Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Practical Perspectives and Roles of XRD in Drug Discovery: A Review

Author(s): Ashish Mehta, Rahul Makhija, Pallavi Barik, Shubham Dhiman, Ghanshyam Das Gupta and Vivek Asati*

Volume 20, Issue 7, 2024

Published on: 03 April, 2024

Page: [449 - 470] Pages: 22

DOI: 10.2174/0115734110296435240323113938

Price: $65

Abstract

Biophysical techniques include various methodologies applied in studying biological systems at the molecular and cellular level for the drug discovery process. Various methods like isothermal calorimetry, electron microscopy, XRD (X-ray diffraction), electron microscopy, mass spectrometry, atomic force microscopy, differential scanning calorimetry, surface plasmon resonance, and nuclear magnetic resonance are important techniques for drug discovery. Out of these techniques, XRD is widely employed in structure-based drug discovery, whereas FBDD (fragment-based drug discovery) is widely used in the different phases of drug discovery. XRD was considered one of the most important tools for structure determination of biomolecules and peptides. Consistent development and advancement in XRD improved the various aspects of data processing, collection, sample loading, and increased throughput. This advancement is crucial in obtaining highly resolved protein and other biomolecule crystal structures. The structure obtained from XRD forms the core of structure-based drug discovery and FBDD. This review article focuses on the different roles of biophysical techniques with special emphasis on advancement, data collection, and XRD's role in different drug discovery phases.

Next »
Graphical Abstract

[1]
Berdigaliyev, N.; Aljofan, M. An overview of drug discovery and development. Future Med. Chem., 2020, 12(10), 939-947.
[http://dx.doi.org/10.4155/fmc-2019-0307] [PMID: 32270704]
[2]
Woolf, A.D. Sulfanilamide (diethylene glycol) disaster—United States. In: in History of Modern Clinical Toxicology; Elsevier, 2022; pp. 139-148.
[3]
Vargesson, N.; Stephens, T. Thalidomide: History, withdrawal, renaissance, and safety concerns. Expert Opin. Drug Saf., 2021, 20(12), 1455-1457.
[http://dx.doi.org/10.1080/14740338.2021.1991307] [PMID: 34623196]
[4]
Darrow, J.J.; Avorn, J.; Kesselheim, A.S. FDA approval and regulation of pharmaceuticals, 1983-2018. JAMA, 2020, 323(2), 164-176.
[http://dx.doi.org/10.1001/jama.2019.20288] [PMID: 31935033]
[5]
Annett, S. Pharmaceutical drug development: High drug prices and the hidden role of public funding. Biologia Futura, 2021, 72(2), 129-138.
[http://dx.doi.org/10.1007/s42977-020-00025-5] [PMID: 34554467]
[6]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[7]
Khan, H.; Yerramilli, A.S.; D’Oliveira, A.; Alford, T.L.; Boffito, D.C.; Patience, G.S. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy— XRD. Can. J. Chem. Eng., 2020, 98(6), 1255-1266.
[http://dx.doi.org/10.1002/cjce.23747]
[8]
Rodríguez, I.; Gautam, R.; Tinoco, A.D. Using x-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics, 2020, 6(1), 1.
[http://dx.doi.org/10.3390/biomimetics6010001] [PMID: 33396786]
[9]
Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 2022, 12(2), 205.
[http://dx.doi.org/10.3390/min12020205]
[10]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Feng, Z.; Flatt, J.W.; Ganesan, S.J.; Ghosh, S.; Goodsell, D.S.; Green, R.K.; Guranovic, V.; Henry, J.; Hudson, B.P.; Khokhriakov, I.; Lawson, C.L.; Liang, Y.; Lowe, R.; Peisach, E.; Persikova, I.; Piehl, D.W.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Vallat, B.; Voigt, M.; Webb, B.; Westbrook, J.D.; Whetstone, S.; Young, J.Y.; Zalevsky, A.; Zardecki, C. RCSB Protein data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci., 2022, 31(12), e4482.
[http://dx.doi.org/10.1002/pro.4482] [PMID: 36281733]
[11]
Wang, H.; Xie, Y.; Li, D.; Deng, H.; Zhao, Y.; Xin, M.; Lin, J. Rapid identification of X-ray diffraction patterns based on very limited data by interpretable convolutional neural networks. J. Chem. Inf. Model., 2020, 60(4), 2004-2011.
[http://dx.doi.org/10.1021/acs.jcim.0c00020] [PMID: 32208721]
[12]
Harlow, G.S.; Lundgren, E.; Escudero-Escribano, M. Recent advances in surface x-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Curr. Opin. Electrochem., 2020, 23, 162-173.
[http://dx.doi.org/10.1016/j.coelec.2020.08.005]
[13]
Bijak, V.; Szczygiel, M.; Lenkiewicz, J.; Gucwa, M.; Cooper, D.R.; Murzyn, K.; Minor, W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin. Drug Discov., 2023, 18(11), 1221-1230.
[http://dx.doi.org/10.1080/17460441.2023.2246881] [PMID: 37592849]
[14]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[15]
Konteatis, Z. What makes a good fragment in fragment-based drug discovery? Expert Opin. Drug Discov., 2021, 16(7), 723-726.
[http://dx.doi.org/10.1080/17460441.2021.1905629] [PMID: 33769176]
[16]
Jhoti, H.; Cleasby, A.; Verdonk, M.; Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol., 2007, 11(5), 485-493.
[http://dx.doi.org/10.1016/j.cbpa.2007.07.010] [PMID: 17851109]
[17]
Mazzorana, M.; Shotton, E.J.; Hall, D.R. A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility — The example of Diamond Light Source. Drug Discov. Today. Technol., 2020, 37, 83-92.
[http://dx.doi.org/10.1016/j.ddtec.2020.10.003] [PMID: 34895658]
[18]
Thomas, S.E.; Collins, P.; James, R.H.; Mendes, V.; Charoensutthivarakul, S.; Radoux, C.; Abell, C.; Coyne, A.G.; Floto, R.A.; von Delft, F.; Blundell, T.L. Structure-guided fragment-based drug discovery at the synchrotron: screening binding sites and correlations with hotspot mapping. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2019, 377(2147), 20180422.
[http://dx.doi.org/10.1098/rsta.2018.0422] [PMID: 31030650]
[19]
Liebeschuetz, J.W. The good, the bad, and the twisted revisited: An analysis of ligand geometry in highly resolved protein–ligand X-ray structures. J. Med. Chem., 2021, 64(11), 7533-7543.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00228] [PMID: 34060310]
[20]
Smart, O.S.; Horský, V.; Gore, S.; Svobodová Vařeková, R.; Bendová, V.; Kleywegt, G.J.; Velankar, S. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr. D Struct. Biol., 2018, 74(3), 228-236.
[http://dx.doi.org/10.1107/S2059798318002541] [PMID: 29533230]
[21]
Bernetti, M.; Cavalli, A.; Mollica, L. Protein–ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MedChemComm, 2017, 8(3), 534-550.
[http://dx.doi.org/10.1039/C6MD00581K] [PMID: 30108770]
[22]
Smyth, M.S.; Martin, J.H. x Ray crystallography. Mol. Pathol., 2000, 53(1), 8-14.
[http://dx.doi.org/10.1136/mp.53.1.8] [PMID: 10884915]
[23]
Drenth, J. Principles of protein X-ray crystallography; Springer Science & Business Media, 2007.
[24]
Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In: in Materials characterization using nondestructive evaluation (NDE) methods; Elsevier, 2016; pp. 81-124.
[25]
Rondeau, J-M.; Schreuder, H. Protein crystallography and drug discovery.The practice of medicinal chemistry; Elsevier, 2008, pp. 605-634.
[http://dx.doi.org/10.1016/B978-0-12-374194-3.00030-5]
[26]
Sequeira, M.P.F. X-ray Diffraction: Principle and Applications., 2022. Available from: https://web.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf
[27]
Woolfson, M.M. The development of structural x-ray crystallography. Phys. Scr., 2018, 93(3), 032501.
[http://dx.doi.org/10.1088/1402-4896/aa9c30]
[28]
Zheng, H.; Hou, J.; Zimmerman, M.D.; Wlodawer, A.; Minor, W. The future of crystallography in drug discovery. Expert Opin. Drug Discov., 2014, 9(2), 125-137.
[http://dx.doi.org/10.1517/17460441.2014.872623] [PMID: 24372145]
[29]
Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In: Methods in enzymology; Elsevier, 1997; pp. 307-326.
[30]
Ferreira, L.G.; Oliva, G.; Andricopulo, A.D. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med. Chem., 2015, 7(6), 753-764.
[http://dx.doi.org/10.4155/fmc.15.21] [PMID: 25996068]
[31]
Meng, X.; Cui, L.; Song, F.; Luan, M.; Ji, J.; Si, H.; Duan, Y.; Zhai, H. 3D-QSAR and molecular docking studies on design anti-prostate cancer curcumin analogues. Curr. Computeraided Drug Des., 2020, 16(3), 245-256.
[http://dx.doi.org/10.2174/18756697OTQwcNzA3TcVY] [PMID: 30370853]
[32]
Yu, Y.; Guo, J.; Cai, Z.; Ju, Y.; Xu, J.; Gu, Q.; Zhou, H. Identification of new building blocks by fragment screening for discovering GyrB inhibitors. Bioorg. Chem., 2021, 114, 105040.
[http://dx.doi.org/10.1016/j.bioorg.2021.105040] [PMID: 34098257]
[33]
Ng, P.S.; Foo, K.; Sim, S.; Wang, G.; Huang, C.; Tan, L.H.; Poulsen, A.; Liu, B.; Tee, D.H.Y.; Ahmad, N.H.B.; Wang, S.; Ke, Z.; Lee, M.A.; Kwek, Z.P.; Joy, J.; Anantharajan, J.; Baburajendran, N.; Pendharkar, V.; Manoharan, V.; Vuddagiri, S.; Sangthongpitag, K.; Hill, J.; Keller, T.H.; Hung, A.W. Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg. Med. Chem., 2021, 49, 116437.
[http://dx.doi.org/10.1016/j.bmc.2021.116437] [PMID: 34600239]
[34]
Chen, D.; Chen, Y.; Lian, F.; Chen, L.; Li, Y.; Cao, D.; Wang, X.; Chen, L.; Li, J.; Meng, T.; Huang, M.; Geng, M.; Shen, J.; Zhang, N.; Xiong, B. Fragment-based drug discovery of triazole inhibitors to block PDEδ-RAS protein-protein interaction. Eur. J. Med. Chem., 2019, 163, 597-609.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.018] [PMID: 30562696]
[35]
Tawada, M.; Suzuki, S.; Imaeda, Y.; Oki, H.; Snell, G.; Behnke, C.A.; Kondo, M.; Tarui, N.; Tanaka, T.; Kuroita, T.; Tomimoto, M. Novel approach of fragment-based lead discovery applied to renin inhibitors. Bioorg. Med. Chem., 2016, 24(22), 6066-6074.
[http://dx.doi.org/10.1016/j.bmc.2016.09.065] [PMID: 27720325]
[36]
Caburet, J.; Boucherle, B.; Bourdillon, S.; Simoncelli, G.; Verdirosa, F.; Docquier, J.D.; Moreau, Y.; Krimm, I.; Crouzy, S.; Peuchmaur, M. A fragment-based drug discovery strategy applied to the identification of NDM-1 β-lactamase inhibitors. Eur. J. Med. Chem., 2022, 240, 114599.
[http://dx.doi.org/10.1016/j.ejmech.2022.114599] [PMID: 35841882]
[37]
Prevet, H.; Moune, M.; Tanina, A.; Kemmer, C.; Herledan, A.; Frita, R.; Wohlkönig, A.; Bourotte, M.; Villemagne, B.; Leroux, F.; Gitzinger, M.; Baulard, A.R.; Déprez, B.; Wintjens, R.; Willand, N.; Flipo, M. A fragment-based approach towards the discovery of N-substituted tropinones as inhibitors of Mycobacterium tuberculosis transcriptional regulator EthR2. Eur. J. Med. Chem., 2019, 167, 426-438.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.023] [PMID: 30784877]
[38]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[39]
Hassan, M.; van Klaveren, S.; Håkansson, M.; Diehl, C.; Kovačič, R.; Baussière, F.; Sundin, A.P.; Dernovšek, J.; Walse, B.; Zetterberg, F.; Leffler, H.; Anderluh, M.; Tomašič, T.; Jakopin, Ž.; Nilsson, U.J. Benzimidazole–galactosides bind selectively to the Galectin-8 N-Terminal domain: Structure-based design and optimisation. Eur. J. Med. Chem., 2021, 223, 113664.
[http://dx.doi.org/10.1016/j.ejmech.2021.113664] [PMID: 34225180]
[40]
Zhou, D.; Xu, Z.; Huang, Y.; Wang, H.; Zhu, X.; Zhang, W.; Song, W.; Gao, T.; Liu, T.; Wang, M.; Shi, L.; Zhang, N.; Xiong, B. Structure-based discovery of potent USP28 inhibitors derived from Vismodegib. Eur. J. Med. Chem., 2023, 254, 115369.
[http://dx.doi.org/10.1016/j.ejmech.2023.115369] [PMID: 37075624]
[41]
Xiong, Y.; Cheng, F.; Zhang, J.; Su, H.; Hu, H.; Zou, Y.; Li, M.; Xu, Y. Structure-based design of a novel inhibitor of the ZIKA virus NS2B/NS3 protease. Bioorg. Chem., 2022, 128, 106109.
[http://dx.doi.org/10.1016/j.bioorg.2022.106109] [PMID: 36049322]
[42]
Ho, J.D.; Lee, M.R.; Rauch, C.T.; Aznavour, K.; Park, J.S.; Luz, J.G.; Antonysamy, S.; Condon, B.; Maletic, M.; Zhang, A.; Hickey, M.J.; Hughes, N.E.; Chandrasekhar, S.; Sloan, A.V.; Gooding, K.; Harvey, A.; Yu, X.P.; Kahl, S.D.; Norman, B.H. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(2), 129800.
[http://dx.doi.org/10.1016/j.bbagen.2020.129800] [PMID: 33246032]
[43]
Jernigan, R.J. Room-temperature structural studies of SARS-CoV-2 protein NendoU with an X-ray free-electron laser. Structure, 2023, 31(2), 138-151.
[44]
Kashyap, A.; Singh, P.K.; Silakari, O. Counting on fragment based drug design approach for drug discovery. Curr. Top. Med. Chem., 2019, 18(27), 2284-2293.
[http://dx.doi.org/10.2174/1568026619666181130134250] [PMID: 30499406]
[45]
Wakatsuki, S. Structural biology applications of synchrotron radiation and X-ray free-electron lasers. In: Accelerator Physics, Instrumentation and Science Applications; Springer, 2020; pp. 1673-1716.
[http://dx.doi.org/10.1007/978-3-030-23201-6_44]
[46]
Su, X.D.; Zhang, H.; Terwilliger, T.C.; Liljas, A.; Xiao, J.; Dong, Y. Protein crystallography from the perspective of technology developments. Crystallogr. Rev., 2015, 21(1-2), 122-153.
[http://dx.doi.org/10.1080/0889311X.2014.973868] [PMID: 25983389]
[47]
Ceska, T.; Chung, C.W.; Cooke, R.; Phillips, C.; Williams, P.A. Cryo-EM in drug discovery. Biochem. Soc. Trans., 2019, 47(1), 281-293.
[http://dx.doi.org/10.1042/BST20180267] [PMID: 30647139]
[48]
Van Drie, J.H.; Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett., 2020, 30(22), 127524.
[http://dx.doi.org/10.1016/j.bmcl.2020.127524] [PMID: 32890683]
[49]
Subramaniam, S.; Earl, L.A.; Falconieri, V.; Milne, J.L.S.; Egelman, E.H. Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol., 2016, 41, 194-202.
[http://dx.doi.org/10.1016/j.sbi.2016.07.009] [PMID: 27552081]
[50]
Wang, H.W.; Wang, J.W. How cryo‐electron microscopy and X‐ray crystallography complement each other. Protein Sci., 2017, 26(1), 32-39.
[http://dx.doi.org/10.1002/pro.3022] [PMID: 27543495]
[51]
Zhu, L.; Chen, X.; Abola, E.E.; Jing, L.; Liu, W. Serial crystallography for structure-based drug discovery. Trends Pharmacol. Sci., 2020, 41(11), 830-839.
[http://dx.doi.org/10.1016/j.tips.2020.08.009] [PMID: 32950259]
[52]
Erickson, J.W.; Fesik, S.W. Macromolecular X-ray crystallography and NMR as tools for structure-based drug design. In: Annual Reports in Medicinal Chemistry; Elsevier, 1992; pp. 271-289.
[53]
Maveyraud, L.; Mourey, L. Protein X-ray crystallography and drug discovery. Molecules, 2020, 25(5), 1030.
[http://dx.doi.org/10.3390/molecules25051030] [PMID: 32106588]
[54]
Davis, A.; Stgallay, S.; Kleywegt, G. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today, 2008, 13(19-20), 831-841.
[http://dx.doi.org/10.1016/j.drudis.2008.06.006] [PMID: 18617015]
[55]
Hartshorn, M.J.; Murray, C.W.; Cleasby, A.; Frederickson, M.; Tickle, I.J.; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem., 2005, 48(2), 403-413.
[http://dx.doi.org/10.1021/jm0495778] [PMID: 15658854]
[56]
Oddershede, J.; Larsen, S. Charge density study of naphthalene based on X-ray diffraction data at four different temperatures and theoretical calculations. J. Phys. Chem. A, 2004, 108(6), 1057-1063.
[http://dx.doi.org/10.1021/jp036186g]
[57]
Hanson, M.A.; Oost, T.K.; Sukonpan, C.; Rich, D.H.; Stevens, R.C. Structural basis for BABIM inhibition of botulinum neurotoxin type B protease. J. Am. Chem. Soc., 2000, 122(45), 11268-11269.
[http://dx.doi.org/10.1021/ja005533m]
[58]
Davis, A.M.; Teague, S.J.; Kleywegt, G.J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed., 2003, 42(24), 2718-2736.
[http://dx.doi.org/10.1002/anie.200200539] [PMID: 12820253]
[59]
Lonsdale, R.; Ward, R.A. Structure-based design of targeted covalent inhibitors. Chem. Soc. Rev., 2018, 47(11), 3816-3830.
[http://dx.doi.org/10.1039/C7CS00220C] [PMID: 29620097]
[60]
Anfinsen, C.B. The formation and stabilization of protein structure. Biochem. J., 1972, 128(4), 737-749.
[http://dx.doi.org/10.1042/bj1280737] [PMID: 4565129]
[61]
González, A. X-ray crystallography: Data collection strategies and resources. App. Stat., 2012, 1, 64-91.
[62]
Taylor, G. The phase problem. Acta Crystallogr. D Biol. Crystallogr., 2003, 59(11), 1881-1890.
[http://dx.doi.org/10.1107/S0907444903017815] [PMID: 14573942]
[63]
Taylor, G.L. Introduction to phasing. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(4), 325-338.
[http://dx.doi.org/10.1107/S0907444910006694] [PMID: 20382985]
[64]
Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J.C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys., 2017, 19(27), 17928-17936.
[http://dx.doi.org/10.1039/C7CP02110K] [PMID: 28664951]
[65]
Cowtan, K. Phase Problem in X‐ray Crystallography, and Its Solution; Wiley, 2003.
[66]
Feldhaus, J.; Arthur, J.; Hastings, J.B. X-ray free-electron lasers. J. Phys. At. Mol. Opt. Phys., 2005, 38(9), S799-S819.
[http://dx.doi.org/10.1088/0953-4075/38/9/023]
[67]
Salje, E.K.H. Crystallography and structural phase transitions, an introduction. Acta Crystallogr. A, 1991, 47(5), 453-469.
[http://dx.doi.org/10.1107/S0108767391004300]
[68]
Cowtan, K.D.; Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D Biol. Crystallogr., 1993, 49(1), 148-157.
[http://dx.doi.org/10.1107/S0907444992007698] [PMID: 15299555]
[69]
Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray diffraction crystallography: introduction, examples and solved problems; Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-3-642-16635-8]
[70]
Buerger, M.J. Some new functions of interest in x-ray crystallography. Proc. Natl. Acad. Sci., 1950, 36(7), 376-382.
[http://dx.doi.org/10.1073/pnas.36.7.376] [PMID: 15430317]
[71]
Rossmann, M.; Blow, D.M. The detection of sub-units within the crystallographic asymmetric unit. Acta crystallographica; , 1962, 15, pp. (1)24-31.
[72]
Gorelik, T.E.; Lukat, P.; Kleeberg, C.; Blankenfeldt, W.; Mueller, R. Molecular replacement for small-molecule crystal structure determination from X-ray and electron diffraction data with reduced resolution. Acta Crystallogr. A Found. Adv., 2023, 79(6), 504-514.
[http://dx.doi.org/10.1107/S2053273323008458] [PMID: 37855135]
[73]
Morris, R.J.; Bricogne, G. Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr. D Biol. Crystallogr., 2003, 59(3), 615-617.
[http://dx.doi.org/10.1107/S090744490300163X] [PMID: 12595742]
[74]
Miller, R.; Gallo, S.M.; Khalak, H.G.; Weeks, C.M. SnB: Crystal structure determination via shake-and-bake. J. Appl. Cryst., 1994, 27(4), 613-621.
[http://dx.doi.org/10.1107/S0021889894000191]
[75]
Grosse-Kunstleve, R.W.; Adams, P.D. Substructure search procedures for macromolecular structures. Acta Crystallogr. D Biol. Crystallogr., 2003, 59(11), 1966-1973.
[http://dx.doi.org/10.1107/S0907444903018043] [PMID: 14573951]
[76]
Patterson, A.L. Treatment of anomalous dispersion in X-ray diffraction data. Acta Crystallogr., 1963, 16(12), 1255-1256.
[http://dx.doi.org/10.1107/S0365110X63003297]
[77]
Szöke, A.; Szöke, H.; Somoza, J.R. Holographic methods in x-ray crystallography. V. Multiple isomorphousreplacement, multiple anomalous dispersion and non-crystallographic symmetry. Acta Crystallogr. A, 1997, 53(3), 291-313.
[http://dx.doi.org/10.1107/S010876739601584X]
[78]
Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. J. Vac. Sci. Technol. A, 2021, 39(1), 013204.
[http://dx.doi.org/10.1116/6.0000682]
[79]
Minor, W.; Cymborowski, M.; Otwinowski, Z. Automatic system for crystallographic data collection and analysis. Acta Phys. Pol. A, 2002, 101(5), 613-619.
[http://dx.doi.org/10.12693/APhysPolA.101.613]
[80]
Zhang, H.; Wang, F.; Lu, Y.; Sun, Q.; Xu, Y.; Zhang, B-B.; Jie, W.; Kanatzidis, M.G. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(4), 1248-1256.
[http://dx.doi.org/10.1039/C9TC05490A]
[81]
Renaud, J.P.; Chung, C.; Danielson, U.H.; Egner, U.; Hennig, M.; Hubbard, R.E.; Nar, H. Biophysics in drug discovery: Impact, challenges and opportunities. Nat. Rev. Drug Discov., 2016, 15(10), 679-698.
[http://dx.doi.org/10.1038/nrd.2016.123] [PMID: 27516170]
[82]
Salon, J.A.; Lodowski, D.T.; Palczewski, K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol. Rev., 2011, 63(4), 901-937.
[http://dx.doi.org/10.1124/pr.110.003350] [PMID: 21969326]
[83]
Sharff, A.; Jhoti, H. High-throughput crystallography to enhance drug discovery. Curr. Opin. Chem. Biol., 2003, 7(3), 340-345.
[http://dx.doi.org/10.1016/S1367-5931(03)00062-0] [PMID: 12826121]
[84]
Kalender, W.A. X-ray computed tomography. Phys. Med. Biol., 2006, 51(13), R29-R43.
[http://dx.doi.org/10.1088/0031-9155/51/13/R03] [PMID: 16790909]
[85]
Ilari, A.; Savino, C. Protein structure determination by x-ray crystallography. Bioinformatics: Data Seq. Anal. Evol., 2008, 63-87.
[http://dx.doi.org/10.1007/978-1-60327-159-2_3]
[86]
Schieferstein, J.M. Microfluidic platforms for membrane protein crystallization and in situ crystallography; University of Illinois at Urbana‐Champaign, 2017.
[87]
Hansen, C.L.; Skordalakes, E.; Berger, J.M.; Quake, S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci., 2002, 99(26), 16531-16536.
[http://dx.doi.org/10.1073/pnas.262485199] [PMID: 12486223]
[88]
Wilson, J. Towards the automated evaluation of crystallization trials. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(11), 1907-1914.
[http://dx.doi.org/10.1107/S0907444902016633] [PMID: 12393921]
[89]
Fuller, F.D.; Gul, S.; Chatterjee, R.; Burgie, E.S.; Young, I.D.; Lebrette, H.; Srinivas, V.; Brewster, A.S.; Michels-Clark, T.; Clinger, J.A.; Andi, B.; Ibrahim, M.; Pastor, E.; de Lichtenberg, C.; Hussein, R.; Pollock, C.J.; Zhang, M.; Stan, C.A.; Kroll, T.; Fransson, T.; Weninger, C.; Kubin, M.; Aller, P.; Lassalle, L.; Bräuer, P.; Miller, M.D.; Amin, M.; Koroidov, S.; Roessler, C.G.; Allaire, M.; Sierra, R.G.; Docker, P.T.; Glownia, J.M.; Nelson, S.; Koglin, J.E.; Zhu, D.; Chollet, M.; Song, S.; Lemke, H.; Liang, M.; Sokaras, D.; Alonso-Mori, R.; Zouni, A.; Messinger, J.; Bergmann, U.; Boal, A.K.; Bollinger, J.M., Jr; Krebs, C.; Högbom, M.; Phillips, G.N., Jr; Vierstra, R.D.; Sauter, N.K.; Orville, A.M.; Kern, J.; Yachandra, V.K.; Yano, J. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods, 2017, 14(4), 443-449.
[http://dx.doi.org/10.1038/nmeth.4195] [PMID: 28250468]
[90]
Watanabe, N.; Murai, H.; Tanaka, I. Semi-automatic protein crystallization system that allows in situ observation of X-ray diffraction from crystals in the drop. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(10), 1527-1530.
[http://dx.doi.org/10.1107/S0907444902014154] [PMID: 12351854]
[91]
Muchmore, S.W.; Olson, J.; Jones, R.; Pan, J.; Blum, M.; Greer, J.; Merrick, S.M.; Magdalinos, P.; Nienaber, V.L. Automated crystal mounting and data collection for protein crystallography. Structure, 2000, 8(12), R243-R246.
[http://dx.doi.org/10.1016/S0969-2126(00)00535-9] [PMID: 11188700]
[92]
Khan, M.K.A.; Akhtar, S. Novel drug design and bioinformatics: An introduction. Phy. Sci. Rev., 2021, 1-158. 000010151520180158.
[93]
Scapin, G. Structural biology and drug discovery. Curr. Pharm. Des., 2006, 12(17), 2087-2097.
[http://dx.doi.org/10.2174/138161206777585201] [PMID: 16796557]
[94]
van Montfort, R.L.M.; Workman, P. Structure-based drug design: Aiming for a perfect fit. Essays Biochem., 2017, 61(5), 431-437.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[95]
Wermuth, C.G. Selective optimization of side activities: Another way for drug discovery. J. Med. Chem., 2004, 47(6), 1303-1314.
[http://dx.doi.org/10.1021/jm030480f] [PMID: 14998318]
[96]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[97]
Zhao, X.; Ghaffari, S.; Lodish, H.; Malashkevich, V.N.; Kim, P.S. Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat. Struct. Biol., 2002, 9(2), 117-120.
[PMID: 11780146]
[98]
Fernández-Recio, J.; Totrov, M.; Abagyan, R. Identification of protein-protein interaction sites from docking energy landscapes. J. Mol. Biol., 2004, 335(3), 843-865.
[http://dx.doi.org/10.1016/j.jmb.2003.10.069] [PMID: 14687579]
[99]
Seeliger, M.A.; Nagar, B.; Frank, F.; Cao, X.; Henderson, M.N.; Kuriyan, J. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure, 2007, 15(3), 299-311.
[http://dx.doi.org/10.1016/j.str.2007.01.015] [PMID: 17355866]
[100]
Yasui, T.; Yamamoto, T.; Sakai, N.; Asano, K.; Takai, T.; Yoshitomi, Y.; Davis, M.; Takagi, T.; Sakamoto, K.; Sogabe, S.; Kamada, Y.; Lane, W.; Snell, G.; Iwata, M.; Goto, M.; Inooka, H.; Sakamoto, J.; Nakada, Y.; Imaeda, Y. Discovery of a novel B-cell lymphoma 6 (BCL6)–corepressor interaction inhibitor by utilizing structure-based drug design. Bioorg. Med. Chem., 2017, 25(17), 4876-4886.
[http://dx.doi.org/10.1016/j.bmc.2017.07.037] [PMID: 28760529]
[101]
Mevissen, T.E.T.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem., 2017, 86(1), 159-192.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044916] [PMID: 28498721]
[102]
Wang, T.; Wu, M.B.; Zhang, R.H.; Chen, Z.J.; Hua, C.; Lin, J.P.; Yang, L.R. Advances in computational structure-based drug design and application in drug discovery. Curr. Top. Med. Chem., 2015, 16(9), 901-916.
[http://dx.doi.org/10.2174/1568026615666150825142002] [PMID: 26303430]
[103]
Neutze, R. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1647), 20130318.
[http://dx.doi.org/10.1098/rstb.2013.0318] [PMID: 24914150]
[104]
Nass Kovacs, G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. Drug Discov. Today. Technol., 2021, 39, 101-110.
[http://dx.doi.org/10.1016/j.ddtec.2021.08.002] [PMID: 34906320]
[105]
Zook, J. XFEL and NMR structures of Francisella lipoprotein reveal conformational space of drug target against tularemia. Structure, 2020, 28(5), 540-547.
[http://dx.doi.org/10.1016/j.str.2020.02.005]
[106]
Durdagi, S. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Structure, 2021, 29(12), 1382-1396.
[107]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NENDOU from SARS‐COV ‐2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[108]
Hoffer, L.; Renaud, J.P.; Horvath, D. Fragment-based drug design: Computational & experimental state of the art. Comb. Chem. High Throughput Screen., 2011, 14(6), 500-520.
[http://dx.doi.org/10.2174/138620711795767884] [PMID: 21521152]
[109]
Erlanson, D.A. Introduction to fragment-based drug discovery. Fragment-based drug discovery and X-ray crystallography, 2012, 1-32.
[110]
Farmer, B.T.; Reitz, A.B. Fragment-based drug discovery. Prac. med. chem., 2008, 228-243.
[http://dx.doi.org/10.1016/B978-0-12-374194-3.00011-1]
[111]
Xiong, B.; Wang, Q.; Shen, J. Fragment-based drug discovery for developing inhibitors of protein-protein interactions; Targeting Protein-Protein Interactions by Small Molecules, 2018, pp. 135-176.
[http://dx.doi.org/10.1007/978-981-13-0773-7_6]
[112]
Mazanetz, M.; Law, R.; Whittaker, M. Hit and Lead Identification from fragments. De novo Molecular Design, 2013, 143-200.
[http://dx.doi.org/10.1002/9783527677016.ch6]
[113]
Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680.
[http://dx.doi.org/10.1021/jm8000373] [PMID: 18457385]
[114]
Revillo Imbernon, J.; Jacquemard, C.; Bret, G.; Marcou, G.; Kellenberger, E. Comprehensive analysis of commercial fragment libraries. RSC Med. Chem., 2022, 13(3), 300-310.
[http://dx.doi.org/10.1039/D1MD00363A] [PMID: 35434627]
[115]
Tounge, B.A.; Parker, M.H. Designing a diverse high-quality library for crystallography-based FBDD screening. Methods Enzymol., 2011, 493, 3-20.
[http://dx.doi.org/10.1016/B978-0-12-381274-2.00001-7] [PMID: 21371585]
[116]
Doak, B.C.; Norton, R.S.; Scanlon, M.J. The ways and means of fragment-based drug design. Pharmacol. Ther., 2016, 167, 28-37.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.003] [PMID: 27452339]
[117]
Feneyrolles, C.; Guiet, L.; Singer, M.; Van Hijfte, N.; Daydé-Cazals, B.; Fauvel, B.; Chevé, G.; Yasri, A. Discovering novel 7-azaindole-based series as potent AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 862-866.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.015] [PMID: 28094183]
[118]
Huang, X.; Guo, J.; Liu, Q.; Gu, Q.; Xu, J.; Zhou, H. Identification of an auxiliary druggable pocket in the DNA gyrase ATPase domain using fragment probes. MedChemComm, 2018, 9(10), 1619-1629.
[http://dx.doi.org/10.1039/C8MD00148K] [PMID: 30429968]
[119]
Jing, L.; Wei, W.; Meng, B.; Chantegreil, F.; Nachon, F.; Martínez, A.; Wu, G.; Zhao, H.; Song, Y.; Kang, D.; Brazzolotto, X.; Zhan, P.; Liu, X. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorg. Chem., 2023, 134, 106465.
[http://dx.doi.org/10.1016/j.bioorg.2023.106465] [PMID: 36933339]
[120]
Trapotsi, M.A.; Hosseini-Gerami, L.; Bender, A. Computational analyses of mechanism of action (MoA): Data, methods and integration. RSC Chemical Biology, 2022, 3(2), 170-200.
[http://dx.doi.org/10.1039/D1CB00069A] [PMID: 35360890]
[121]
McPherson, A. The role of X-Ray crystallography in structure-based rational drug design. In: Chemical and structural approaches to rational drug design; CRC Press, 2020; pp. 161-179.
[http://dx.doi.org/10.1201/9781003068808-8]
[122]
Kershaw, N.M.; Wright, G.S.; Sharma, R.; Antonyuk, S.V.; Strange, R.W.; Berry, N.G.; O’Neill, P.M.; Hasnain, S.S. X-ray crystallography and computational docking for the detection and development of protein-ligand interactions. Curr. Med. Chem., 2013, 20(4), 569-575.
[PMID: 23278398]
[123]
Ennifar, E. X-ray crystallography as a tool for mechanism-of-action studies and drug discovery. Curr. Pharm. Biotechnol., 2013, 14(5), 537-550.
[http://dx.doi.org/10.2174/138920101405131111104824] [PMID: 22429136]
[124]
Schaefer, M.; Buchmueller, A.; Dittmer, F.; Straßburger, J.; Wilmen, A. Allosteric inhibition as a new mode of action for BAY 1213790, a neutralizing antibody targeting the activated form of coagulation factor XI. J. Mol. Biol., 2019, 431(24), 4817-4833.
[http://dx.doi.org/10.1016/j.jmb.2019.09.008] [PMID: 31655039]
[125]
Muramatsu, T.; Takemoto, C.; Kim, Y.T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 12997-13002.
[http://dx.doi.org/10.1073/pnas.1601327113] [PMID: 27799534]
[126]
Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Tan, K.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M pro: insights into enzyme mechanism and drug design. IUCrJ, 2020, 7(6), 1028-1035.
[http://dx.doi.org/10.1107/S2052252520012634] [PMID: 33063790]
[127]
Blakeley, M.P.; Hasnain, S.S.; Antonyuk, S.V. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCrJ, 2015, 2(4), 464-474.
[http://dx.doi.org/10.1107/S2052252515011239] [PMID: 26175905]
[128]
Zaccai, N.R.; Coquelle, N. Opportunities and challenges in neutron crystallography. Neutrons Biology, 2020, 236, 1-22.
[http://dx.doi.org/10.1051/epjconf/202023602001]
[129]
Silverman, D.N.; McKenna, R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc. Chem. Res., 2007, 40(8), 669-675.
[http://dx.doi.org/10.1021/ar7000588] [PMID: 17550224]
[130]
Koruza, K.; Mahon, B.P.; Blakeley, M.P.; Ostermann, A.; Schrader, T.E.; McKenna, R.; Knecht, W.; Fisher, S.Z. Using neutron crystallography to elucidate the basis of selective inhibition of carbonic anhydrase by saccharin and a derivative. J. Struct. Biol., 2019, 205(2), 147-154.
[http://dx.doi.org/10.1016/j.jsb.2018.12.009] [PMID: 30639924]
[131]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[132]
Flower, D.R. Modelling G-protein-coupled receptors for drug design. Biochimica et Biophysica Acta (BBA)-. Reviews on Biomembranes, 1999, 1422(3), 207-234.
[133]
Wess, J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther., 1998, 80(3), 231-264.
[http://dx.doi.org/10.1016/S0163-7258(98)00030-8] [PMID: 9888696]
[134]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[135]
Kobilka, B.; Schertler, G. New G-protein-coupled receptor crystal structures: Insights and limitations. Trends Pharmacol. Sci., 2008, 29(2), 79-83.
[http://dx.doi.org/10.1016/j.tips.2007.11.009] [PMID: 18194818]
[136]
Mogha, A.; Benesh, A.E.; Patra, C.; Engel, F.B.; Schöneberg, T.; Liebscher, I.; Monk, K.R. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J. Neurosci., 2013, 33(46), 17976-17985.
[http://dx.doi.org/10.1523/JNEUROSCI.1809-13.2013] [PMID: 24227709]
[137]
Salzman, G.S.; Ackerman, S.D.; Ding, C.; Koide, A.; Leon, K.; Luo, R.; Stoveken, H.M.; Fernandez, C.G.; Tall, G.G.; Piao, X.; Monk, K.R.; Koide, S.; Araç, D. Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron, 2016, 91(6), 1292-1304.
[http://dx.doi.org/10.1016/j.neuron.2016.08.022] [PMID: 27657451]
[138]
Song, G.; Yang, D.; Wang, Y.; de Graaf, C.; Zhou, Q.; Jiang, S.; Liu, K.; Cai, X.; Dai, A.; Lin, G.; Liu, D.; Wu, F.; Wu, Y.; Zhao, S.; Ye, L.; Han, G.W.; Lau, J.; Wu, B.; Hanson, M.A.; Liu, Z.J.; Wang, M.W.; Stevens, R.C. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature, 2017, 546(7657), 312-315.
[http://dx.doi.org/10.1038/nature22378] [PMID: 28514449]
[139]
Christopher, J.A.; Orgován, Z.; Congreve, M.; Doré, A.S.; Errey, J.C.; Marshall, F.H.; Mason, J.S.; Okrasa, K.; Rucktooa, P.; Serrano-Vega, M.J.; Ferenczy, G.G.; Keserű, G.M. Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: A case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J. Med. Chem., 2019, 62(1), 207-222.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01722] [PMID: 29455526]
[140]
Liu, W.; Ishchenko, A.; Cherezov, V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc., 2014, 9(9), 2123-2134.
[http://dx.doi.org/10.1038/nprot.2014.141] [PMID: 25122522]
[141]
Ishchenko, A.; Stauch, B.; Han, G.W.; Batyuk, A.; Shiriaeva, A.; Li, C.; Zatsepin, N.; Weierstall, U.; Liu, W.; Nango, E.; Nakane, T.; Tanaka, R.; Tono, K.; Joti, Y.; Iwata, S.; Moraes, I.; Gati, C.; Cherezov, V. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ, 2019, 6(6), 1106-1119.
[http://dx.doi.org/10.1107/S2052252519013137] [PMID: 31709066]
[142]
Asada, H. Molecular basis for anti-insomnia drug design from structure of lemborexant-bound orexin 2 receptor. Structure, 2022, 30(12), 1582-1589.
[http://dx.doi.org/10.1016/j.str.2022.11.001]
[143]
Audet, M.; White, K.L.; Breton, B.; Zarzycka, B.; Han, G.W.; Lu, Y.; Gati, C.; Batyuk, A.; Popov, P.; Velasquez, J.; Manahan, D.; Hu, H.; Weierstall, U.; Liu, W.; Shui, W.; Katritch, V.; Cherezov, V.; Hanson, M.A.; Stevens, R.C. Crystal structure of misoprostol bound to the labor inducer prostaglandin E2 receptor. Nat. Chem. Biol., 2019, 15(1), 11-17.
[http://dx.doi.org/10.1038/s41589-018-0160-y] [PMID: 30510194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy