Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Thermo-Acoustic Behaviour of K2CrO4 and K4 [Fe(CN)6] in Aqueous Dimethylformamide at Different Temperatures

In Press, (this is not the final "Version of Record"). Available online 16 April, 2024
Author(s): Rajalaxmi Panda, Subhraraj Panda* and Susanta Kumar Biswal*
Published on: 16 April, 2024

DOI: 10.2174/0124055204296907240330083154

Price: $95

Abstract

Introduction: Acoustic parameters can help us understand how temperature and concentration affect the behaviour of potassium ferrocyanide and potassium chromate electrolytes in the aqueous solvent Dimethylformamide.

Method: The solution's density (ρ), viscosity (η), and ultrasonic speed (u) were measured at various concentrations and temperatures (ranging from 293 K to 313 K) using a pycnometer, an Ostwald viscometer, and an ultrasonic interferometer at frequencies of 1MHz, respectively. Based on these measurements, other acoustic parameters were calculated, such as free length (Lr), internal pressure (πi), adiabatic compressibility (β), acoustic impedance (Z), relaxation time (τ), and Gibbs free energy (ΔG).

Result: These acoustic and thermodynamic parameters were used to explore various interactions, molecular motion, and interaction modes, as well as their effects, which were influenced by the size of the pure component and the mixtures. The analysis showed that changes in temperature and concentration led to specific parameter differences, which affected the interactions between the solute and solvent.

Conclusion: This study demonstrated that increasing the concentration of the mixture increased the density, viscosity, and ultrasonic velocity due to the interaction between the solute and solvent, indicating molecular interaction in the mixture.

[1]
Sumathi T, Anandhi S. Ultrasonic studies on some electrolytes in n, n, dimethylformamide+ water mixtures at 303k. Int J Phys Appl Sci 2015; 2(8): 7-20.
[2]
Das M, Das S, Pattanaik AK. Acoustical behaviour of sodium nitroprusside in aquo-organic solvent media at 308.15 k. J Chem 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/942430]
[3]
Panda S. Thermo-acoustic parameters of polymer dextran with aqueous sodium hydroxide: An ultrasonic study. Current Materials Science 2023; 16(2): 217-24.
[http://dx.doi.org/10.2174/2666145415666220817124330]
[4]
Naseem B, Mukhtar M, Arif I, Jamal MA. Effect of concentration and temperature on the interactions between saline soil salts and nitro phosphate fertilizer under atmospheric pressure: A thermo-acoustic approach. J Mol Liq 2017; 247: 151-63.
[http://dx.doi.org/10.1016/j.molliq.2017.09.064]
[5]
Zolkiflee NF, Affandi MMRMM, Majeed ABA. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis. J Mol Liq 2019; 279: 386-91.
[http://dx.doi.org/10.1016/j.molliq.2019.01.102]
[6]
Tiwari S, Kusmariya BS, Tiwari A, Pathak V, Mishra AP. Acoustical and viscometric studies of buspirone hydrochloride with cobalt(II) and copper(II) ions in aqueous medium. J Taibah Univ Sci 2017; 11(1): 101-9.
[http://dx.doi.org/10.1016/j.jtusci.2015.10.012]
[7]
Panda S. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions. Songklanakarin J Sci Technol 2022; 44(4): 1125-30.
[http://dx.doi.org/10.14456/sjst-psu.2022.146]
[8]
Syal VK, Patial BS, Chauhan S. Ultrasonic velocity, viscosity and density studies in binary mixtures of dimethyl formamide and ethylmethylketone at different temperatures. Indian J Pure Appl Phy 1999; 37(05): 366-70.
[9]
Riddick JA, Bunger WB, Sakano TK. Organic solvents: Physical properties and methods of purification.J Chromatographic Sci Wiley-Interscience. New York: John Wiley and Sons 1974; 12: p. (2)38A.
[10]
Patnaik P, Chakraborty N, Kaur P, Juglan KC, Kumar H. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures.Adv Funct Smart Mat. Springer, Singapore 2021; pp. 403-24.
[11]
Panda S. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies. Asia-Pac J Sci Technol 2022; 27(6): 1-7.
[http://dx.doi.org/10.14456/apst.2022.85]
[12]
Tiwari V, Pande R. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone +water solvent at temperatures 303.15 and 313.15K. Thermochim Acta 2006; 443(2): 206-11.
[http://dx.doi.org/10.1016/j.tca.2006.01.019]
[13]
Singh S, Talukdar M, Dash UN. Ultrasonic studies on paracetamol in aqueous solutions of sodium salicylate and nicotinamide. J Mol Liq 2018; 249: 815-24.
[http://dx.doi.org/10.1016/j.molliq.2017.11.099]
[14]
Dash UN, Mohanty BK. Partial molar and ultrasonic properties of benzoic and phenyl acetic acids in water and water+ alcohol mixtures. Phys Chem Liquids 1999; 37(4): 443-53.
[http://dx.doi.org/10.1080/00319109908031448]
[15]
Dash UN, Roy GS, Mohanty S. Ultrasonic studies on sodium thiosulphate and ammonium thiosulphate in water and water+ acetone mixtures. Indian J Chem Technol 2004; 11: 178-84.
[16]
Morey PB, Naik AB. Acoustic and thermodynamical studies of ternary mixture of 2-aminothiazole with acetonitrile in water at varying temperatures. Int J Sci Res 2013; 4.438.
[17]
Villaroel E, Agredo SJ, Petrier C, Taborda G, Palma TRA. Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrason Sonochem 2014; 21(5): 1763-9.
[http://dx.doi.org/10.1016/j.ultsonch.2014.04.002] [PMID: 24768106]
[18]
Ragamathunnisa M, Padmavathy R, Radha N. Ultrasonic and spectroscopic investigation of thiourea in non-aqueous media. Int J Curr Res Rev 2012; 4(23): 30.
[19]
Panda S. Ultrasonic study of novel polymer dextran in aqueous media at 12 mhz. Curr Microw Chem 2023; 10(2): 237-43.
[http://dx.doi.org/10.2174/2213335610666230810094605]
[20]
Kharat SJ. Density, viscosity, conductivity, ultrasonic velocity, and refractive index studies of aqueous solutions of citric acid at different temperatures. Int J Appl Chem 2008; 4(3): 223-36.
[21]
Bhat JI, Manjunatha MN, Varaprasad NS. Acoustic behaviour of citric acid in aqueous and partial aqueous media. Indian J Pure Appl Phy 2010; 48(12): 875-80.
[22]
Raj SJ, Subha V, Alwar SSB. Ultrasonic velocity studies of benzoic acid and substituted benzoic acids in aqueous mixed solvent systems. Rasayan J Chem 2022; 14(4): 2622-6.
[http://dx.doi.org/10.31788/RJC.2021.1445767]
[23]
Dhok S, Khobragade VB, Sawalakhe P, Narwade ML. Ultrasonic studies on interaction of benzoic acid, salicylic acid and 4 –hydroxy benzoic acid in water-dioxane and water-dmf mixtures at 303.15 k. Scient Rev Chem Commun 2012; 2: 532-9.
[24]
Praharaj MK, Satapathy A, Mishra PR, Mishra S. Study of acoustical and thermodynamic properties of aqueous solution of NaCl at different concentrations and temperatures through ultrasonic technique. Arch Appl Sci Res 2012; 4(2): 837-45.
[25]
Panda S. Analysis of aqueous dextran: An ultrasonic study. Curr Microw Chem 2022; 9(1): 30-6.
[http://dx.doi.org/10.2174/2213335609666220324144409]
[26]
Beebi S, Nayeem SM, Rambabu C. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K. J Therm Anal Calorim 2019; 135(6): 3387-99.
[http://dx.doi.org/10.1007/s10973-018-7574-3]
[27]
Kaur K, Kumar H. Viscometric measurements of l-serine with antibacterial drugs ampicillin and amoxicillin at different temperatures: (305.15 to 315.15) K. J Mol Liq 2013; 177: 49-53.
[http://dx.doi.org/10.1016/j.molliq.2012.09.016]
[28]
Panda S. Thermoacoustical analysis of polymer dextran at different frequencies subhraraj panda. Bulgarian J Phys 2022; 49(2): 136144.
[http://dx.doi.org/10.55318/bgjp.2022.49.2.136]
[29]
Jyothirmai G, Nayeem SM, Khan I, Anjaneyulu C. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). J Therm Anal Calorim 2018; 132(1): 693-707.
[http://dx.doi.org/10.1007/s10973-017-6926-8]
[30]
Thirumaran S, Sabu K. Ultrasonic investigation of amino acids in aqueous sodium acetate medium. Indian J Pure Appl Phy 2009; (47): 87-96.
[31]
Panda S. Molecular interaction study of binary liquid solution using ultrasonic technique. Recent Innov Chem Eng 2022; 15(2): 138-46.
[http://dx.doi.org/10.2174/2405520415666220707142909]
[32]
Ali A, Akhtar Y, Hyder S. Ultrasonic and volumetric studies of glycine in aqueous electrolytic solutions. J Pure Appl Ultrasonics 2003; 25(1): 13-8.
[33]
Patil KC, Dudhe CM. Acoustical and viscometric studies of Gentamicin sulphate in aqueous medium. Pharma Chem 2016; 8(20): 227-33.
[34]
Kaur M, Pathania V, Vermani BK, Anand V, Gill DS. Ultrasonic velocity and thermoacoustic parameters for copper(i) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 k. Curr Phys Chem 2022; 12(2): 136-58.
[http://dx.doi.org/10.2174/1877946812666220331122201]
[35]
Panda S. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters. Indian J Pharm Ed Res 2020; 54(3): 630-6.
[http://dx.doi.org/10.5530/ijper.54.3.112]
[36]
Ramana SM, Amiithaganesan G. Ultrasonic study of intermolecular association through hydrogen bonding in aqueous solutions of D-mannitol. Indian J Phys 2004; 78(12): 13-29.
[37]
Reddy SM, Nayeem SM, Raju KTSS, Babu HB. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J Therm Anal Calorim 2016; 124(2): 959-71.
[http://dx.doi.org/10.1007/s10973-015-5205-9]
[38]
Panda S, Mahapatra AP. Intermolecular interaction of dextran with urea. Int J Innov Technol Explor Eng 2019; 8(11): 742-8.
[http://dx.doi.org/10.35940/ijitee.K1445.0981119]
[39]
Dash UN, Roy GS, Talukdar M, Moharatha D. Acoustic and viscosity studies of alkali metals and ammonium halides in aqueous dextran solutions at four different temperatures. Indian J Pure Appl Phy 2010; 48: 651-7.
[40]
Nithiyanantham S, Palaniappan L. Ultrasonic study on some monosaccharides in aqueous media at 298.15K. Arab J Chem 2012; 5(1): 25-30.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.018]
[41]
Wankhade S, Kene S. Molecular interaction study in binary liquid solution using ultrasonic technique. Sci Revs Chem Commun 2012; 2(3): 355-60.
[42]
Aswale SS, Aswale SR, Hajare RS. Adiabatic compressibility, intermolecular free length and acoustic relaxation time of aqueous antibiotic cefotaxime sodium. J Chem Pharm Res 2012; 4(5): 2671-7.
[43]
Panda S, Mahapatra AP. Molecular interaction of dextran with urea through ultrasonic technique. Clay Res 2019; 38(1): 35-42.
[44]
Sastry NV, George J. Thermophysical properties of nonelectrolyte mixtures. Densities, viscosities, and sound speeds of binary mixtures of methyl methacrylate+ branched alcohols (propan-2-ol, 2-methylpropan-1-ol, butan-2-ol, and 2-methylpropan-2-ol) at T= 298.15 and 308.15 K. Int J Thermophys 2003; 24(4): 1089-104.
[http://dx.doi.org/10.1023/A:1025061103289]
[45]
Panda S, Mahapatra AP. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies. World J Pharma Life Sci 2018; 4(12): 76-82.
[46]
Singh G, Patyar P, Kaur T, Kaur G. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures. J Mol Liq 2016; 222: 804-17.
[http://dx.doi.org/10.1016/j.molliq.2016.07.042]
[47]
Godhani DR, Dobariya PB, Sanghani AM, Mehta JP. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure. Arab J Chem 2017; 10: S422-30.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.002]
[48]
Nithiyanantham S, Palaniappan L. Ultrasonic study of adsorption in disaccharide (maltose) metabolism. Appl Acoust 2010; 71(8): 754-8.
[http://dx.doi.org/10.1016/j.apacoust.2010.03.007]
[49]
Pal A, Kumar H, Kumar B, Gaba R. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures. J Mol Liq 2013; 187: 278-86.
[http://dx.doi.org/10.1016/j.molliq.2013.08.009]
[50]
Rajendran V. Excess enthalpies of some ternary liquid mixtures. Indian J Pure Appl Phy 1994; 32: 19.
[51]
Panda S, Mahapatra AP. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency. Arch Phys Res 2015; 6(1): 6-12.
[52]
Kanhekar SR, Pawar P, Bichile GK. Thermodynamic properties of electrolytes in aqueous solution of glycine at different temperatures. Ind J Pure Appl Phys 2010; (48): 95-9.
[53]
Akhtar Y, Ibrahim SF. Ultrasonic and thermodynamic studies of glycine in aqueous electrolytes solutions at 303K. Arab J Chem 2011; 4(4): 487-90.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.009]
[54]
Panda S, Mohapatra AP. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique. Int Symp Ultrasonics Vol. 503508
[55]
Richards TW. A brief history of the investigation of internal pressures. Chem Rev 1925; 2(3): 315-48.
[http://dx.doi.org/10.1021/cr60007a002]
[56]
Hill TL. Free-volume models for liquids. J Phys Colloid Chem 1947; 51(6): 1219-32.
[http://dx.doi.org/10.1021/j150456a001] [PMID: 20269033]
[57]
Awasthi A, Awasthi A. Intermolecular interactions in formamide+2-alkoxyethanols: Viscometric study. Thermochim Acta 2012; 537: 57-64.
[http://dx.doi.org/10.1016/j.tca.2012.03.001]
[58]
Panda S, Mahapatra AP. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations. Int J Pure Appl Phys 2016; 12(1): 71-9.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy