Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Molecular Docking Studies and Biological Evaluation of Thiazolyl Hydrazone Derivatives of Chromone-3-carbaldehyde as Potent Anti-Oxidant and Anti-Inflammatory Agents

Author(s): Rakhi Gawali*, Raghunath Bhosale, Rohit Bavi, Shravan Jadhav and Nargisbano Peerzade

Volume 20, Issue 8, 2024

Published on: 26 April, 2024

Page: [818 - 830] Pages: 13

DOI: 10.2174/0115734064293848240408085039

Price: $65

Abstract

Introduction: A series of 15 thiazolyl hydrazone derivatives of chromone-3- carbaldehyde have been designed and synthesized by the cyclization of thiosemicarbazone derivatives of chromone-3-carbaldehydes with 4’-substituted-2-bromo acetophenones.

Method: All these derivatives were evaluated for antioxidant activity by their direct scavenging activity objects to reactive oxygen species such as DPPH, and nitric oxide, as well as in vitro antiinflammatory activity by a protein denaturation method. Most of these synthesized compounds have shown significant antioxidant activity, among which the compounds 5b, 5c, 5e, 5g, and 5j showed very good antioxidant activities in comparison with the standard ascorbic acid. The in vitro anti-inflammatory activity revealed that the compounds 5b, 5g, and 5h possessed significant activity compared to standard diclofenac sodium.

Result: Additionally, molecular docking studies of these molecules using ovalbumin as the protein showed remarkable interactions with its active site residues, and the results indicated that the binding mode of these compounds closely resembled that of the reference compound, diclofenac sodium.Thus, these compounds represent an attractive template for the evaluation of new antiinflammatory and antioxidant agents and might be useful for exploring new therapeutic tools.

Conclusion: Thus, these compounds represent an attractive template for the evaluation of new antiinflammatory and antioxidant agents and might be useful for exploring new therapeutic tools.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy