Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Genetic Factors and MicroRNAs in the Development of Gallbladder Cancer: The Prospective Clinical Targets

Author(s): Roshni Quraishi, Somali Sanyal, Medha Dwivedi, Monika Moitra and Manish Dwivedi*

Volume 25, Issue 6, 2024

Published on: 27 March, 2024

Page: [375 - 387] Pages: 13

DOI: 10.2174/0113894501182288240319074330

Price: $65

Abstract

Gallbladder cancer (GBC) is an uncommon condition in which malignant (cancer) cells are detected in gallbladder tissue. Cancer is often triggered when normal cells turn malignant and begin to spread. Cancer can also be caused by genetic anomalies that result in uncontrolled cell proliferation and tumor development. MicroRNAs (also known as miRNAs or miRs) are a group of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which play a key role in post-transcriptional gene regulation. These miRNAs serve as negative gene regulators by supervising target genes and regulating biological processes, including cell proliferation, migration, invasion, and apoptosis. Cancer development and progression relate to aberrant miRNA expression. This review demonstrated the implication of various genetic factors and microRNAs in developing and regulating GBC. This suggests the potential of genes and RNAs as the diagnostic, prognostic, and therapeutic targets in gallbladder cancer.

Next »
Graphical Abstract

[1]
Hundal R, Shaffer EA. Gallbladder cancer: Epidemiology and outcome. Clin Epidemiol 2014; 6: 99-109.
[PMID: 24634588]
[2]
Ueno H, Okusaka T, Ikeda M, Takezako Y, Morizane C. Phase II study of S-1 in patients with advanced biliary tract cancer. Br J Cancer 2004; 91(10): 1769-74.
[http://dx.doi.org/10.1038/sj.bjc.6602208] [PMID: 15505626]
[3]
Acquaviva G, de Biase D, Diquigiovanni C, et al. BRAF exon 15 mutations in papillary carcinoma and adjacent thyroid parenchyma: A search for the early molecular events associated with tumor development. Cancers 2020; 12(2): 430.
[http://dx.doi.org/10.3390/cancers12020430] [PMID: 32059434]
[4]
Saito H, Takada T, Miyazaki M, et al. Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas. J Hepatobiliary Pancreat Surg 2008; 15(1): 63-8.
[http://dx.doi.org/10.1007/s00534-007-1281-y] [PMID: 18274845]
[5]
Yin Z, Yang G, Qian B, Liang T, Guo L. The multiple molecular signatures in gallbladder carcinoma: From basic studies to clinical application. J Bioinform Syst Biol 2019; 2(2)
[http://dx.doi.org/10.26502/jbsb.5107006]
[6]
Liu Y, Xu F, Wang Y, et al. Mutations in exon 8 of TP53 are associated with shorter survival in patients with advanced lung cancer. Oncol Lett 2019; 18(3): 3159-69.
[http://dx.doi.org/10.3892/ol.2019.10625] [PMID: 31452792]
[7]
Ohtsuka M, Ling H, Doki Y, Mori M, Calin G. MicroRNA processing and human cancer. J Clin Med 2015; 4(8): 1651-67.
[http://dx.doi.org/10.3390/jcm4081651] [PMID: 26308063]
[8]
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[9]
Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet 5: 23, 2014., Di Leva G and Croce CM: miRNA profiling of cancer. Curr Opin Genet Dev 2013; 23: 3-11.
[http://dx.doi.org/10.1016/j.gde.2013.01.004]
[10]
Srivastava SP, Koya D, Kanasaki K. MicroRNAs in kidney fibrosis and diabetic nephropathy: Roles on EMT and EndMT. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/125469] [PMID: 24089659]
[11]
Shamsuzzama KL, Haque R, Nazir A. Role of microRNA Let-7 in modulating multifactorial aspect of neurodegenerative diseases: An overview. Mol Neurobiol 2015.
[PMID: 25823513]
[12]
Orellana E, Kasinski A. MicroRNAs in cancer: A historical perspective on the path from discovery to therapy. Cancers 2015; 7(3): 1388-405.
[http://dx.doi.org/10.3390/cancers7030842] [PMID: 26226002]
[13]
Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J Hum Genet 2010; 55(8): 495-9.
[http://dx.doi.org/10.1038/jhg.2010.54] [PMID: 20520619]
[14]
Li G, Pu Y. MicroRNA signatures in total peripheral blood of gallbladder cancer patients. Tumour Biol 2015; 36(9): 6985-90.
[http://dx.doi.org/10.1007/s13277-015-3412-4] [PMID: 25861754]
[15]
Bekris LM, Leverenz JB. The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener Dis Manag 2015; 5(1): 61-74.
[http://dx.doi.org/10.2217/nmt.14.52] [PMID: 25711455]
[16]
Bertoli G, Cava C, Castiglioni I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015; 5(10): 1122-43.
[http://dx.doi.org/10.7150/thno.11543] [PMID: 26199650]
[17]
Ha TY. MicroRNAs in human diseases: From lung, liver and kidney diseases to infectious disease, sickle cell disease and endometrium disease. Immune Netw 2011; 11(6): 309-23.
[http://dx.doi.org/10.4110/in.2011.11.6.309] [PMID: 22346770]
[18]
Xue J, Chen Z, Gu X, Zhang Y, Zhang W. MicroRNA-148a inhibits migration of breast cancer cells by targeting MMP-13. Tumour Biol 2015.
[PMID: 26298724]
[19]
Tong Z, Liu N, Lin L, Guo X, Yang D, Zhang Q. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother 2015; 75: 129-36.
[http://dx.doi.org/10.1016/j.biopha.2015.07.036] [PMID: 26297542]
[20]
Gupta A, Sharma A, Yadav A, et al. Evaluation of miR-27a, miR-181a, and miR-570 genetic variants with gallbladder cancer susceptibility and treatment outcome in a North Indian population. Mol Diagn Ther 2015; 19(5): 317-27.
[http://dx.doi.org/10.1007/s40291-015-0159-y] [PMID: 26288960]
[21]
Kapoor VK, McMichael AJ. Gallbladder cancer: An ‘Indian’ disease. Natl Med J India 2003; 16(4): 209-13.
[PMID: 14606770]
[22]
Dikshit R, Mhatre SS, Nagrani RT, et al. Place of birth and risk of gallbladder cancer in India. Indian J Cancer 2016; 53(2): 304-8.
[http://dx.doi.org/10.4103/0019-509X.197723] [PMID: 28071634]
[23]
Singh J, Shukla D, Gupta S, Shrivastav BR, Tiwari PK. Clinical epidemiology of gallbladder cancer in North-Central India and association of immunological markers, NLR, MLR and PLR in the diagnostic/prognostic prediction of GBC. Cancer Treat Res Commun 2021; 28: 100431.
[http://dx.doi.org/10.1016/j.ctarc.2021.100431] [PMID: 34333247]
[24]
Jain K, Sreenivas V, Velpandian T, Kapil U, Garg PK. Risk factors for gallbladder cancer: A case–control study. Int J Cancer 2013; 132(7): 1660-6.
[http://dx.doi.org/10.1002/ijc.27777] [PMID: 22890893]
[25]
Sheth S, Bedford A, Chopra S. Primary gallbladder cancer: Recognition of risk factors and the role of prophylactic cholecystectomy. Am J Gastroenterol 2000; 95(6): 1402-10.
[http://dx.doi.org/10.1111/j.1572-0241.2000.02070.x] [PMID: 10894571]
[26]
Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: Geographical distribution and risk factors. Int J Cancer 2006; 118(7): 1591-602.
[http://dx.doi.org/10.1002/ijc.21683] [PMID: 16397865]
[27]
Cancer Research UK. 2023.Types of gallbladder cancer Available from: https://www.cancerresearchuk.org/about-cancer/gallbladder-cancer/types (Accessed on 2023 September 25).
[28]
Mukkamalla SKR, Kashyap S, Recio-Boiles A, Babiker HM. Gallbladder cancer. StatPearls In: StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[29]
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23(22): 3978-98.
[http://dx.doi.org/10.3748/wjg.v23.i22.3978] [PMID: 28652652]
[30]
Barreto SG, Haga H, Shukla PJ. Hormones and gallbladder cancer in women. Indian J Gastroenterol 2009; 28(4): 126-30.
[http://dx.doi.org/10.1007/s12664-009-0046-8] [PMID: 19937419]
[31]
Ligresti G, Militello L, Steelman LS, et al. PIK3CA mutations in human solid tumors: Role in sensitivity to various therapeutic approaches. Cell Cycle 2009; 8(9): 1352-8.
[http://dx.doi.org/10.4161/cc.8.9.8255] [PMID: 19305151]
[32]
Yin Z, Yang G, Qian B, Liang T, Guo L. The multiple molecular signatures in gallbladder carcinoma: From basic studies to clinical application. J of Bioinfo Sys Bio 2019; 28-42.
[33]
Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998; 47(1): 119-24.
[http://dx.doi.org/10.2337/diab.47.1.119] [PMID: 9421384]
[34]
Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci 2008; 105(36): 13568-73.
[http://dx.doi.org/10.1073/pnas.0806268105] [PMID: 18757741]
[35]
Romero R, Sánchez-Rivera FJ, Westcott PMK, et al. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat Cancer 2020; 1(6): 589-602.
[http://dx.doi.org/10.1038/s43018-020-0071-1] [PMID: 34414377]
[36]
Zhao Y, Li H, Fang S, et al. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016; 44(D1): D203-8.
[http://dx.doi.org/10.1093/nar/gkv1252] [PMID: 26586799]
[37]
Saetta A, Papanastasiou P, Michalopoulos N, et al. Mutational analysis of BRAF in gallbladder carcinomas in association with K-ras and p53 mutations and microsatellite instability. Virchows Arch 2004; 445(2): 179-82.
[http://dx.doi.org/10.1007/s00428-004-1046-9] [PMID: 15221372]
[38]
Huang C, Yokomise H, Miyatake A. Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol 2007; 3(1): 83-93.
[http://dx.doi.org/10.2217/14796694.3.1.83] [PMID: 17280505]
[39]
Sekine S, Shimada Y, Nagata T, et al. Role of aquaporin-5 in gallbladder carcinoma. Eur Surg Res 2013; 51(3-4): 108-17.
[http://dx.doi.org/10.1159/000355675] [PMID: 24217644]
[40]
Zhao S, Yao D, Chen J, Ding N. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genet Test Mol Biomarkers 2013; 17(8): 631-6.
[http://dx.doi.org/10.1089/gtmb.2013.0085] [PMID: 23819812]
[41]
Chang Y, Liu C, Yang J, et al. miR-20a triggers metastasis of gallbladder carcinoma. J Hepatol 2013; 59(3): 518-27.
[http://dx.doi.org/10.1016/j.jhep.2013.04.034] [PMID: 23665284]
[42]
Gao L, Yang Y, Xu H, et al. miR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol 2014; 35(8): 8309-18.
[http://dx.doi.org/10.1007/s13277-014-2092-9] [PMID: 24859837]
[43]
Peng HH, Zhang YD, Gong LS, Liu WD, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. OncoTargets Ther 2013; 6: 1625-30.
[PMID: 24250228]
[44]
Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65(14): 6029-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[45]
Karimi Kurdistani Z, Saberi S, Tsai KW, Mohammadi M. MicroRNA-21: Mechanisms of oncogenesis and its application in diagnosis and prognosis of gastric cancer. Arch Iran Med 2015; 18(8): 524-36.
[PMID: 26265521]
[46]
Lin PL, Wu DW, Huang CC, et al. MicroRNA-21 promotes tumour malignancy via increased nuclear translocation of β-catenin and predicts poor outcome in APC-mutated but not in APC-wild-type colorectal cancer. Carcinogenesis 2014; 35(10): 2175-82.
[http://dx.doi.org/10.1093/carcin/bgu110] [PMID: 24832083]
[47]
Kitamura T, Connolly K, Ruffino L, et al. The therapeutic effect of histone deacetylase inhibitor PCI-24781 on gallbladder carcinoma in BK5.erbB2 mice. J Hepatol 2012; 57(1): 84-91.
[http://dx.doi.org/10.1016/j.jhep.2012.01.018] [PMID: 22326466]
[48]
Qiang XF, Zhang ZW, Liu Q, et al. miR-20a promotes prostate cancer invasion and migration through targeting ABL2. J Cell Biochem 2014; 115(7): 1269-76.
[http://dx.doi.org/10.1002/jcb.24778] [PMID: 24464651]
[49]
Wu Q, Yang Z, Wang F, et al. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci 2013; 126(Pt 18): jcs.127944.
[http://dx.doi.org/10.1242/jcs.127944] [PMID: 23868977]
[50]
Osaka E, Kelly AD, Spentzos D, et al. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2015; 6(11): 9125-39.
[http://dx.doi.org/10.18632/oncotarget.3273] [PMID: 25823817]
[51]
Peng Y, Dong W, Lin T, et al. MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1. Oncotarget 2015; 6(18): 16043-58.
[http://dx.doi.org/10.18632/oncotarget.3755] [PMID: 25965824]
[52]
Wang P, Zhu C, Ma M, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 2015; 6(25): 21148-58.
[http://dx.doi.org/10.18632/oncotarget.4125] [PMID: 26020803]
[53]
Kono H, Nakamura M, Ohtsuka T, et al. High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma. Oncol Rep 2013; 30(1): 17-24.
[http://dx.doi.org/10.3892/or.2013.2443] [PMID: 23660842]
[54]
Kono H, Nakamura M, Ohtsuka T, et al. MicroRNA-155 expression in gallbladder carcinoma and pancreaticobiliary maljunction. J Surg Res 2012; 172(2): 341.
[http://dx.doi.org/10.1016/j.jss.2011.11.708]
[55]
Liu R, Li J, Teng Z, Zhang Z, Xu Y. Overexpressed microRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1. PLoS One 2013; 69: e68982.
[56]
Jiang L, Mao P, Song L, et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 2010; 177(1): 29-38.
[http://dx.doi.org/10.2353/ajpath.2010.090812] [PMID: 20472885]
[57]
Wang PY, Gong HT, Li BF, et al. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett 2013; 6(6): 1681-6.
[http://dx.doi.org/10.3892/ol.2013.1593] [PMID: 24260062]
[58]
Ma C, He D, Tian P, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci 2022; 119(6): e2114006119.
[http://dx.doi.org/10.1073/pnas.2114006119] [PMID: 35105806]
[59]
Du C, Weng X, Hu W, et al. Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res 2015; 34(1): 67.
[http://dx.doi.org/10.1186/s13046-015-0182-1] [PMID: 26126858]
[60]
Qiu Y, Luo X, Kan T, et al. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst 2014; 10(3): 679-85.
[http://dx.doi.org/10.1039/c3mb70479c] [PMID: 24445397]
[61]
Jia W, Wu Y, Zhang Q, Gao G, Zhang C, Xiang Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Mol Clin Oncol 2015; 3(4): 851-8.
[http://dx.doi.org/10.3892/mco.2015.560] [PMID: 26171195]
[62]
Yu J, Wang Y, Dong R, Huang X, Ding S, Qiu H. Circulating microRNA-218 was reduced in cervical cancer and correlated with tumor invasion. J Cancer Res Clin Oncol 2012; 138(4): 671-4.
[http://dx.doi.org/10.1007/s00432-012-1147-9] [PMID: 22237456]
[63]
Liu Z, Xu Y, Long J, Guo K, Ge C, Du R. microRNA-218 suppresses the proliferation, invasion and promotes apoptosis of pancreatic cancer cells by targeting HMGB1. Chin J Cancer Res 2015; 27(3): 247-57.
[PMID: 26157321]
[64]
Han G, Fan M, Zhang X. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun 2015; 456(3): 804-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.026] [PMID: 25511701]
[65]
Tian H, Hou L, Xiong YM, et al. miR-218 suppresses tumor growth and enhances the chemosensitivity of esophageal squamous cell carcinoma to cisplatin. Oncol Rep 2015; 33(2): 981-9.
[http://dx.doi.org/10.3892/or.2014.3657] [PMID: 25482044]
[66]
Cheng Y, Yang X, Deng X, et al. MicroRNA-218 inhibits bladder cancer cell proliferation, migration, and invasion by targeting BMI-1. Tumour Biol 2015; 36(10): 8015-23.
[http://dx.doi.org/10.1007/s13277-015-3532-x] [PMID: 25967457]
[67]
Zhang P, Cao P, Zhu X, et al. Upregulation of long non-coding RNA HOXA-AS2 promotes proliferation and induces epithelial-mesenchymal transition in gallbladder carcinoma. Oncotarget 2017; 8(20): 33137-43.
[http://dx.doi.org/10.18632/oncotarget.16561] [PMID: 28388535]
[68]
Ma M-Z, Chu B-F, Zhang Y, et al. Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis 2015; 6(1): e1583.
[http://dx.doi.org/10.1038/cddis.2014.541] [PMID: 25569100]
[69]
Zu Y, Ban J, Xia Z, et al. Genetic variation in a miR-335 binding site in BIRC5 alters susceptibility to lung cancer in Chinese Han populations. Biochem Biophys Res Commun 2013; 430(2): 529-34.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.001] [PMID: 23232114]
[70]
Dohi O, Yasui K, Gen Y, et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 2013; 42(2): 411-8.
[http://dx.doi.org/10.3892/ijo.2012.1724] [PMID: 23229728]
[71]
Sun Z, Zhang Z, Liu Z, Qiu B, Liu K, Dong G. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol 2014; 31(6): 982.
[http://dx.doi.org/10.1007/s12032-014-0982-8] [PMID: 24829139]
[72]
Jin K, Xiang Y, Tang J, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol 2014; 35(2): 1503-10.
[http://dx.doi.org/10.1007/s13277-013-1207-z] [PMID: 24078448]
[73]
Basu N, Skinner HG, Litzelman K, Vanderboom R, Baichoo E, Boardman LA. Telomeres and telomere dynamics: Relevance to cancers of the GI tract. Expert Rev Gastroenterol Hepatol 2013; 7(8): 733-48.
[http://dx.doi.org/10.1586/17474124.2013.848790] [PMID: 24161135]
[74]
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: A potential therapeutic target in human cancer. Cell Death Dis 2014; 5(7): e1327.
[http://dx.doi.org/10.1038/cddis.2014.270] [PMID: 25032850]
[75]
Pan Y, Wang R, Zhang F, et al. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int J Clin Exp Pathol 2015; 8: 384-93.
[76]
Lohcharoenkal W, Li C, Das Mahapatra K, et al. MiR-130a acts as a tumor suppressor MicroRNA in cutaneous squamous cell carcinoma and regulates the activity of the BMP/SMAD pathway by suppressing ACVR1. J Invest Dermatol 2021; 141(8): 1922-31.
[http://dx.doi.org/10.1016/j.jid.2021.01.028] [PMID: 33766507]
[77]
Li B, Huang P, Qiu J, Liao Y, Hong J, Yuan Y. MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis. Med Oncol 2014; 31(10): 230.
[http://dx.doi.org/10.1007/s12032-014-0230-2] [PMID: 25218269]
[78]
Ma M, Li C, Zhang Y, et al. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol Cancer 2014; 13(1): 156.
[http://dx.doi.org/10.1186/1476-4598-13-156] [PMID: 24953832]
[79]
Zhou H, Guo W, Zhao Y, et al. Micro RNA -135a acts as a putative tumor suppressor by directly targeting very low density lipoprotein receptor in human gallbladder cancer. Cancer Sci 2014; 105(8): 956-65.
[http://dx.doi.org/10.1111/cas.12463] [PMID: 24903309]
[80]
Dang Z, Xu W, Lu P, et al. MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int J Biol Sci 2014; 10(7): 733-45.
[http://dx.doi.org/10.7150/ijbs.8097] [PMID: 25013381]
[81]
Shin JY, Kim YI, Cho SJ, et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS One 2014; 9(1): e85205.
[http://dx.doi.org/10.1371/journal.pone.0085205] [PMID: 24465504]
[82]
de Ceuninck van Capelle C, Spit M, ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55(6): 691-715.
[http://dx.doi.org/10.1080/10409238.2020.1828260] [PMID: 33081543]
[83]
Tang W, Jiang Y, Mu X, Xu L, Cheng W, Wang X. MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell Signal 2014; 26(7): 1420-6.
[http://dx.doi.org/10.1016/j.cellsig.2014.03.002] [PMID: 24607788]
[84]
Yang X, Zhang XF, Lu X, et al. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology 2014; 59(5): 1874-85.
[http://dx.doi.org/10.1002/hep.26941] [PMID: 24259426]
[85]
Liu P, Tang H, Chen B, et al. miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett 2015; 357(1): 384-92.
[http://dx.doi.org/10.1016/j.canlet.2014.11.050] [PMID: 25434799]
[86]
Huading B. MicroRNA-26a acts as a tumor suppressor inhibiting gallbladder cancer cell proliferation by directly targeting HMGA2. Intern J Oncol 2014; 44(6): 2050-8.
[http://dx.doi.org/10.3892/ijo.2014.2360]
[87]
Zhou H, Guo W, Zhao Y, et al. MicroRNA-26a acts as a tumor suppressor inhibiting gallbladder cancer cell proliferation by directly targeting HMGA2. Int J Oncol 2014; 44(6): 2050-8.
[http://dx.doi.org/10.3892/ijo.2014.2360] [PMID: 24682444]
[88]
Katakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest 2010; 28(10): 1024-30.
[http://dx.doi.org/10.3109/07357907.2010.512596] [PMID: 20874002]
[89]
Lin F, Wang X, Jie Z, et al. Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J Huazhong Univ Sci Technolog Med Sci 2011; 31(4): 509-14.
[http://dx.doi.org/10.1007/s11596-011-0481-5] [PMID: 21823013]
[90]
Shen C, Yang H, Liu H, Wang X, Zhang Y, Xu R. Inhibitory effect and mechanisms of microRNA-146b-5p on the proliferation and metastatic potential of Caski human cervical cancer cells. Mol Med Rep 2015; 11(5): 3955-61.
[http://dx.doi.org/10.3892/mmr.2015.3151] [PMID: 25572123]
[91]
Cai J, Xu L, Cai Z, Wang J, Zhou B, Hu H. MicroRNA-146b-5p inhibits the growth of gallbladder carcinoma by targeting epidermal growth factor receptor. Mol Med Rep 2015; 12(1): 1549-55.
[http://dx.doi.org/10.3892/mmr.2015.3461] [PMID: 25760482]
[92]
Letelier P, García P, Leal P, et al. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer. Int J Clin Exp Pathol 2014; 7: 1849-67.
[93]
Fang Z, Tang J, Bai Y, et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res 2015; 34(1): 86.
[http://dx.doi.org/10.1186/s13046-015-0198-6] [PMID: 26297223]
[94]
Farra R, Grassi M, Grassi G, Dapas B. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma. World J Gastroenterol 2015; 21(30): 8994-9001.
[http://dx.doi.org/10.3748/wjg.v21.i30.8994] [PMID: 26290628]
[95]
Stolfi C, Pacifico T, Luiz-Ferreira A, Monteleone G, Laudisi F. Anthelmintic drugs as emerging immune modulators in cancer. Int J Mol Sci 2023; 24(7): 6446.
[http://dx.doi.org/10.3390/ijms24076446] [PMID: 37047419]
[96]
Li H, Gao J, Zhang S. Functional and clinical characteristics of cell adhesion molecule CADM1 in cancer. Front Cell Dev Biol 2021; 9: 714298.
[http://dx.doi.org/10.3389/fcell.2021.714298] [PMID: 34395444]
[97]
Lu W, Cao Y, Zhang Y, et al. Up-regulation of PKM2 promote malignancy and related to adverse prognostic risk factor in human gallbladder cancer. Sci Rep 2016; 6(1): 26351.
[http://dx.doi.org/10.1038/srep26351] [PMID: 27283076]
[98]
Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci 2022; 23(7): 3544.
[http://dx.doi.org/10.3390/ijms23073544] [PMID: 35408903]
[99]
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452(7184): 181-6.
[http://dx.doi.org/10.1038/nature06667] [PMID: 18337815]
[100]
Geng ZM, Zhang M, Pan XT, Wang L. Bcl-2 gene silencing by RNA interference inhibits the growth of the human gallbladder carcinoma cell line GBC-SD in vitro and in vivo. Oncol Rep 2013; 30(2): 793-800.
[http://dx.doi.org/10.3892/or.2013.2539] [PMID: 23784204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy