Walter, B.L.; Sweet, J.A.; Hoyen, H.A.; Keith, M.W.; Peckham, P.H.; Simeral, J.D.; Donoghue, J.P.; Hochberg, L.R.; Kirsch, R.F. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. Lancet, 2017, 389(10081), 1821-1830.
[http://dx.doi.org/10.1016/S0140-6736(17)30601-3 ] [PMID: 28363483]
[99]
Bouton, C.E.; Shaikhouni, A.; Annetta, N.V.; Bockbrader, M.A.; Friedenberg, D.A.; Nielson, D.M.; Sharma, G.; Sederberg, P.B.; Glenn, B.C.; Mysiw, W.J.; Morgan, A.G.; Deogaonkar, M.; Rezai, A.R. Restoring cortical control of functional movement in a human with quadriplegia. Nature, 2016, 533(7602), 247-250.
[http://dx.doi.org/10.1038/nature17435] [PMID: 27074513]
[100]
Flesher, S.N.; Collinger, J.L.; Foldes, S.T.; Weiss, J.M.; Downey, J.E.; Kabara, T.E.C.; Bensmaia, S.J.; Schwartz, A.B.; Boninger, M.L.; Gaunt, R.A. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med., 2016, 8(361), 361ra141.
[http://dx.doi.org/10.1126/scitranslmed.aaf8083] [PMID: 27738096]
[101]
Hong, E. Mobility skills with exoskeletal-assisted walking in persons with SCI: Results from a three center randomized clinical trial. Front. Robot. AI, 2020, 7, 93.
[http://dx.doi.org/10.3389/frobt.2020.00093]
[102]
Chang, E.H. Changing the tune using bioelectronics. Bioelectron. Med., 2021, 7(1), 2.
[http://dx.doi.org/10.1186/s42234-021-00063-x] [PMID: 33618778]
[103]
Ciancibello, J.; King, K.; Meghrazi, M.A.; Padmanaban, S.; Levy, T.; Ramdeo, R.; Straka, M.; Bouton, C. Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia. Bioelectron. Med., 2019, 5(1), 19.
[http://dx.doi.org/10.1186/s42234-019-0034-y] [PMID: 32232108]
[104]
Mwamburi, M.M.D. Review of evidence on noninvasive vagus nerve stimulation for treatment of migraine: Efficacy, safety, and implications. Am J Manag Care, 2018, 24(S24), S507-S516.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy