Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Patent News

Study of Selected Patents on the Manufacture of Activated Carbon as Electrodes in Power Storage Devices

Author(s): Farahat Javed Khan and Sonali Sandeep Kokane*

Volume 14, Issue 2, 2024

Published on: 28 March, 2024

Page: [164 - 170] Pages: 7

DOI: 10.2174/0118779468279377240318035448

Price: $65

Abstract

The field of activated carbon has attracted many researchers. Our study of selected patents on the mentioned subject reveals an interesting fact, such as including the pore characteristics of the electrode material in the claims of a patent specification. The parameters, such as power density, energy density, capacitance and charge-recharge cycles, are mentioned for the various embodiments in the patent specification. The technolegal aspects of patenting in this field are concerned with the source of the carbon, the active material with which it is composited or activated, the process of treatment, which includes time, temperature and method, the resulting energy storage device, and the process of making such a device.

Graphical Abstract

[1]
Tsukada, H.; Onda, K.; Miyaji, H.; Shiraishi, S.; Endo, Y. Activated carbon for electrode of power storage device and method for manufacturing activated carbon for electrode of power storage device. U.S. Patent 10,049,824, 2018.
[2]
Yushin, G.; Kajdos, A. Battery electrode composition comprising biomass-derived carbon. U.S. Patent 11,380,896, 2022.
[3]
Liang, H.; Jha, S.; Mehta, S. Use of wasted and recycled carbon materials in the manufacture of electrodes. U.S. Patent 11,646,165, 2023.
[4]
Gondal, M.; Hasan, M. Fabrication of magnetic supercapacitor device using self-synthesized magnetic nanocrystals via facile sol-gel method. U.S. Patent 11,651,907, 2023.
[5]
Yushin, G.; Kajdos, A. Battery electrode composition comprising biomass-derived carbon. U.S. Patent 11,688,855, 2023.
[6]
Iwasaki, H.; Sugo, N.; Nishimura, S.; Ewaga, Y.; Aoki, H. Activated carbon and method for producing it. U.S. Patent 6,589,904, 2003.
[7]
Ahmad, A.; Gondal, M.A.; Hassan, M.; Iqbal, R.; Ullah, S.; Alzahrani, A.S.; Memon, W.A.; Mabood, F.; Melhi, S. Preparation and characterization of physically activated carbon and its energetic application for all-solid-state supercapacitors: A case study. ACS Omega, 2023, 8(24), 21653-21663.
[http://dx.doi.org/10.1021/acsomega.3c01065] [PMID: 37360487]
[8]
Gandla, D.; Wu, X.; Zhang, F.; Wu, C.; Tan, D.Q. High-performance and high-voltage supercapacitors based on n-doped mesoporous activated carbon derived from dragon fruit peels. ACS Omega, 2021, 6(11), 7615-7625.
[http://dx.doi.org/10.1021/acsomega.0c06171] [PMID: 33778272]
[9]
Garcia, H.E.; Riojas, C.A.A.; Monje, I.E.; López, E.O.; Pinedo, A.O.M.; Planes, G.A.; Moncada, B.A.M. Activated carbon electrodes for supercapacitors from purple corncob (Zea Mays L.). ACS Environ. Au, 2024.
[http://dx.doi.org/10.1021/acsenvironau.3c00048]
[10]
Mehdi, R.; Naqvi, S.R.; Khoja, A.H.; Hussain, R. Biomass derived activated carbon by chemical surface modification as a source of clean energy for supercapacitor application. Fuel, 2023, 348, 128529.
[http://dx.doi.org/10.1016/j.fuel.2023.128529]
[11]
Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S.K.; Grace, A.N. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientif. Rep., 2019, 9(1), 1-15.
[http://dx.doi.org/10.1038/s41598-019-52006-x]
[12]
Phiri, J.; Dou, J.; Vuorinen, T.; Gane, P.A.C.; Maloney, T.C. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega, 2019, 4(19), 18108-18117.
[http://dx.doi.org/10.1021/acsomega.9b01977] [PMID: 31720513]
[13]
Subramanian, V.; Luo, C.; Stephan, A.M.; Nahm, K.S.; Thomas, S.; Wei, B. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C, 2007, 111(20), 7527-7531.
[http://dx.doi.org/10.1021/jp067009t]
[14]
Li, S.; Xing, T.; Wang, Y.; Lu, P.; Kong, W.; Li, S.; Su, X.; Wei, X. Pore structure regulation and electrochemical performance characterization of activated carbon for supercapacitors. Front. Energy Res., 2021, 9, 680761.
[http://dx.doi.org/10.3389/fenrg.2021.680761]
[15]
Li, S.; Tan, X.; Li, H.; Gao, Y.; Wang, Q.; Li, G.; Guo, M. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor. Sci. Rep., 2022, 12(1), 1-17.
[http://dx.doi.org/10.1038/s41598-022-14214-w]
[16]
Yumak, T. Surface characteristics and electrochemical properties of activated carbon obtained from different parts of Pinus pinaster. Colloids Surf. A Physicochem. Eng. Asp., 2021, 625, 126982.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126982]
[17]
Kim, J.H.; Jung, S.C.; Lee, H.M.; Kim, B.J.; Julien, C.M.; Kim, J.H.; Jung, S.C.; Lee, H.M.; Kim, B.J. Comparison of pore structures of cellulose-based activated carbon fibers and their applications for electrode materials. Int. J. Mol. Sci., 2022, 23(7), 3680.
[http://dx.doi.org/10.3390/ijms23073680]
[18]
Xiao, Z.; Mei, Y.; Yuan, S.; Mei, H.; Xu, B.; Bao, Y.; Fan, L.; Kang, W.; Dai, F.; Wang, R.; Wang, L.; Hu, S.; Sun, D.; Zhou, H.C. Controlled hydrolysis of metal–organic frameworks: Hierarchical Ni/co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano, 2019, 13(6), 7024-7030.
[http://dx.doi.org/10.1021/acsnano.9b02106] [PMID: 31120727]
[19]
Sheberla, D.; Bachman, J.C.; Elias, J.S.; Sun, C.J.; Shao-Horn, Y.; Dincǎ, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater., 2016, 16(2), 220-224.
[http://dx.doi.org/10.1038/nmat4766]
[20]
Mehek, R.; Iqbal, N.; Noor, T.; Amjad, M.Z.B.; Ali, G.; Vignarooban, K.; Khan, M.A. Metal–organic framework based electrode materials for lithium-ion batteries: A review. RSC Advances, 2021, 11(47), 29247-29266.
[http://dx.doi.org/10.1039/D1RA05073G] [PMID: 35479575]
[21]
Tahir, M.A.; Arshad, N.; Akram, M. Recent advances in metal organic framework (MOF) as electrode material for super capacitor: A mini review. J. Energy Storage, 2022, 47, 103530.
[http://dx.doi.org/10.1016/j.est.2021.103530]
[22]
Shaheen, M.; Iqbal, M.Z.; Khan, M.W.; Siddique, S.; Aftab, S.; Wabaidur, S.M. Evaluation of a redox-active Cu-MOF and Co-MOF as electrode materials for battery–supercapacitor-type hybrid energy storage devices. Energy Fuels, 2023, 37(5), 4000-4009.
[http://dx.doi.org/10.1021/acs.energyfuels.2c03269]
[23]
Song, G.; Shi, Y.; Jiang, S.; Pang, H. Recent progress in MOF‐derived porous materials as electrodes for high‐performance lithium‐ion batteries. Adv. Funct. Mater., 2023, 33(42), 2303121.
[http://dx.doi.org/10.1002/adfm.202303121]
[24]
Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T.; Dincă, M.; Kornyshev, A.A.; Feng, G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater., 2020, 19(5), 552-558.
[http://dx.doi.org/10.1038/s41563-019-0598-7]
[25]
Cognet, M.; Gutel, T.; Peralta, D.; Maynadié, J.; Cambedouzou, J.; Carboni, M.; Meyer, D. A (NiMnCo)-metal-organic framework (MOF) as active material for Lithium-ion battery electrodes. Sci. Technol. Energy Transit., 2023, 78, 33.
[http://dx.doi.org/10.2516/stet/2023031]
[26]
Ma, Y.; He, J.; Kou, Z.; Elshahawy, A.M.; Hu, Y.; Guan, C.; Li, X.; Wang, J. MOF‐derived vertically aligned mesoporous Co3 O4 nanowires for ultrahigh capacity lithium‐ion batteries anodes. Adv. Mater. Interfaces, 2018, 5(14), 1800222.
[http://dx.doi.org/10.1002/admi.201800222]
[27]
Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett., 2012, 12(9), 4988-4991.
[http://dx.doi.org/10.1021/nl302618s] [PMID: 22881989]
[28]
B M, O.; G, K.; A S, S. Cobalt- and calcium-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors. Mater. Res. Innov., 2023, 1-10.
[http://dx.doi.org/10.1080/14328917.2023.2281022]
[29]
Xuan, W.; Ramachandran, R.; Zhao, C.; Wang, F. Synthesis of hollow nano-structured cobalt metalorganic framework for supercapacitor electrodes. 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2018 - Proceedings, 2018, pp. 42-46.
[http://dx.doi.org/10.1109/3M-NANO.2018.8552216]
[30]
Chu, X.; Meng, F.; Zhang, W.; Zhang, L.; Molin, S.; Jasinski, P.; Zheng, W. In situ transformation boosts the pseudocapacitance of CuNi-MOF via cooperative orientational and electronic governing. Mater. Res. Lett., 2023, 11(6), 446-453.
[http://dx.doi.org/10.1080/21663831.2023.2181111]
[31]
German, R.; Sari, A.; Venet, P.; Ayadi, M.; Briat, O.; Vinassa, J.M. Prediction of supercapacitors floating ageing with surface electrode interface based ageing law. Microelectron. Reliab., 2014, 54(9-10), 1813-1817.
[http://dx.doi.org/10.1016/j.microrel.2014.07.105]
[32]
Bo, Z.; Zhu, W.; Ma, W.; Wen, Z.; Shuai, X.; Chen, J.; Yan, J.; Wang, Z.; Cen, K.; Feng, X. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater., 2013, 25(40), 5799-5806.
[http://dx.doi.org/10.1002/adma.201301794] [PMID: 23943378]
[33]
Chen, K.; Liu, F.; Liang, X.; Xue, D. Surface–interface reaction of supercapacitor electrode materials. Surf. Rev. Lett., 2017, 24(03), 1730005.
[http://dx.doi.org/10.1142/S0218625X17300052]
[34]
Sharma, S.; Kaur, G.; Dalvi, A. Improving interfaces in all-solid-state supercapacitors using polymer-added activated carbon electrodes. Batteries, 2023, 9(2), 81.
[http://dx.doi.org/10.3390/batteries9020081]
[35]
Asl, M.S.; Hadi, R.; Salehghadimi, L.; Tabrizi, A.G.; Farhoudian, S.; Babapoor, A.; Pahlevani, M. Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives. J. Energy Storage, 2022, 50, 104223.
[http://dx.doi.org/10.1016/j.est.2022.104223]
[36]
Pang, Y.; Pan, J.; Yang, J.; Zheng, S.; Wang, C. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review. Electrochem. Energy Rev., 2021, 4(2), 169-193.
[http://dx.doi.org/10.1007/s41918-020-00092-1]
[37]
Seol, J.; Balasubramaniam, R.; Aravindan, V.; Thangavel, R.; Lee, Y-S. Ameliorating the electrode/electrolyte interface compatibility in Li-ion solid-state batteries with plasticizer. J. Alloys Compd., 2022, 927, 167077.
[http://dx.doi.org/10.1016/j.jallcom.2022.167077]
[38]
Liang, J.Y.; Zeng, X.X.; Zhang, X.D.; Wang, P.F.; Ma, J.Y.; Yin, Y.X.; Wu, X.W.; Guo, Y.G.; Wan, L.J. Mitigating interfacial potential drop of cathode–solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J. Am. Chem. Soc., 2018, 140(22), 6767-6770.
[http://dx.doi.org/10.1021/jacs.8b03319] [PMID: 29775293]
[39]
Pervez, S.A.; Cambaz, M.A.; Thangadurai, V.; Fichtner, M. Interface in solid-state lithium battery: Challenges, progress, and outlook. ACS Appl. Mater. Interfaces, 2019, 11(25), 22029-22050.
[http://dx.doi.org/10.1021/acsami.9b02675] [PMID: 31144798]
[40]
Hassler, J.W.; McMinn, W.E. Active carbon from paper pulp. black liquor. U.S. Patent 2,632,738, 1953.
[41]
Karnan, M.; Raj, A.G.K.; Subramani, K.; Santhoshkumar, S.; Sathish, M. The fascinating supercapacitive performance of activated carbon electrodes with enhanced energy density in multifarious electrolytes. Sustain. Energy Fuels, 2020, 4(6), 3029-3041.
[http://dx.doi.org/10.1039/C9SE01298B]
[42]
Yu, J.; Fu, N.; Zhao, J.; Liu, R.; Li, F.; Du, Y.; Yang, Z. High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons. ACS Omega, 2019, 4(14), 15904-15911.
[http://dx.doi.org/10.1021/acsomega.9b01916] [PMID: 31592460]
[43]
Leng, C.; Zhao, Z.; Song, Y.; Sun, L.; Fan, Z.; Yang, Y.; Liu, X.; Wang, X.; Qiu, J. 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett., 2021, 13(1), 8.
[http://dx.doi.org/10.1007/s40820-020-00535-w] [PMID: 34138191]
[44]
Olabi, A.G.; Abbas, Q.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Sayed, E.T. Carbon-based materials for supercapacitors: Recent progress, challenges and barriers. Batteries, 2022, 9(1), 19.
[http://dx.doi.org/10.3390/batteries9010019]
[45]
Lee, J.H.; Choi, B.H.; Lee, Y.C.; Kim, H.M.; Bang, J.H.; Lee, B.H.; Choi, Y.C.; Lee, H.M.; Kim, B.J. A study on superior mesoporous activated carbons for ultra power density supercapacitor from biomass precursors. Int. J. Mol. Sci., 2022, 23(15), 8537.
[http://dx.doi.org/10.3390/ijms23158537]
[46]
Mandal, M.; Subudhi, S.; Alam, I.; Subramanyam, B.V.R.S.; Patra, S.; Das, S.; Raiguru, J.; Mahapatra, A.; Mahanandia, P. Simple and cost-effective synthesis of activated carbon anchored by functionalized multiwalled carbon nanotubes for high-performance supercapacitor electrodes with high energy density and power density. J. Electron. Mater., 2021, 50(5), 2879-2889.
[http://dx.doi.org/10.1007/s11664-021-08796-w]
[47]
Ma, Y.; Chen, D.; Fang, Z.; Zheng, Y.; Li, W.; Xu, S.; Lu, X.; Shao, G.; Liu, Q.; Yang, W. High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles. Proc. Natl. Acad. Sci., 2021, 118(21), e2105610118.
[http://dx.doi.org/10.1073/pnas.2105610118] [PMID: 34011610]
[48]
Dou, Q.; Park, H.S. Perspective on high‐energy carbon‐based supercapacitors. Energy Environ. Mater., 2020, 3(3), 286-305.
[http://dx.doi.org/10.1002/eem2.12102]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy