Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Aromatic Azides using Different Methodologies

Author(s): Elisa Leyva* and Silvia E. Loredo-Carrillo

Volume 28, Issue 9, 2024

Published on: 02 April, 2024

Page: [655 - 674] Pages: 20

DOI: 10.2174/0113852728301737240307111549

Price: $65

Abstract

For several decades, aromatic azides have been applied in diverse areas of research like synthesis of organic compounds, novel materials and photoaffinity labeling of biomolecules. The discovery of click chemistry and bioorthogonal chemistry expanded their applications. Currently, they are extensively used in biology, biochemistry and medicine. For many years, aromatic azides were usually prepared using nucleophilic substitution. In this classical procedure, commercially available anilines are first converted into aryl diazonium salts which in turn are transformed into aromatic azides by nucleophilic substitution with sodium azide. However, this procedure is rather inconvenient experimentally since it requires the use of strong acids and low temperatures. In recent years, several alternative procedures have been developed. In the present review, we present the synthesis of aromatic azides by means of different experimental methodologies.

Next »
Graphical Abstract

[1]
Scriven, E.F.V. Azides and Nitrenes, Reactivity and Utility; Academic Press: New York, 1984.
[2]
Leyva, E.; de Loera, D.; Leyva, S.; Jiménez-Cataño, R. Fluorinated aryl nitrene precursors. In: Nitrene and Nitrenium Ions; Falvey, D.E.; Gudmundsdottir, A.D., Eds.; John Wiley & Sons Inc.: New Jersey, 2013.
[3]
Leyva, E.; Platz, M.S.; Loredo-Carrillo, S.E.; Aguilar, J. Fluoro aryl azides: Synthesis, reactions and applications. Curr. Org. Chem., 2020, 24(11), 1161-1180.
[http://dx.doi.org/10.2174/1385272824999200608132505]
[4]
Moss, R.A.; Jones, M. Singlet Carbenes. Reactive Intermediate Chemistry; John Wiley & Sons Inc.: New York, 2004.
[5]
Leyva, E.; Platz, M.S.; Moctezuma, E. Investigation of phenyl azide photochemistry by conventional and time resolved spectroscopy. J. Photochem. Photobiol., 2022, 11, 100126.
[http://dx.doi.org/10.1016/j.jpap.2022.100126]
[6]
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: An exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 2005, 44(33), 5188-5240.
[http://dx.doi.org/10.1002/anie.200400657] [PMID: 16100733]
[7]
Bräse, S.; Banert, K. Organic azides. In: Synthesis and Applications; John Wiley and Sons Ltd.: West Sussex, UK, 2010; pp. 115-166.
[8]
Corey, E.J.; Czakó, B.; Kürty, L. Molecules and Medicine; John Wiley and Sons Inc: New Jersey, EUA, 2007.
[9]
Fleming, S.A. Chemical reagents in photoaffinity labeling. Tetrahedron, 1995, 51, 12479-12520.
[http://dx.doi.org/10.1016/0040-4020(95)00598-3]
[10]
Rajagopalan, R.; Kuntz, R.R.; Sharma, U.; Volkert, W.A.; Pandurangi, R.S. Chemistry of bifunctional photoprobes. 6. Synthesis and characterization of high specific activity metalated photochemical probes: Development of novel rhenium photoconjugates of human serum albumin and fab fragments. J. Org. Chem., 2002, 67(19), 6748-6757.
[http://dx.doi.org/10.1021/jo010782u] [PMID: 12227807]
[11]
Hockey, S.C.; Barbante, G.J.; Francis, P.S.; Altimari, J.M.; Yoganantharajah, P.; Gibert, Y.; Henderson, L.C. A comparison of novel organoiridium(III) complexes and their ligands as a potential treatment for prostate cancer. Eur. J. Med. Chem., 2016, 109, 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.035] [PMID: 26802546]
[12]
Aguilar-Morales, C.M.; de Loera, D.; Contreras-Celedón, C.; Cortés-García, C.J.; Chacón-García, L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. Synth. Commun., 2019, 49(16), 2086-2095.
[http://dx.doi.org/10.1080/00397911.2019.1616301]
[13]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Wadgaonkar, P.P.; Nawale, L.; Bhansali, S.; Sarkar, D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res. Chem. Intermed., 2017, 43(10), 5675-5690.
[http://dx.doi.org/10.1007/s11164-017-2955-y]
[14]
Leyva, E.; Aguilar, J.; Elena Loredo-Carrillo, S.; Cárdenas-Chaparro, A.; Martínez-Richa, A.; Hernández-López, H.; Gustavo Araujo-Huitrado, J.; Judith Granados-López, A.; López-Hernández, Y.; Adrián López, J. Synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells. Curr. Org. Synth., 2024, 21(4), 559-570.
[http://dx.doi.org/10.2174/1570179420666230420084000] [PMID: 37078356]
[15]
Kishore, P.V.V.N.; Dunga, A.K.; Allaka, T.R.; Kethavarapu, Y.; Nechipadappu, S.K.; Pothana, P.; Kuppan, C. Design, synthesis, molecular docking, ADMET, and biological studies of some novel 1,2,3-triazole linked tetrazoles as anticancer agents. Curr. Org. Synth., 2023, 20(5), 576-587.
[http://dx.doi.org/10.2174/1570179419666220822125724] [PMID: 35996261]
[16]
Kategaonkar, A.H.; Shinde, P.V.; Kategaonkar, A.H.; Pasale, S.K.; Shingate, B.B.; Shingare, M.S. Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur. J. Med. Chem., 2010, 45(7), 3142-3146.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.002] [PMID: 20435389]
[17]
Huisgen, R. Reaction of aryl azides with alkynes. In: 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984.
[18]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[19]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regioselective copper(I) 1,3-dipolar cycloaddition of terminal alkynes and azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[20]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[21]
Noriega, S.; Leyva, E.; Moctezuma, E.; Flores, L.; Loredo-Carrillo, S. Recent catalysts used in the synthesis of 1,4-disubstituted 1,2,3-triazoles by heterogeneous and homogeneous methods. Curr. Org. Chem., 2020, 24(5), 536-549.
[http://dx.doi.org/10.2174/1385272824666200226120135]
[22]
Leyva, E.; Rubén Rodríguez-Gutiérrez, I.; Moctezuma, E.; Noriega, S. Mechanisms, copper catalysts, and ligands involved in the synthesis of 1,2,3- triazoles using click chemistry. Curr. Org. Chem., 2023, 26(23), 2098-2121.
[http://dx.doi.org/10.2174/1385272827666230201103825]
[23]
Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI‐catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, 2006(1), 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[24]
Díaz-Díaz, D.; Finn, M.G.; Sharpless, K.B.; Fokin, V.; Hawker, C.J. Cicloadición 1,3-dipolar de azidas y alquinos. I: Principales aspectos sintéticos. Anal. Quim., 2008, 104(3), 173-180.
[25]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[26]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693]
[27]
van Stevendaal, M.H.M.E.; Hazegh Nikroo, A.; Mason, A.F.; Jansen, J.; Yewdall, N.A.; van Hest, J.C.M. Regulating chemokine–receptor interactions through the site-specific bioorthogonal conjugation of photoresponsive DNA strands. Bioconjug. Chem., 2023, 34(11), 2089-2095.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00390] [PMID: 37856672]
[28]
Rosier, B.J.H.M.; Markvoort, A.J.; Gumí Audenis, B.; Roodhuizen, J.A.L.; den Hamer, A.; Brunsveld, L.; de Greef, T.F.A. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat. Catal., 2020, 3(3), 295-306.
[http://dx.doi.org/10.1038/s41929-019-0403-7] [PMID: 32190819]
[29]
Adhikari, A.; Bhattarai, B.R.; Aryal, A.; Thapa, N.; Kc, P.; Adhikari, A.; Maharjan, S.; Chanda, P.B.; Regmi, B.P.; Parajuli, N. Reprogramming natural proteins using unnatural amino acids. RSC Advances, 2021, 11(60), 38126-38145.
[http://dx.doi.org/10.1039/D1RA07028B] [PMID: 35498070]
[30]
Wals, K.; Ovaa, H. Unnatural amino acid incorporation in E. coli: Current and future applications in the design of therapeutic proteins. Front Chem., 2014, 2, 15.
[http://dx.doi.org/10.3389/fchem.2014.00015] [PMID: 24790983]
[31]
Leyva, E.; Munoz, D.; Platz, M.S. Photochemistry of fluorinated aryl azides in toluene solution and in frozen polycrystals. J. Org. Chem., 1989, 54(25), 5938-5945.
[http://dx.doi.org/10.1021/jo00286a028]
[32]
Hino, K.N.; Omori, Á.T. Method for the synthesis of aryl azides using vinegar. Quim. Nova, 2014, 38(1), 156-158.
[http://dx.doi.org/10.5935/0100-4042.20140284]
[33]
Wade, L.G. Organic Chemistry; Prentice Hall Inc.: New Jersey, 1991.
[34]
Smith, P.A.S.; Brown, B.B. The synthesis of heterocyclic compounds from aryl azides. I. Bromo and nitro carbazoles. J. Am. Chem. Soc., 1951, 73(6), 2435-2437.
[http://dx.doi.org/10.1021/ja01150a008]
[35]
Leyva, E.; Sagredo, R. Photochemistry of fluorophenyl azides in diethylamine. Nitrene reaction versus ring expansion. Tetrahedron, 1998, 54(26), 7367-7374.
[http://dx.doi.org/10.1016/S0040-4020(98)00403-7]
[36]
García Martínez, A.; de la Moya Cerero, S.; Osío Barcina, J.; Moreno Jiménez, F.; Lora Maroto, B. The mechanism of hydrolysis of aryldiazonium ions revisited: Marcus theory vs. Canonical variational transition state theory. Eur. J. Org. Chem., 2013, 2013(27), 6098-6107.
[http://dx.doi.org/10.1002/ejoc.201300834]
[37]
Wu, Z.; Glaser, R. Ab initio study of the SN1Ar and SN2Ar reactions of benzenediazonium ion with water. On the conception of “unimolecular dediazoniation” in solvolysis reactions. J. Am. Chem. Soc., 2004, 126(34), 10632-10639.
[http://dx.doi.org/10.1021/ja047620a] [PMID: 15327321]
[38]
Ussing, B.R.; Singleton, D.A. Isotope effects, dynamics, and the mechanism of solvolysis of aryldiazonium cations in water. J. Am. Chem. Soc., 2005, 127(9), 2888-2899.
[http://dx.doi.org/10.1021/ja043918p] [PMID: 15740124]
[39]
Joshi, S.M.; de Cózar, A.; Gómez-Vallejo, V.; Koziorowski, J.; Llop, J.; Cossío, F.P. Synthesis of radiolabelled aryl azides from diazonium salts: Experimental and computational results permit the identification of the preferred mechanism. Chem. Commun., 2015, 51(43), 8954-8957.
[http://dx.doi.org/10.1039/C5CC01913C] [PMID: 25929958]
[40]
Butler, R.N.; Fox, A.; Collier, S.; Burke, L.A. Pentazole chemistry: The mechanism of the reaction of aryldiazonium chlorides with azide ion at −80 °C: concerted versus stepwise formation of arylpentazoles, detection of a pentazene intermediate, a combined 1H and 15N NMR experimental and ab initio theoretical study. J. Chem. Soc., Perkin Trans. 2, 1998, 2243-2247(10), 2243-2248.
[http://dx.doi.org/10.1039/a804040k]
[41]
Ritchie, C.D.; Wright, D.J. Anion-cation combination reactions. III. Reaction of diazonium ions with azide ion in aqueous solution. J. Am. Chem. Soc., 1971, 93(10), 2429-2432.
[http://dx.doi.org/10.1021/ja00739a012]
[42]
Capitosti, S.M.; Hansen, T.P.; Brown, M.L. Facile synthesis of an azido-labeled thalidomide analogue. Org. Lett., 2003, 5(16), 2865-2867.
[http://dx.doi.org/10.1021/ol034906w] [PMID: 12889894]
[43]
Melhado, L.L.; Leonard, N.J. An efficient synthesis of azidoindoles and azidotryptophans. J. Org. Chem., 1983, 48(25), 5130-5133.
[http://dx.doi.org/10.1021/jo00173a071]
[44]
Li, L.; Han, J.; Nguyen, B.; Burgess, K. Syntheses and spectral properties of functionalized, water-soluble BODIPY derivatives. J. Org. Chem., 2008, 73(5), 1963-1970.
[http://dx.doi.org/10.1021/jo702463f] [PMID: 18271598]
[45]
Zhao, F.; Chen, Z.; Lei, P.; Kong, L.; Jiang, Y. Facile one-pot synthesis of aryl azides from nitrobenzenes. Tetrahedron Lett., 2015, 56(17), 2197-2199.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.015]
[46]
Siddiki, A.A.; Takale, B.S.; Telvekar, V.N. One pot synthesis of aromatic azide using sodium nitrite and hydrazine hydrate. Tetrahedron Lett., 2013, 54(10), 1294-1297.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.112]
[47]
Gribanov, P.S.; Topchiy, M.A.; Golenko, Y.D.; Lichtenstein, Y.I.; Eshtukov, A.V.; Terekhov, V.E.; Asachenko, A.F.; Nechaev, M.S. An unprecedentedly simple method of synthesis of aryl azides and 3-hydroxytriazenes. Green Chem., 2016, 18(22), 5984-5988.
[http://dx.doi.org/10.1039/C6GC02379G]
[48]
Doyle, M.P.; Bryker, W.J. Alkyl nitrite-metal halide deamination reactions. 6. Direct synthesis of arenediazonium tetrafluoroborate salts from aromatic amines, tert-butyl nitrite, and boron trifluoride etherate in anhydrous media. J. Org. Chem., 1979, 44(9), 1572-1574.
[http://dx.doi.org/10.1021/jo01323a048]
[49]
Keumi, T.; Umeda, T.; Inoue, Y.; Kitajima, H. The decomposition of arenediazonium tetrafluoroborates with Halo- and Azidotrimethylsilanes in nonaqueous solvents. Bull. Chem. Soc. Jpn., 1989, 62(1), 89-95.
[http://dx.doi.org/10.1246/bcsj.62.89]
[50]
Filimonov, V.D. Unusually stable, versatile, and pure arene diazpnium tosylates: Their preparation, structures, and synthetic applicability. Org. Lett., 2008, 10, 3961-3964.
[http://dx.doi.org/10.1021/ol8013528] [PMID: 18722457]
[51]
Filimonov, V.; Parello, J.; Kutonova, K.; Trusova, M.; Postnikov, P. A simple and effective synthesis of aryl azides via arenediazonium tosylates. Synthesis, 2013, 45(19), 2706-2710.
[http://dx.doi.org/10.1055/s-0033-1339648]
[52]
Tretyakov, A.N. A new one-pot solvent-free synthesis of pyridinyl tosylates via diazotization of amino pyridines. Tetrahedron Lett., 2011, 52, 85-87.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.163]
[53]
Nemati, F.; Elhampour, A. P-TSA/NaNO2/NaN3 a mild and efficient system for easy and fast conversion of arylamines to azides at room temperature. J. Appl. Chem., 2012, 7(23), 29-33.
[54]
Gorlushko, D.A.; Filimonov, V.D.; Krasnokutskaya, E.A.; Semenischeva, N.I.; Go, B.S.; Hwang, H.Y.; Cha, E.H.; Chi, K-W. Iodination of aryl amines in a water-paste form via stable aryl diazonium tosylates. Tetrahedron Lett., 2008, 49(6), 1080-1082.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.192]
[55]
Hajipour, A.R.; Mohammadsaleh, F. Preparation of aryl azides from aromatic amines in N-methyl-2-pyrrolidonium bisulfate. Org. Prep. Proced. Int., 2011, 43(5), 451-455.
[http://dx.doi.org/10.1080/00304948.2011.613695]
[56]
Das, J.; Patil, S.N.; Awasthi, R.; Narasimhulu, C.P.; Trehan, S. An easy access to aryl azides from aryl amines under neutral conditions. Synthesis, 2005, 2005(11), 1801-1806.
[http://dx.doi.org/10.1055/s-2005-869974]
[57]
Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient conversion of aromatic amines into azides: A one-pot synthesis of triazole linkages. Org. Lett., 2007, 9(9), 1809-1811.
[http://dx.doi.org/10.1021/ol070527h] [PMID: 17391043]
[58]
Godoy-Prieto, L.; Lo-Fiego, M.J.; Chopa, A.B.; Lockhart, M.T. A reliable one-pot synthesis of aryl azides from aryl amines using organotin halides as effective and recoverable reagents. J. Organomet. Chem., 2017, 8330, 26-32.
[http://dx.doi.org/10.1016/j.organchem.2016.11037]
[59]
Karimi Zarchi, M.A.; Escandari, Z. A mild and clean synthesis of alkyl azides from alkyl halides mediated by poly(4‐vinylpyridine)‐supported sodium azide under nonaqueous conditions. J. Appl. Polym. Sci., 2011, 121(4), 1916-1920.
[http://dx.doi.org/10.1002/app.32856]
[60]
Karimi Zarchi, M.A.; Ebrahimi, N. Facile and one-pot synthesis of aryl azides via diazotization of aromatic amine using cross-linked poly(4-vinylpyridine)-supported nitrite ion and azidation by a Sandmeyer-type reaction. Iran. Polym. J., 2012, 21(9), 591-599.
[http://dx.doi.org/10.1007/s13726-012-0063-9]
[61]
Zarei, A.; Hajipour, A.R.; Khazdooz, L.; Aghaei, H. A fast and efficient method for the preparation of aryl azides using stable aryl diazonium silica sulfates under mild conditions. Tetrahedron Lett., 2009, 50(31), 4443-4445.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.049]
[62]
Alsop, D.J.; Burdon, J.; Tatlow, J.C. 342. Aromatic polyfluoro-compounds. Part X. Some replacement reactions of octafluorotoluene. J. Chem. Soc., 1962, 1801-1805, 1801.
[http://dx.doi.org/10.1039/jr9620001801]
[63]
Boulton, R.; Sandall, P.B. Nucleophilic displacement of polyhalogenaromatic compounds. J. Chem. Soc., Perkin Trans. 2, 1978, 1288-1292.
[http://dx.doi.org/10.1039/p29780001288]
[64]
Keana, J.F.W.; Xiong, Cai S. Functionalized perfluorophenyl azides: New reagents for photoaffinity labeling. J. Fluor. Chem., 1989, 43(1), 151-154.
[http://dx.doi.org/10.1016/S0022-1139(00)81644-9]
[65]
Keana, J.F.W.; Cai, S.X. New reagents for photoaffinity labeling: Synthesis and photolysis of functionalized perfluorophenyl azides. J. Org. Chem., 1990, 55(11), 3640-3647.
[http://dx.doi.org/10.1021/jo00298a048]
[66]
Chehade, K.A.H.; Spielmann, H.P. Facile and efficient synthesis of 4-azidotetrafluoroaniline: A new photoaffinity reagent. J. Org. Chem., 2000, 65(16), 4949-4953.
[http://dx.doi.org/10.1021/jo000402p] [PMID: 10956477]
[67]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[68]
Leyva, E.; Leyva, S.; Moctezuma, E.; González-Balderas, R.M.; de Loera, D. Microwave-assisted synthesis of substituted fluorophenyl mono- and diazides by SNAr. A fast methodology to prepare photoaffinity labeling and crosslinking reagents. J. Fluor. Chem., 2013, 156, 164-169.
[http://dx.doi.org/10.1016/j.jfluchem.2013.10.002]
[69]
Leyva, E.; Aguilar, J.; González-Balderas, R.M.; Vega-Rodríguez, S.; Loredo-Carrillo, S.E. Synthesis of nitrophenyl and fluorophenyl azides and diazides by SN Ar under phase‐transfer or microwave irradiation: Fast and mild methodologies to prepare photoaffinity labeling, crosslinking, and click chemistry reagents. J. Phys. Org. Chem., 2021, 34(5), e4171.
[http://dx.doi.org/10.1002/poc.4171]
[70]
Solomons, T.W.G.; Fryhle, C.B. Organic Chemistry; John Wiley & Sons Inc.: New York, USA, 2004.
[71]
Corey, F.A.; Sundberg, R.J. Advanced Organic Chemistry; Springer: New York, USA, 2007.
[72]
Rohrbach, S.; Smith, A.J.; Pang, J.H.; Poole, D.L.; Tuttle, T.; Chiba, S.; Murphy, J.A. Concerted nucleophilic aromatic substitution reactions. Angew. Chem. Int. Ed., 2019, 58(46), 16368-16388.
[http://dx.doi.org/10.1002/anie.201902216] [PMID: 30990931]
[73]
Lygo, B.; Andrews, B.I. Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: Asymmetric alkylation of glycine imines. Acc. Chem. Res., 2004, 37(8), 518-525.
[http://dx.doi.org/10.1021/ar030058t] [PMID: 15311950]
[74]
Leyva, E.; Leyva-Ramos, S.; Jiménez-Cataño, R.; de Luna-Méndez, T.A.; Cárdenas-Chaparro, A. One-pot methodology for conversion of o-halogen nitrobenzenes to benzofuroxans. Synth. Commun., 2017, 47(6), 604-608.
[http://dx.doi.org/10.1080/00397911.2016.1276932]
[75]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[76]
Lourenço, N.M.T.; Afonso, C.A.M. Ionic liquid as an efficient promoting medium for two-phase nucleophilic displacement reactions. Tetrahedron, 2003, 59(6), 789-794.
[http://dx.doi.org/10.1016/S0040-4020(02)01621-6]
[77]
Wheeler, C.; West, K.N.; Eckert, C.A.; Liotta, C.L. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem. Commun., 2001, 887-888(10), 887-888.
[http://dx.doi.org/10.1039/b101202a]
[78]
Handy, S.T.; Okello, M. Halide effects on the Heck reaction in room temperature ionic liquids. Tetrahedron Lett., 2003, 44(46), 8395-8397.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.120]
[79]
D’Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. Can the absence of solvation of neutral reagents by ionic liquids be responsible for the high reactivity in base-assisted intramolecular nucleophilic substitutions in these solvents? J. Org. Chem., 2005, 70(7), 2828-2831.
[http://dx.doi.org/10.1021/jo048485n] [PMID: 15787580]
[80]
D’Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. Study of aromatic nucleophilic substitution with amines on nitrothiophenes in room-temperature ionic liquids: Are the different effects on the behavior of para-like and ortho-like isomers on going from conventional solvents to room-temperature ionic liquids related to solvation effects? J. Org. Chem., 2006, 71(14), 5144-5150.
[http://dx.doi.org/10.1021/jo060435q] [PMID: 16808500]
[81]
D’Anna, F.; Marullo, S.; Noto, R. Ionic liquids/[bmim][N3] mixtures: Promising media for the synthesis of aryl azides by SNAr. J. Org. Chem., 2008, 73(16), 6224-6228.
[http://dx.doi.org/10.1021/jo800676d] [PMID: 18624414]
[82]
D’Anna, F.; Marullo, S.; Noto, R. Aryl azides formation under mild conditions: A kinetic study in some ionic liquid solutions. J. Org. Chem., 2010, 75(3), 767-771.
[http://dx.doi.org/10.1021/jo9022952] [PMID: 20039644]
[83]
Zhao, Y.B.; Yan, Z.Y.; Liang, Y.M. Efficient synthesis of 1,4-disubstituted 1,2,3-triazoles in ionic liquid/water system. Tetrahedron Lett., 2006, 47(10), 1545-1549.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.004]
[84]
Lowe-Ma, C.K.; Nissan, R.A.; Wilson, W.S. Tetrazolo[1,5-a]pyridines and furazano[4,5-b]pyridine 1-oxides. J. Org. Chem., 1990, 55(12), 3755-3761.
[http://dx.doi.org/10.1021/jo00299a014]
[85]
Stadlbauer, W.; Fiala, W.; Fischer, M.; Hojas, G. Thermal cyclization of 4‐azido‐3‐nitropyridines to furoxanes. J. Heterocycl. Chem., 2000, 37(5), 1253-1256.
[http://dx.doi.org/10.1002/jhet.5570370537]
[86]
Roschger, P.; Fiala, W.; Stadlbauer, W. Nucleophilic substitution and ring closure reactions of 4‐chloro‐3‐nitro‐2‐quinolones. J. Heterocycl. Chem., 1992, 29(1), 225-231.
[http://dx.doi.org/10.1002/jhet.5570290141]
[87]
Confalone, P.N.; Woodward, R.B. A novel synthesis of peptides based on the photochemistry of 5-azido-1,3,4-oxadiazoles. J. Am. Chem. Soc., 1983, 105(4), 902-906.
[http://dx.doi.org/10.1021/ja00342a044]
[88]
Barlin, G.B. Purine analogues as amplifiers of phleomycin. VIII. Some Thiazolo[4,5-b]pyrazines and related compounds. Aust. J. Chem., 1983, 36(5), 983-992.
[http://dx.doi.org/10.1071/CH9830983]
[89]
Choi, P.; Rees, C.W.; Smith, E.H. Conversion of 3-azido-5-phenyl-1,2,3-oxadiazole into benzoyl cyanide. A thermal fragmentation. Tetrahedron Lett., 1982, 23, 121-124.
[http://dx.doi.org/10.1016/S0040-4039(00)97550-6]
[90]
Simmonds, R.J.; Stevens, M.F.G. Triazines and related products. Part 25. Methods for the attachment of sugar residues to cytotoxic 1,3,5-triazines. J. Chem. Soc., Perkin Trans. 1, 1982, 1821-1825, 1821.
[http://dx.doi.org/10.1039/p19820001821]
[91]
Miller, D.R.; Swenson, D.C.; Gillan, E.G. Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides. J. Am. Chem. Soc., 2004, 126(17), 5372-5373.
[http://dx.doi.org/10.1021/ja048939y] [PMID: 15113204]
[92]
Wijkmans, J.C.H.M.; Beckett, R.P. Combinatorial chemistry in anti-infectives research. Drug Discov. Today, 2002, 7(2), 126-132.
[http://dx.doi.org/10.1016/S1359-6446(01)02092-X] [PMID: 11790623]
[93]
Gayo, L.M.; Suto, M.J. Traceless linker: Oxidative activation and displacement of a sulfur-based linker. Tetrahedron Lett., 1997, 38(2), 211-214.
[http://dx.doi.org/10.1016/S0040-4039(96)02256-3]
[94]
Gibson, C.L.; La Rosa, S.; Suckling, C.J. A traceless solid-phase synthesis of pteridines. Tetrahedron Lett., 2003, 44(6), 1267-1270.
[http://dx.doi.org/10.1016/S0040-4039(02)02782-X]
[95]
Loredo-Carrillo, S.E.; Leyva, E.; Platz, M.S.; Cárdenas-Chaparro, A.; Martínez-Richa, A. Thermolysis of 2-azido-3-(R-anilino)-1,4-naphthoquinones. Nitrene insertion versus hydrogen abstraction. Tetrahedron Lett., 2020, 61(14), 151731-151736.
[http://dx.doi.org/10.1016/j.tetlet.2020.151731]
[96]
Lee, H.J.; Kim, J.S.; Park, S.Y.; Suh, M.E.; Kim, H.J.; Seo, E.K.; Lee, C.O. Synthesis and cytotoxicity evaluation of 6,11-dihydro-pyridazo- and 6,11-dihydro-pyrido[2,3-b]phenazine-6,11-diones. Bioorg. Med. Chem., 2004, 12(7), 1623-1628.
[http://dx.doi.org/10.1016/j.bmc.2004.01.029] [PMID: 15028255]
[97]
Morgan, J.; Pinhey, J.T. Reaction of arylboronic acids and their derivatives with lead tetraacetate. J. Chem. Soc., Perkin Trans. 1, 1990, 715-720.
[http://dx.doi.org/10.1039/P19900000715]
[98]
Huber, M.L.; Pinhey, J.T. Reaction of aryl-lead triacetates with sodium azide in dimethyl sulphoxide: A new route to aryl azides. J. Chem. Soc., Perkin Trans. 1, 1990, 721-722(3), 721.
[http://dx.doi.org/10.1039/p19900000721]
[99]
Chan, D.M.T.; Monaco, K.L.; Wang, R.P.; Winters, M.P. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett., 1998, 39(19), 2933-2936.
[http://dx.doi.org/10.1016/S0040-4039(98)00503-6]
[100]
Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acids/cupric acetate arylation. Tetrahedron Lett., 1998, 39(19), 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
[101]
Tao, C.Z.; Cui, X.; Li, J.; Liu, A.X.; Liu, L.; Guo, Q-X. Copper-catalyzed synthesis of aryl azides and 1-aryl-1,2,3-triazoles from boronic acids. Tetrahedron Lett., 2007, 48(20), 3525-3529.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.107]
[102]
Chan, D.M.T.; Lam, P.Y.S. Recent Advances in Copper-Promotted C-heteroatom bond Cross-Coupling Reactions with Boronic Acids; Wiley-VCH: Weinheim, 2005.
[103]
Aldrich, C.; Grimes, K.; Gupte, A. Copper(II)-catalyzed conversion of aryl/heteroaryl boronic acids, boronates, and trifluoroborates into the corresponding azides: Substrate scope and limitations. Synthesis, 2010, 2010(9), 1441-1448.
[http://dx.doi.org/10.1055/s-0029-1218683] [PMID: 20526454]
[104]
Li, Y.; Gao, L.X.; Han, F.S. Reliable and diverse synthesis of aryl azides through copper-catalyzed coupling of boronic acids or esters with TMSN3. Chemistry, 2010, 16(27), 7969-7972.
[http://dx.doi.org/10.1002/chem.201000971] [PMID: 20564300]
[105]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[106]
Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7), 513-519.
[http://dx.doi.org/10.1080/00397918108063618]
[107]
Rafiee, F.; Khavari, P. Preparation of aryl azides of aryl boronic acids and one‐pot synthesis of 1,4‐diaryl‐1,2,3‐triazoles by a magnetic cysteine functionalized GO–CuI/II nanocomposite. Appl. Organomet. Chem., 2020, 34(9), e5789.
[http://dx.doi.org/10.1002/aoc.5789]
[108]
Zhu, W.; Ma, D. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions. Chem. Commun., 2004, 7, 888-889.http://www.rsc.org/suppdata/cc/b4/b400878b/
[http://dx.doi.org/10.1039/b400878b] [PMID: 15045114]
[109]
Bräse, S.; Keck, D. Science of Synthesis: Houben–Weyl Methods of Molecular Transformations; 1st ed; Georg Thieme Verlag KG: Stuttgartub, 2007.
[http://dx.doi.org/10.1055/b-003-125736]
[110]
Fischer, W.; Anselme, J.P. Reaction of amine anions with p-toluenesulfonyl azide. Novel azide synthesis. J. Am. Chem. Soc., 1967, 89(20), 5284-5285.
[http://dx.doi.org/10.1021/ja00996a036]
[111]
Smith, P.A.S.; Rowe, C.D.; Bruner, L.B. Azides and amines from Grignard reagents and tosyl azide. J. Org. Chem., 1969, 34(11), 3430-3433.
[http://dx.doi.org/10.1021/jo01263a047]
[112]
Smith, P.A.S.; Budde, G.F.; Chou, S-S.P. Comparison of the ease of thermolysis of ortho-substituited phenyl azides having a,b or b,g imine functions. J. Org. Chem., 1985, 50, 2062-2066.
[http://dx.doi.org/10.1021/jo00212a012]
[113]
Gavenonis, J.; Tilley, T.D. Tantalum alkyl and silylcomplexes of the bulky (therphenyl)imido ligand. Organometallics, 2002, 21, 5549-5563.
[http://dx.doi.org/10.1021/om020509y]
[114]
Hakimelahi, G.H.; Just, G. Two simple methods for the synthesis of trialkyl α-aminophosphono-acetates (3). trifluoromethanesulfonyl azide as an azide-transfer agent. Synth. Commun., 1980, 10(6), 429-435.
[http://dx.doi.org/10.1080/00397918008064265]
[115]
Matsumoto, T.; Ishida, T.; Iwamura, H. Intramolecular magnetic coupling between two nitrene or two nitroxide units through 1,1-diphenylethylene chromophores. J. Am. Chem. Soc., 1992, 114, 9952-9959.
[http://dx.doi.org/10.1021/ja00512a030]
[116]
Yamagata, T.; Tukada, H.; Kobayashi, K. Intramolecular spin interactions through cumulative double bonds. Chem. Lett., 1998, 27(2), 129-130.
[http://dx.doi.org/10.1246/cl.1998.129]
[117]
Serwinski, P.R.; Esat, B.; Lahti, P.M.; Liao, Y.; Walton, R.; Lan, J. Photolysis and oxidation of azidophenyl-substituted radicals: Delocalization in heteroatom-based radicals. J. Org. Chem., 2004, 69(16), 5247-5260.
[http://dx.doi.org/10.1021/jo049500r] [PMID: 15287767]
[118]
Doering, W.E.; DePuy, C.H. Diazocyclopentadiene. J. Am. Chem. Soc., 1953, 75(23), 5955-5957.
[http://dx.doi.org/10.1021/ja01119a051]
[119]
Weil, T.; Cais, M. A simplified procedure for the preparation of diazocyclopentadiene and some related compounds. J. Org. Chem., 1963, 28(9), 2472-2473.
[http://dx.doi.org/10.1021/jo01044a523]
[120]
Kogan, T.P.; Somers, T.C.; Venuti, M.C.A. Regio- and stereocontrolled total synthesis of (-)-indolactam-V. Tetrahedron, 1990, 46(19), 6623-6632.
[http://dx.doi.org/10.1016/S0040-4020(01)87853-4]
[121]
Zanirato, P.; Cerini, S. On the utility of the azido transfer protocol: synthesis of 2- and 5-azido N-methylimidazoles, 1,3-thiazoles and N-methylpyrazole and their conversion to triazole–azole bisheteroaryls. Org. Biomol. Chem., 2005, 3(8), 1508-1513.
[http://dx.doi.org/10.1039/B500634A] [PMID: 15827649]
[122]
Watts, P.; Wiles, C. Recent advances in synthetic micro reaction technology. Chem. Commun., 2007, (5), 443-467.
[http://dx.doi.org/10.1039/B609428G] [PMID: 17252096]
[123]
Seeberger, P.; Geyer, K.; Gustafsson, T. Developing continuous-flow microreactors as tools for synthetic chemists. Synlett, 2009, 2009(15), 2382-2391.
[http://dx.doi.org/10.1055/s-0029-1217828]
[124]
Hartman, R.L.; Jensen, K.F. Microchemical systems for continuous-flow synthesis. Lab Chip, 2009, 9(17), 2495-2507.
[http://dx.doi.org/10.1039/b906343a] [PMID: 19680575]
[125]
Herath, A.; Dahl, R.; Cosford, N.D.P. Fully automated continuous flow synthesis of highly functionalized imidazo[1,2-a] heterocycles. Org. Lett., 2010, 12(3), 412-415.
[http://dx.doi.org/10.1021/ol902433a] [PMID: 20038130]
[126]
Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D.M. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production. Chemistry, 2008, 14(25), 7470-7477.
[http://dx.doi.org/10.1002/chem.200800707] [PMID: 18613163]
[127]
Delville, M.M.E.; Nieuwland, P.J.; Janssen, P.; Koch, K.; van Hest, J.C.M.; Rutjes, F.P.J.T. Continuous flow azide formation: Optimization and scale-up. Chem. Eng. J., 2011, 167(2-3), 556-559.
[http://dx.doi.org/10.1016/j.cej.2010.08.087]
[128]
Smith, C.J.; Smith, C.D.; Nikbin, N.; Ley, S.V.; Baxendale, I.R. Flow synthesis of organic azides and the multistep synthesis of imines and amines using a new monolithic triphenylphosphine reagent. Org. Biomol. Chem., 2011, 9(6), 1927-1937.
[http://dx.doi.org/10.1039/c0ob00813c] [PMID: 21283873]
[129]
Nagaki, A.; Ichinari, D.; Ashikari, Y.; Mandai, K.; Aizawa, Y.; Yoshida, J-I. A novel approach to functionalization of organic azides via generation and reactions of organolithiums bearing masked azides using flow microreactors. Angew. Chem. Int. Ed. Engl., 2020, 29(4), 1567-1571.
[130]
Ruff, J.K. Sulfur oxyfluoride derivatives. II. Inorg. Chem., 1965, 4(4), 567-570.
[http://dx.doi.org/10.1021/ic50026a027]
[131]
Cavender, C.J.; Shiner, V.J., Jr Trifluoromethanesulfonyl azide. Its reaction with alkyl amines to form alkyl azides. J. Org. Chem., 1972, 37(22), 3567-3569.
[http://dx.doi.org/10.1021/jo00795a052]
[132]
Alper, P.B.; Hung, S.C.; Wong, C.H. Metal catalyzed diazo transfer for the synthesis of azides from amines. Tetrahedron Lett., 1996, 37(34), 6029-6032.
[http://dx.doi.org/10.1016/0040-4039(96)01307-X]
[133]
Greenberg, W.A.; Priestley, E.S.; Sears, P.S.; Alper, P.B.; Rosenbohm, C.; Hendrix, M.; Hung, S.C.; Wong, C.H. Design and synthesis of new aminoglycoside antibiotics containing neamine as an optimal core structure: Correlation of antibiotic activity with in vitro inhibition of translation. J. Am. Chem. Soc., 1999, 121(28), 6527-6541.
[http://dx.doi.org/10.1021/ja9910356]
[134]
Liu, Q.; Tor, Y. Simple conversion of aromatic amines into azides. Org. Lett., 2003, 5(14), 2571-2572.
[http://dx.doi.org/10.1021/ol034919+] [PMID: 12841783]
[135]
Beckmann, H.S.G.; Wittmann, V. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: Driazole linkages from amines. Org. Lett., 2007, 9(1), 1-4.
[http://dx.doi.org/10.1021/ol0621506] [PMID: 17192070]
[136]
Hasser, A.; Stern, M.; Gottlieb, H.E. Utility of polymeric azide reagent in the formation of di-and triazidomethane. Their NMR spectra and the X-ray structure of derived triazoles. J. Org. Chem., 1990, 55, 2304-2306.
[http://dx.doi.org/10.1021/jo00295a014]
[137]
Yan, R.B.; Yang, F.; Wu, Y.; Zhang, L.H.; Ye, X.S. An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction. Tetrahedron Lett., 2005, 46(52), 8993-8995.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.103]
[138]
Goddard-Borger, E.D.; Stick, R.V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. Org. Lett., 2007, 9(19), 3797-3800.
[http://dx.doi.org/10.1021/ol701581g] [PMID: 17713918]
[139]
Goddard-Borger, E.D.; Stick, R.V. An efficient, inexpensive, and shelf-stable diazotransfer reagentz: Imidazole-1-sulfonyl azide hydrochloride.addition/correction. Org. Lett., 2011, 13(9), 2514.
[http://dx.doi.org/10.1021/ol2007555]
[140]
Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless, K.B.; Dong, J. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature, 2019, 574(7776), 86-89.
[http://dx.doi.org/10.1038/s41586-019-1589-1] [PMID: 31578481]
[141]
McGuiness, M.; Shechter, H. Azidotris(diethylamino)phosphonium bromide: A self-catalyzing diazo transfer reagent. Tetrahedron Lett., 1990, 31(35), 4987-4990.
[http://dx.doi.org/10.1016/S0040-4039(00)97785-2]
[142]
Klump, S.P.; Shechter, H. Conversions of primary amines to azides by n-butyllithium and azidotris(diethylamino)phosphonium bromide. Tetrahedron Lett., 2002, 43(46), 8421-8423.
[http://dx.doi.org/10.1016/S0040-4039(02)01444-2]
[143]
Kölmel, D.K.; Jung, N.; Bräse, S. Azides – diazonium ions – triazenes: Versatile nitrogen-rich functional groups. Aust. J. Chem., 2014, 67(3), 328-336.
[http://dx.doi.org/10.1071/CH13533]
[144]
Gescher, A.; Stevens, M.F.G.; Turnbull, C.P. Triazines and related products. Part 18. Decomposition of 1,2,3-benzotriazines and related triazenes with sodium azide in acetic acid: A convenient route to azidoarenes. J. Chem. Soc., Perkin Trans. 1, 1977, 103-106(2), 103.
[http://dx.doi.org/10.1039/p19770000103]
[145]
Liu, C.Y.; Knochel, P. Preparation of polyfunctional aryl azides from aryl triazenes. A new synthesis of ellipticine, 9-methoxyellipticine, isoellipticine, and 7-carbethoxyisoellipticine. J. Org. Chem., 2007, 72(19), 7106-7115.
[http://dx.doi.org/10.1021/jo070774z] [PMID: 17705535]
[146]
Yamamoto, H.; Ishihara, K.; Hasegawa, A. Single-pass reaction column system with super brønsted acid-loaded resin. Synlett, 2002, 8(8), 1296-1298.
[http://dx.doi.org/10.1055/s-2002-32964]
[147]
Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc., 1959, 81(8), 1903-1908.
[http://dx.doi.org/10.1021/ja01517a031]
[148]
Bräse, S.; Avemaria, F.; Zimmermann, V. Synthesis of aryl azides via post-cleavage modification of polymer-bound triazenes. Synlett, 2004, 7(7), 1163-1166.
[http://dx.doi.org/10.1055/s-2004-82298]
[149]
Bräse, S. The virtue of the multifunctional triazene linkers in the efficient solid-phase synthesis of heterocycle libraries. Acc. Chem. Res., 2004, 37(10), 805-816.
[http://dx.doi.org/10.1021/ar0200145] [PMID: 15491127]
[150]
Ito, M.; Yakishima, Y.; Ishikawa, R.; Kamimura, M. Development of 3-triazenylaryne and its application to iterative aryne reactions via triazenyl boronic acids. ChemComm, 2023, 59(96), 14249-14252.
[151]
Leyva, E.; Loredo-Carrillo, S.E.; López, L.I. Catalytic, ultrasonic and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and intramolecular N-arylation reactions. In: Green and Sustainable Process for Chemical and Environmental Science. Microwaves in Organic Synthesis. Inamuddin; Bodula, R.; Asiri, A.M., Eds.; Elsevier Publisher: USA, 2020.
[152]
Li, J.; Liu, M.; Li, Q.; Tian, H.; Shi, Y. A facile approach to spirocyclic 2-azido indolines via azidation of indoles with ceric ammonium nitrate. Org. Biomol. Chem., 2014, 12(48), 9769-9772.
[http://dx.doi.org/10.1039/C4OB01549E] [PMID: 25356684]
[153]
Wetzel, A.; Gagosz, F. Gold-catalyzed transformation of 2-alkynyl arylazides: Efficient access to the valuable pseudoindoxyl and indolyl frameworks. Angew. Chem. Int. Ed., 2011, 50(32), 7354-7358.
[http://dx.doi.org/10.1002/anie.201102707] [PMID: 21710517]
[154]
Prasad, P.K.; Kalshetti, R.G.; Reddi, R.N.; Kamble, S.P.; Sudalai, A. I2-mediated regioselective C-3 azidation of indoles. Org. Biomol. Chem., 2016, 14(11), 3027-3030.
[http://dx.doi.org/10.1039/C6OB00295A] [PMID: 26911555]
[155]
Liu, X.; He, K.; Gao, N.; Jiang, P.; Lin, J.; Jin, Y. A radical-mediated multicomponent cascade reaction for the synthesis of azide-biindole derivatives. Chem. Commun., 2021, 57(76), 9696-9699.
[http://dx.doi.org/10.1039/D1CC03853B] [PMID: 34555141]
[156]
Yamashiro, T.; Abe, T.; Tanioka, M.; Kamino, S.; Sawada, D. cis -3-Azido-2-methoxyindolines as safe and stable precursors to overcome the instability of fleeting 3-azidoindoles. Chem. Commun., 2021, 57(98), 13381-13384.
[http://dx.doi.org/10.1039/D1CC06033C] [PMID: 34821884]
[157]
Yamashiro, T.; Abe, T.; Sawada, D. Synthesis of 2-monosubstituted indolin-3-ones by cine-substitution of 3-azido-2-methoxyindolines. Org. Chem. Front., 2022, 9(7), 1897-1903.
[http://dx.doi.org/10.1039/D2QO00048B]
[158]
Yin, H.; Wang, T.; Jiao, N. Copper-catalyzed oxoazidation and alkoxyazidation of indoles. Org. Lett., 2014, 16(9), 2302-2305.
[http://dx.doi.org/10.1021/ol500793c] [PMID: 24735192]
[159]
Vita, M.V.; Waser, J. Azidation of β-keto esters and silyl enol ethers with a benziodoxole reagent. Org. Lett., 2013, 15(13), 3246-3249.
[http://dx.doi.org/10.1021/ol401229v] [PMID: 23773166]
[160]
Deng, Q.H.; Bleith, T.; Wadepohl, H.; Gade, L.H. Enantioselective iron-catalyzed azidation of β-keto esters and oxindoles. J. Am. Chem. Soc., 2013, 135(14), 5356-5359.
[http://dx.doi.org/10.1021/ja402082p] [PMID: 23537339]
[161]
Brand, J.P.; González, D.F.; Nicolai, S.; Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem. Commun., 2011, 47(1), 102-115.
[http://dx.doi.org/10.1039/C0CC02265A] [PMID: 20820531]
[162]
Li, Q.; Li, G.; Ma, S.; Feng, P.; Shi, Y. An approach to the skeleton of aspidophylline A. Org. Lett., 2013, 15(11), 2601-2603.
[http://dx.doi.org/10.1021/ol4007713] [PMID: 23697342]
[163]
Xu, M.M.; Cao, W.B.; Ding, R.; Li, H.Y.; Xu, X.P.; Ji, S.J. Dearomatization of indoles via azido radical addition and dioxygen trapping to access 2-azidoindolin-3-ols. Org. Lett., 2019, 21(16), 6217-6220.
[http://dx.doi.org/10.1021/acs.orglett.9b02009] [PMID: 31361144]
[164]
Wu, J.; Dou, Y.; Guillot, R.; Kouklovsky, C.; Vincent, G. Electrochemical dearomative 2,3-difunctionalization of indoles. J. Am. Chem. Soc., 2019, 141(7), 2832-2837.
[http://dx.doi.org/10.1021/jacs.8b13371] [PMID: 30672705]
[165]
Zhou, Y.; Xu, X.P.; Ji, S.J. Cooperation of Mn(III)/brønsted acid for the synthesis of quindoline derivatives via dehydroxylation/azidation/cyclization cascade of diaryl(1H-indol-2-yl)methanols with trimethylsilyl azide. Org. Lett., 2019, 21(7), 2039-2042.
[http://dx.doi.org/10.1021/acs.orglett.9b00164] [PMID: 30908059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy