Abstract
The Nazarov reaction involves the cyclization of divinyl ketones into cyclopentenones under the influence of strong acids. The prevalence of five-membered carbocycles in a multitude of natural and bioactive products has triggered an intense development of efficient methods for their construction. In particular, asymmetric versions of the Nazarov reaction are achieved by using either a chiral auxiliary or a chiral catalyst, which can be an organocatalyst, a metal catalyst, or a multicatalytic system. This review aims to update the field of asymmetric Nazarov reactions published since 2017. It is divided into four sections, dealing successively with Nazarov reactions of chiral auxiliaries, organocatalytic enantioselective Nazarov reactions, metal/boron-catalyzed enantioselective Nazarov reactions, and multicatalytic enantioselective Nazarov reactions. Each section of the review is subdivided into simple asymmetric Nazarov reactions and Nazarov-based domino/tandem reactions, which have allowed numerous more complex functionalized chiral molecules to be synthesized in one-pot procedures.
Graphical Abstract
[http://dx.doi.org/10.1021/cr500504w] [PMID: 27101336]
b) Shoppee, C.W.; Lack, R.E. Intramolecular electrocyclic reactions. Part I. Structure of ‘bromohydroxyphorone’: 3-bromo-5-hydroxy-4, 4, 5, 5-tetramethylcyclopent-2-enone. J. Chem. Soc. C Org., 1969, 10, 1346-1349.;
c) Shoppee, C.W.; Cooke, B.J.A. Intramolecular electrocyclic reactions. Part II. Reactions of 1,5-di-phenylpenta-1,4-dien-3-one. J. Chem. Soc. Perkin Trans., 1972, I, 2271-2276.
[http://dx.doi.org/10.1039/p19720002271];
d) Shoppee, C.W.; Cooke, B.J.A. Electrocyclic reactions. Part III. Some reactions of 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one (αα′-dimethyldibenzylideneacetone). J. Chem. Soc., Perkin Trans. 1, 1973, I(0), 1026-1030.
[http://dx.doi.org/10.1039/P19730001026]
[http://dx.doi.org/10.1039/C7OB01981E] [PMID: 28960012]
[http://dx.doi.org/10.1055/s-1983-30367];
b) Denmark, S.E. Comprehensive Organic Synthesis; 2nd ed.; Paquette, L.A., Ed.; Elsevier: Oxford, 2014. Vol. 5, pp. Elsevier: Oxford, 1991, Vol. 5, pp. 751-784.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00138-4];
c) Habermas, K.L.; Denmark, S.E. The Nazarov cyclization. Org. React., 1994, 45(11971), 1-158.;
d) Pellissier, H. Recent developments in the Nazarov process. Tetrahedron, 2005, 61(27), 6479-6517.
[http://dx.doi.org/10.1016/j.tet.2005.04.014];
e) Grant, T.N.; Rieder, C.J.; West, F.G. Interrupting the Nazarov reaction: Domino and cascade processes utilizing cyclopentenyl cations. Chem. Commun., 2009, (38), 5676-5688.
[http://dx.doi.org/10.1039/b908515g] [PMID: 19774236];
f) Shimada, N.; Stewart, C.; Tius, M.A. Asymmetric Nazarov cyclizations. Tetrahedron, 2011, 67(33), 5851-5870.
[http://dx.doi.org/10.1016/j.tet.2011.05.062] [PMID: 21857751];
g) Vaidya, T.; Eisenberg, R.; Frontier, A.J. Catalytic Nazarov cyclization: The state of the art. ChemCatChem, 2011, 3(10), 1531-1548.
[http://dx.doi.org/10.1002/cctc.201100137];
h) Grandi, D.M.J. Nazarov-like cyclization reactions. Org. Biomol. Chem., 2014, 12(29), 5331-5345.
[http://dx.doi.org/10.1039/C4OB00804A] [PMID: 24947937];
i) Tius, M.A. Allene ether Nazarov cyclization. Chem. Soc. Rev., 2014, 43(9), 2979-3002.
[http://dx.doi.org/10.1039/C3CS60333D] [PMID: 24196585];
j) Wenz, D.R.; Read de Alaniz, J. The Nazarov cyclization: A valuable method to synthesize fully substituted carbon stereocenters. Eur. J. Org. Chem., 2015, 2015(1), 23-37.
[http://dx.doi.org/10.1002/ejoc.201402825]
[http://dx.doi.org/10.1039/C8RA03480J] [PMID: 35541103]
[http://dx.doi.org/10.1002/adsc.201901001]
[http://dx.doi.org/10.1039/D1OB00744K] [PMID: 34060570]
[http://dx.doi.org/10.1039/D0QO01643H]
[http://dx.doi.org/10.1055/s-1999-2912]
[http://dx.doi.org/10.1002/chem.201701008] [PMID: 28345780]
[http://dx.doi.org/10.1021/acs.joc.7b00082] [PMID: 28511015]
[http://dx.doi.org/10.1039/C8SC00031J] [PMID: 29899958]
[http://dx.doi.org/10.1055/s-0036-1591747]
[http://dx.doi.org/10.1002/ajoc.201600471]
[http://dx.doi.org/10.1002/ejoc.202200828]
[http://dx.doi.org/10.1055/a-1983-2140]
[http://dx.doi.org/10.1002/anie.202001350] [PMID: 32052528]
[http://dx.doi.org/10.1002/anie.199301313];
b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
b) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2016, 358, 2194-2259.;
c) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; , 2016, p. 1-2.;
d) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361, 1733-1755.;
e) Pellissier, H. Asymmetric Metal Catalysis in Enantioselective Domino Reactions; John Wiley & Sons, 2019. ;
f) Westphal, R.; Filho, E.V.; Medici, F.; Benaglia, M.; Greco, S.J. Stereoselective domino reactions in the synthesis of spiro compounds. Synthesis, 2022, 54, 2927-2975.;
g) Pellissier, H. Recent developments in enantioselective domino reactions. part A: Noble metal catalysts. Adv. Synth. Catal., 2023, 365, 620.;
h) Pellissier, H. Recent developments in enantioselective domino reactions. part B: First row metal catalysts. Adv. Synth. Catal., 2023, 365, 768-819.
b) Zuev, D.; Paquette, L.A.; Browder, C.C.; Giese, S.; West, F.G.; Wang, Y.; Arif, A.M. First examples of the interrupted Nazarov reaction. Chemtracts, 1999, 12, 1019-1025.
[http://dx.doi.org/10.1039/C7SC02625K] [PMID: 28989693]
[http://dx.doi.org/10.1002/anie.201813090] [PMID: 30575244]
[http://dx.doi.org/10.1039/C9SC02828E] [PMID: 31857887]
[http://dx.doi.org/10.1021/jacs.9b12034] [PMID: 31801344]
[http://dx.doi.org/10.1021/acs.orglett.9b02107] [PMID: 31398044]
[http://dx.doi.org/10.1246/cl.190763]
[http://dx.doi.org/10.1021/acs.orglett.0c01330] [PMID: 32352794]
[http://dx.doi.org/10.1021/jacs.0c00308] [PMID: 32093468];
b) Gao, K.; Hu, J.; Ding, H. Tetracyclic diterpenoid synthesis facilitated by odi-cascade approaches to bicyclo[3.2.1]octane skeletons. Acc. Chem. Res., 2021, 54(4), 875-889.
[http://dx.doi.org/10.1021/acs.accounts.0c00798] [PMID: 33508196]
[http://dx.doi.org/10.1021/jacs.2c07150] [PMID: 35985036]
[http://dx.doi.org/10.1021/jacs.3c01262] [PMID: 36926847]
b) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747];
c) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446];
d) Pellissier, H. Enantioselective silver-catalyzed transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274];
e) Pellissier, H. Enantioselective magnesium-catalyzed transformations. Org. Biomol. Chem., 2017, 15(22), 4750-4782.
[http://dx.doi.org/10.1039/C7OB00903H] [PMID: 28513750];
f) Pellissier, H. Recent developments in enantioselective cobalt-catalyzed transformations. Coord. Chem. Rev., 2018, 360, 122-168.
[http://dx.doi.org/10.1016/j.ccr.2018.01.013];
g) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2020, 418, 213395.;
h) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2021, 284, 93-110.
[http://dx.doi.org/10.1055/a-1348-9122];
i) Pellissier, H. Recent developments in enantioselective zinc-catalyzed transformations. Coord. Chem. Rev., 2021, 439, 213926.
[http://dx.doi.org/10.1016/j.ccr.2021.213926];
j) Pellissier, H. Recent developments in enantioselective titanium-catalyzed transformations. Coord. Chem. Rev., 2022, 463, 214537.
[http://dx.doi.org/10.1016/j.ccr.2022.214537];
k) Pellissier, H. Recent developments in enantioselective nickel(II)-catalyzed conjugate additions. Org. Chem. Front., 2022, 9(23), 6717-6748.
[http://dx.doi.org/10.1039/D2QO01047J]
b) Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev., 2007, 107, 5471-5569.;
c) Dondoni, A.; Massi, A.; Hoffmann, S.; List, B. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int., 2008, 47, 4638-4660.;
d) Pellissier, H. Recent Developments in Asymmetric Organocatalysis; Royal Society of Chemistry: Cambridge, 2010. ;
e) Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114, 2390-2431.;
f) Tian, L.; Luo, Y.C.; Hu, X.Q.; Xu, P.F. Recent developments in the synthesis of chiral compounds with quaternary centers by organocatalytic cascade reactions. Asian J. Org. Chem., 2016, 5, 580-607.;
g) Chanda, T.; Zhao, J.C.G. Recent progress in organocatalytic asymmetric domino transformations. Adv. Synth. Catal., 2018, 360, 2-79.;
h) Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine organocatalysis. Chem. Rev., 2018, 118, 10049-10293.;
i) Sahoo, B.M.; Banik, B.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry. Current Organocatal., 2019, 6, 92-105.
[http://dx.doi.org/10.1002/anie.200604809] [PMID: 17278163]
[http://dx.doi.org/10.1002/ejoc.201701117]
[http://dx.doi.org/10.1021/jacs.8b02339] [PMID: 29631393]
[http://dx.doi.org/10.1021/jacs.8b13899] [PMID: 30768254]
[http://dx.doi.org/10.1002/adsc.201701521]
[http://dx.doi.org/10.1039/C8QO00014J]
[http://dx.doi.org/10.1039/C8OB01427B] [PMID: 30022181]
[http://dx.doi.org/10.1021/ol036019z] [PMID: 14682732]
[http://dx.doi.org/10.1021/ol036133h] [PMID: 14682768]
[http://dx.doi.org/10.1002/anie.201806011] [PMID: 29978948]
[http://dx.doi.org/10.1002/adsc.201701546]
[http://dx.doi.org/10.3390/molecules26071822] [PMID: 33804954]
[http://dx.doi.org/10.1021/jacs.9b01352] [PMID: 30839201]
[http://dx.doi.org/10.1039/D3OB00735A] [PMID: 37265330]
[http://dx.doi.org/10.1039/C8QO00279G]
[http://dx.doi.org/10.1021/acs.orglett.8b01597] [PMID: 29923736]
[http://dx.doi.org/10.1021/jacs.0c02441] [PMID: 32142272]
[http://dx.doi.org/10.1002/anie.202207406] [PMID: 35785510]
[http://dx.doi.org/10.1039/D3QO00558E]
[http://dx.doi.org/10.1016/j.tet.2013.06.020];
b) Pellissier, H. Enantioselective Multicatalysed Tandem Reactions; Royal Society of Chemistry: Cambridge, 2014.
[http://dx.doi.org/10.1039/9781782621355];
c) Lohr, T.L.; Marks, T.J. Orthogonal tandem catalysis. Nat. Chem., 2015, 7(6), 477-482.
[http://dx.doi.org/10.1038/nchem.2262] [PMID: 25991525];
d) Zhou, J. Multicatalyst System in Asymmetric Catalysis; Wiley: Weinheim, 2015. ;
e) Afewerki, S.; Córdova, A. Combinations of aminocatalysts and metal catalysts: A powerful cooperative approach in selective organic synthesis. Chem. Rev., 2016, 116(22), 13512-13570.
[http://dx.doi.org/10.1021/acs.chemrev.6b00226] [PMID: 27723291];
f) Pellissier, H. Recent developments in enantioselective multicatalyzed tandem reactions. Adv. Synth. Catal., 2020, 362(12), 2289-2325.
[http://dx.doi.org/10.1002/adsc.202000210]
[http://dx.doi.org/10.1039/C7SC03183A] [PMID: 29081952]
[http://dx.doi.org/10.1021/ja00373a055];
b) Jones, T.K.; Denmark, S.E. Silicon‐directed Nazarov reactions II. Preparation and cyclization of β‐silyl‐substituted divinyl ketones. Helv. Chim. Acta, 1983, 66(8), 2377-2396.
[http://dx.doi.org/10.1002/hlca.19830660802];
c) Jones, T.K.; Denmark, S.E. Silicon‐directed Nazarov reactions III. stereochemical and mechanistic considerations. Helv. Chim. Acta, 1983, 66(8), 2397-2411.
[http://dx.doi.org/10.1002/hlca.19830660803];
d) Denmark, S.E.; Klix, R.C. Silicon-directed Nazarov cyclizations VII. Tetrahedron, 1988, 44(13), 4043-4060.
[http://dx.doi.org/10.1016/S0040-4020(01)86655-2];
e) Denmark, S.E.; Wallace, M.A.; Walker, C.B., Jr Silicon-directed Nazarov cyclizations. 8. Stereoelectronic control of torquoselectivity. J. Org. Chem., 1990, 55(21), 5543-5545.
[http://dx.doi.org/10.1021/jo00308a001]
b) Cao, J.; Zhu, S.F. Chiral proton-transfer shuttle catalysts promoted enantioselective Nazarov cyclization. Synlett, 2023, 34, 29-39.
[http://dx.doi.org/10.1002/adsc.202000831] [PMID: 33162875]
[http://dx.doi.org/10.1002/adsc.201801178]
[http://dx.doi.org/10.1038/s41467-022-30846-y] [PMID: 35672319]
[http://dx.doi.org/10.1002/chem.201505002] [PMID: 26879884]
[http://dx.doi.org/10.1021/acs.orglett.8b02426] [PMID: 30160123]