Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Review Article

The Hidden Enemy Within: Uncovering the Secrets of HIV Tissues Reservoirs and Current mRNA Vaccine Development

Author(s): Satyendra Prakash* and Mayank Kumar

Volume 22, Issue 2, 2024

Published on: 18 April, 2024

Page: [73 - 81] Pages: 9

DOI: 10.2174/011570162X301593240409072840

Price: $65

Abstract

Human Immunodeficiency Viruses (HIV) continue to pose a significant global health threat despite the availability of antiretroviral therapy (ART). As a retrovirus, HIV persists as a stable, integrated, and replication-competent provirus within a diverse array of long-lived cells for many years, often termed “latent reservoirs” in individuals. Thus, this review aims to furnish a comprehensive overview of diverse tissue reservoirs where HIV persists, elucidating their pathogenesis and advancement in their strategies for clinical management. Understanding the mechanisms underlying HIV persistence within tissue reservoirs is of significant interest in developing effective ART for suppressing the virus in the blood. In addition, we also discussed the ongoing mRNA HIV vaccine that has shown promising results in clinical trials to elicit broadly neutralizing antibodies and effective T-cell responses against HIV.

Graphical Abstract

[1]
Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1(1): a006841.
[http://dx.doi.org/10.1101/cshperspect.a006841] [PMID: 22229120]
[4]
Crooks AM, Bateson R, Cope AB, et al. Precise quantitation of the latent HIV-1 reservoir: Implications for eradication strategies. J Infect Dis 2015; 212(9): 1361-5.
[http://dx.doi.org/10.1093/infdis/jiv218] [PMID: 25877550]
[5]
Li GH, Henderson L, Nath A. Astrocytes as an HIV reservoir: Mechanism of HIV infection. Curr HIV Res 2016; 14(5): 373-81.
[http://dx.doi.org/10.2174/1570162X14666161006121455] [PMID: 27719663]
[6]
Nühn MM, Gumbs SBH, Buchholtz NVEJ, et al. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112(5): 1297-315.
[http://dx.doi.org/10.1002/JLB.5VMR0122-046RRR] [PMID: 36148896]
[7]
Churchill M, Nath A. Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS 2013; 8(3): 165-9.
[http://dx.doi.org/10.1097/COH.0b013e32835fc601] [PMID: 23429501]
[8]
Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis 2013; 13(11): 976-86.
[http://dx.doi.org/10.1016/S1473-3099(13)70269-X] [PMID: 24156898]
[9]
Oliveira MF, Pankow A, Vollbrecht T, et al. Evaluation of archival HIV DNA in brain and lymphoid tissues. J Virol 2023; 97(6): e00543-23.
[http://dx.doi.org/10.1128/jvi.00543-23] [PMID: 37184401]
[10]
Ene L. Human immunodeficiency virus in the brain—culprit or facilitator? Infect Dis 2018; 11: 1178633717752687.
[http://dx.doi.org/10.1177/1178633717752687] [PMID: 29467577]
[11]
Dave RS, Jain P, Byrareddy SN. Follicular dendritic cells of lymph nodes as human immunodeficiency virus/simian immunodeficiency virus reservoirs and insights on cervical lymph node. Front Immunol 2018; 9: 805.
[http://dx.doi.org/10.3389/fimmu.2018.00805] [PMID: 29725333]
[12]
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229(1): 337-55.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00773.x] [PMID: 19426232]
[13]
Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for cell-to-cell transmission of HIV-1. Front Immunol 2018; 9(Feb): 260.
[http://dx.doi.org/10.3389/fimmu.2018.00260] [PMID: 29515578]
[14]
Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993; 362(6418): 359-62.
[http://dx.doi.org/10.1038/362359a0] [PMID: 8096068]
[15]
Siddiqui S, Perez S, Gao Y, et al. Persistent viral reservoirs in lymphoid tissues in siv-infected rhesus macaques of chinese-origin on suppressive antiretroviral therapy. Viruses 2019; 11(2): 105.
[http://dx.doi.org/10.3390/v11020105] [PMID: 30691203]
[16]
Jagarapu A, Piovoso MJ, Zurakowski R. An integrated spatial dynamics—pharmacokinetic model explaining poor penetration of anti-retroviral drugs in lymph nodes. Front Bioeng Biotechnol 2020; 8(June): 667.
[http://dx.doi.org/10.3389/fbioe.2020.00667] [PMID: 32676500]
[17]
Bhoopat L, Rithaporn TS, Khunamornpong S, Bhoopat T, Taylor CR, Thorner PS. Cell reservoirs in lymph nodes infected with HIV-1 subtype E differ from subtype B: Identification by combined in situ polymerase chain reaction and immunohistochemistry. Mod Pathol 2006; 19(2): 255-63.
[http://dx.doi.org/10.1038/modpathol.3800527] [PMID: 16341147]
[18]
Gill KS, Mehta K, Heredia JD, Krishnamurthy VV, Zhang K, Procko E. Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCR5 demonstrated by deep mutagenesis. J Biol Chem 2023; 299(10): 105229.
[http://dx.doi.org/10.1016/j.jbc.2023.105229] [PMID: 37690681]
[19]
Eddy J, Pham F, Chee R, et al. Intestinal endothelial cells increase HIV infection and latency in resting and activated CD4 + T cells, particularly affecting CCR6 + CD4 + T cells. Retrovirology 2023; 20(1): 7.
[http://dx.doi.org/10.1186/s12977-023-00621-y] [PMID: 37202790]
[20]
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts—from the field to the laboratory. Front Immunol 2023; 13: 1060985.
[http://dx.doi.org/10.3389/fimmu.2022.1060985] [PMID: 36713371]
[21]
Shen R, Richter HE, Clements RH, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 2009; 83(7): 3258-67.
[http://dx.doi.org/10.1128/JVI.01796-08] [PMID: 19153236]
[22]
Brown D, Mattapallil JJ. Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. Clin Vaccine Immunol 2014; 21(11): 1469-73.
[http://dx.doi.org/10.1128/CVI.00518-14] [PMID: 25185575]
[23]
Galvin SR, Cohen MS. Genital tract reservoirs. Curr Opin HIV AIDS 2006; 1(2): 162-6.
[PMID: 19372802]
[24]
Exchange, camille arkellcanadian aids treatment information. hiv and the female genital tract - What does it mean for HIV prevention? 2016. Available from: https://www.thebodypro.com/article/hiv-and-the-female-genital-tract--what-does-it-mea 28 July 2016.
[25]
Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. Mucosa: Key interactions determining sexual transmission of the HIV infection. Front Immunol 2019; 10: 144.
[http://dx.doi.org/10.3389/fimmu.2019.00144] [PMID: 30787929]
[26]
Kovarova M, Wessel SE, Johnson CE, et al. EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition. MBio 2023; 14(4): e02224-22.
[http://dx.doi.org/10.1128/mbio.02224-22] [PMID: 37306625]
[27]
Morton JF, Celum C, Njoroge J, et al. Counseling framework for HIV-serodiscordant couples on the integrated use of antiretroviral therapy and pre-exposure prophylaxis for HIV prevention. J Acquir Immune Defic Syndr 2017; 74(1) (Suppl. 1): S15-22.
[http://dx.doi.org/10.1097/QAI.0000000000001210] [PMID: 27930607]
[28]
Deleage C, Moreau M, Rioux-Leclercq N, Ruffault A, Jégou B, Dejucq-Rainsford N. Human immunodeficiency virus infects human seminal vesicles in vitro and in vivo. Am J Pathol 2011; 179(5): 2397-408.
[http://dx.doi.org/10.1016/j.ajpath.2011.08.005] [PMID: 21925468]
[29]
Shanmugasundaram U, Critchfield JW, Giudice LC, Smith-McCune K, Greenblatt RM, Shacklett BL. Parallel studies of mucosal immunity in the reproductive and gastrointestinal mucosa of HIV-infected women. Am J Reprod Immunol 2020; 84(1): e13246.
[http://dx.doi.org/10.1111/aji.13246] [PMID: 32301548]
[30]
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14: 1104423.
[http://dx.doi.org/10.3389/fimmu.2023.1104423] [PMID: 36798134]
[31]
Moron-Lopez S, Xie G, Kim P, et al. Tissue-specific differences in HIV DNA levels and mechanisms that govern HIV transcription in blood, gut, genital tract and liver in ART-treated women. J Int AIDS Soc 2021; 24(7): e25738.
[http://dx.doi.org/10.1002/jia2.25738] [PMID: 34235864]
[32]
Taylor S, Davies S. Antiretroviral drug concentrations in the male and female genital tract: Implications for the sexual transmission of HIV. Curr Opin HIV AIDS 2010; 5(4): 335-43.
[http://dx.doi.org/10.1097/COH.0b013e32833a0b69] [PMID: 20543610]
[33]
Wong JK, Yukl SA. Tissue reservoirs of HIV. Curr Opin HIV AIDS 2016; 11(4): 362-70.
[http://dx.doi.org/10.1097/COH.0000000000000293] [PMID: 27259045]
[34]
Boritz EA, Douek DC. Perspectives on human immunodeficiency virus (HIV) cure: HIV persistence in tissue. J Infect Dis 2017; 215 (Suppl. 3): S128-33.
[http://dx.doi.org/10.1093/infdis/jix005] [PMID: 28520970]
[35]
Schiff AE, Linder AH, Luhembo SN, et al. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci Rep 2021; 11(1): 3890.
[http://dx.doi.org/10.1038/s41598-021-82066-x] [PMID: 33594125]
[36]
Panda K, Chinnapaiyan S, Rahman MS, Santiago MJ, Black SM, Unwalla HJ. Circadian-coupled genes expression and regulation in HIV-associated chronic obstructive pulmonary disease (COPD) and lung comorbidities. Int J Mol Sci 2023; 24(11): 9140.
[http://dx.doi.org/10.3390/ijms24119140] [PMID: 37298092]
[37]
Ganesan M, Poluektova LY, Kharbanda KK, Osna NA. Liver as a target of human immunodeficiency virus infection. World J Gastroenterol 2018; 24(42): 4728-37.
[http://dx.doi.org/10.3748/wjg.v24.i42.4728] [PMID: 30479460]
[38]
McCain JD, Chascsa DM. Special considerations in the management of HIV and viral hepatitis coinfections in liver transplantation. Hepat Med 2022; 14: 27-36.
[http://dx.doi.org/10.2147/HMER.S282662]
[39]
Patel K, Zhang A, Zhang MH, et al. Forty years since the epidemic: Modern paradigms in HIV diagnosis and treatment. Cureus 2021; 13(5): e14805.
[http://dx.doi.org/10.7759/cureus.14805] [PMID: 34094761]
[40]
Kandathil AJ, Sugawara S, Goyal A, et al. No recovery of replication-competent HIV-1 from human liver macrophages. J Clin Invest 2018; 128(10): 4501-9.
[http://dx.doi.org/10.1172/JCI121678] [PMID: 30198905]
[41]
Shiferaw MB, Tulu KT, Zegeye AM, Wubante AA. Liver enzymes abnormalities among highly active antiretroviral therapy experienced and HAART naïve HIV-1 infected patients at debre tabor hospital, north west ethiopia: A comparative cross-sectional study. Aids Res Treat 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/1985452] [PMID: 27493798]
[42]
Chen J, Zhou T, Zhang Y, et al. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12: 945956.
[http://dx.doi.org/10.3389/fcimb.2022.945956] [PMID: 35967854]
[43]
La Manna MP, Shekarkar Azgomi M, Tamburini B, et al. Phenotypic and immunometabolic aspects on stem cell memory and resident memory CD8+ T cells. Front Immunol 2022; 13: 884148.
[http://dx.doi.org/10.3389/fimmu.2022.884148] [PMID: 35784300]
[44]
Rossi FW, Prevete N, Rivellese F, et al. HIV-1 Nef promotes migration and chemokine synthesis of human basophils and mast cells through the interaction with CXCR4. Clin Mol Allergy 2016; 14(1): 15.
[http://dx.doi.org/10.1186/s12948-016-0052-1] [PMID: 27822141]
[45]
Grau-Expósito J, Luque-Ballesteros L, Navarro J, et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 2019; 15(8): e1007991.
[http://dx.doi.org/10.1371/journal.ppat.1007991] [PMID: 31425551]
[46]
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses 2020; 12(1): 84.
[http://dx.doi.org/10.3390/v12010084]
[47]
Li C, Mori L, Valente ST. The block-and-lock strategy for human immunodeficiency virus cure: Lessons learned from didehydro–cortistatin A. J Infect Dis 2021; 223(12) (Suppl. 1): S46-53.
[http://dx.doi.org/10.1093/infdis/jiaa681] [PMID: 33586776]
[48]
Bhowmik R, Chaubey B. CRISPR/Cas9: A tool to eradicate HIV-1. AIDS Res Ther 2022; 19(1): 58.
[http://dx.doi.org/10.1186/s12981-022-00483-y] [PMID: 36457057]
[49]
Conquering latent hiv to end the aids pandemic. Available from: https://asm.org:443/Articles/2020/November/Conquering-Latent-HIV-To-End-the-AIDS-Pandemic Retrieved March 9, 2024.
[50]
Prakash S. Development of COVID 19 vaccine: A summarized review on global trials, efficacy, and effectiveness on variants. Diabetes Metab Syndr 2022; 16(4): 102482.
[http://dx.doi.org/10.1016/j.dsx.2022.102482] [PMID: 35427915]
[51]
Mp S. Re-purposing drugs and prominent vaccines efficacy against COVID-19: A short review. VVOA 2021; 6(1): 1-8.
[http://dx.doi.org/10.23880/vvoa-16000149]
[52]
Prakash S. Nano-based drug delivery system for therapeutics: A comprehensive review. Biomed Phys Eng Express 2023; 9(5): 052002.
[http://dx.doi.org/10.1088/2057-1976/acedb2] [PMID: 37549657]
[53]
Prakash S. mRNA-based nanomedicine: A new strategy for treating infectious diseases and beyond. Eur J Drug Metab Pharmacokinet 2023; 48(5): 515-29.
[http://dx.doi.org/10.1007/s13318-023-00849-1] [PMID: 37656402]
[54]
A clinical trial to evaluate the safety and immunogenicity of BG505 MD39.3, BG505 MD39.3 gp151, and BG505 MD39.3 gp151 CD4KO HIV Trimer mRNA vaccines in healthy, HIV-uninfected adult participants. Available from: https://clinicaltrials.gov/ct2/show/study/NCT05217641
[55]
Steichen JM, Kulp DW, Tokatlian T, et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 2016; 45(3): 483-96.
[http://dx.doi.org/10.1016/j.immuni.2016.08.016] [PMID: 27617678]
[56]
Fortner A, Bucur O. mRNA-based vaccine technology for HIV. Discoveries 2022; 10(2): e150.
[http://dx.doi.org/10.15190/d.2022.9] [PMID: 36438441]
[57]
A phase 1 study to evaluate the safety and immunogenicity of eOD-GT8 60mer mRNA vaccine (mRNA-1644) and Core-g28v2 60mer mRNA vaccine (mRNA-1644v2-Core). Avaiable from: https://clinicaltrials.gov/ct2/show/NCT05001373?term=IAVI&draw=2
[58]
IAVI and moderna launch first-in-africa clinical trial of mRNA HIV vaccine development program. IAVI Available from: https://www.iavi.org/news-resources/press-releases/2022/iavi-and-moderna-launch-first-in-africa-clinical-trial-of-mrna-hiv-vaccine-development-program Accessed 23 June 2023.
[59]
Parvez MK, Parveen S. Evolution and emergence of pathogenic viruses: Past, present, and future. Intervirology 2017; 60(1-2): 1-7.
[http://dx.doi.org/10.1159/000478729] [PMID: 28772262]
[60]
Sudhan SS, Sharma P. Human Viruses: Emergence and Evolution. Emerging and Reemerging Viral Pathogens 2020; pp. 53-68.
[http://dx.doi.org/10.1016/B978-0-12-819400-3.00004-1]
[61]
[62]
Waymack JR, Sundareshan V. Acquired immune deficiency syndrome. StatPearls. Treasure Island, FL: StatPearls Publishing 2024.
[63]
Okonji EF, Mukumbang FC, Orth Z, Vickerman-Delport SA, Van Wyk B. Psychosocial support interventions for improved adherence and retention in ART care for young people living with HIV (10–24 years): A scoping review. BMC Public Health 2020; 20(1): 1841.
[http://dx.doi.org/10.1186/s12889-020-09717-y] [PMID: 33261566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy