Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ionic Liquid-promoted the Synthesis of Structurally Diverse Pyrans, Pyran-annulated Heterocycles, and Spiropyrans

Author(s): Bubun Banerjee*, Manmeet Kaur, Anu Priya, Aditi Sharma and Arvind Singh

Volume 28, Issue 7, 2024

Published on: 18 March, 2024

Page: [526 - 544] Pages: 19

DOI: 10.2174/0113852728300880240223063813

Price: $65

Abstract

During the last two decades, non-conventional solvents, especially various ionic liquids, have been utilized as efficient reaction media as they can play a dual role as solvents and promoters. The use of ionic liquids as a medium increases the efficiency of the reactions due to their inherent features like high thermal stability, ability to act as a catalyst, non-volatility, high polarity, reusability, ability to dissolve a large number of organic and inorganic compounds, etc. Under this direction, various structurally diverse ionic liquids have been employed as efficient reaction media for various organic transformations. On the other hand, among many other important synthetic scaffolds, during the last two decades, the synthesis of pyrans, pyran-annulated heterocyclic scaffolds, and spiropyrans have gained huge attention as they possess a wide range of significant biological efficacies, which include antibacterial, anticancer, antimycobacterial, antioxidant, xanthine oxidase inhibitory, etc. activities. Almost every day, many new methods are being added to the literature related to synthesizing pyrans, pyran- annulated heterocyclic scaffolds, and spiropyrans. Among many other alternatives, various ionic liquids have also played an efficient role as promoters for synthesizing structurally diverse pyrans, pyran-annulated heterocyclic scaffolds, and spiropyrans. In this review, we have summarized a large number of literature reported during the last two decades related to the ionic liquid-promoted synthesis of pyrans, pyran-annulated heterocyclic scaffolds, and spiropyran derivatives.

Graphical Abstract

[1]
Mukhopadhyay, C.; Banerjee, B. Non-conventional Solvents: Organic Synthesis, Natural Products Isolation, Drug Design, Industry and the Environment; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783111243993]
[2]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[3]
Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci., 1914, 8, 405-422.
[4]
Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev., 2008, 108(7), 2238-2264.
[http://dx.doi.org/10.1021/cr0680686] [PMID: 18564878]
[5]
Wasserscheid, P.; Keim, W. Ionic liquids-New “Solutions” for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453]
[6]
Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, S.C. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev., 2011, 40(3), 1383-1403.
[http://dx.doi.org/10.1039/C004968A] [PMID: 21116514]
[7]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[8]
Mukhopadhyay, C.; Banerjee, B. Non-conventional Solvents: Ionic liquids, deep eutectic solvents, crown ethers, fluorinated solvents, glycols and glycerol; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783110788129]
[9]
MacFarlane, D.R.; Pringle, J.M.; Johansson, K.M.; Forsyth, S.A.; Forsyth, M. Lewis base ionic liquids. Chem. Commun., 2006, 18(18), 1905-1917.
[http://dx.doi.org/10.1039/b516961p] [PMID: 16767234]
[10]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83(10), 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[11]
Banerjee, B. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2017, 2(27), 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[12]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: An ideal combination for organic transformations. ChemistrySelect, 2018, 3(19), 5283-5295.
[http://dx.doi.org/10.1002/slct.201800326]
[13]
Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248(21-24), 2459-2477.
[http://dx.doi.org/10.1016/j.ccr.2004.04.015]
[14]
Minami, I. Ionic liquid lubricants. In: Encyclopedia of Tribology; Wang, Q.J.; Chung, Y.W., Eds.; Springer: Boston, MA, 2013.
[http://dx.doi.org/10.1007/978-0-387-92897-5_955]
[15]
Yao, T.; Li, H.; Ren, Y.; Feng, M.; Hu, Y.; Yan, H.; Peng, L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech., 2022, 282, 120034.
[http://dx.doi.org/10.1016/j.seppur.2021.120034]
[16]
Yao, T.; Li, Q.; Li, H.; Peng, L.; Liu, Y.; Du, K. Extractive resolution of racemic phenylalanine and preparation of optically pure product by chiral magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech., 2021, 274, 119024.
[http://dx.doi.org/10.1016/j.seppur.2021.119024]
[17]
Yao, T.; Feng, C.; Chen, W.; Chen, S. Selective separation and simultaneous recoveries of amino acids by temperature-sensitive magnetic ionic liquid aqueous biphasic system. J. Mol. Liq., 2023, 371, 121099.
[http://dx.doi.org/10.1016/j.molliq.2022.121099]
[18]
Yao, T.; Li, H.; Yang, J.; Shi, X.; Yan, H.; Peng, L. Determination and correlation of phase equilibria of chiral magnetic ionic liquid aqueous two-phase systems with different inorganic salts at 298.15 K. J. Mol. Liq., 2022, 345, 116983.
[http://dx.doi.org/10.1016/j.molliq.2021.116983]
[19]
Yao, T.; Song, J.; Gan, Y.; Feng, C.; Peng, L. Liquid-liquid equilibria for (polypropylene glycol 400 based magnetic ionic liquids + inorganic salts) aqueous two-phase systems at 298.15 K. J. Mol. Liq., 2022, 349, 118203.
[http://dx.doi.org/10.1016/j.molliq.2021.118203]
[20]
Shirini, F.; Moghadam, R.K.; Dadamahaleh, A.S. Application of ionic liquids in multicomponent reactions. In: Green solvents II, 1st ed; Inamuddin, A.M., Ed.; Springer: Dordrecht, 2012; pp. 289-334.
[http://dx.doi.org/10.1007/978-94-007-2891-2_12]
[21]
Zhang, S.; Lu, X.; Zhou, Q.; Li, X.; Zhang, X.; Li, S. Ionic liquids: Physicochemical properties; Elsevier: Oxford, UK, 2009.
[22]
Zhang, S.; Wang, J.; Lu, X.; Zhou, Q. Structures and interactions of ionic liquids; Springer: London, 2014.
[http://dx.doi.org/10.1007/978-3-642-38619-0]
[23]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[24]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[25]
Hubbard, C.D.; Illner, P.; van Eldik, R. Understanding chemical reaction mechanisms in ionic liquids: Successes and challenges. Chem. Soc. Rev., 2011, 40(1), 272-290.
[http://dx.doi.org/10.1039/C0CS00043D] [PMID: 21079861]
[26]
Isambert, N.; Duque, M.M.S.; Plaquevent, J.C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent reactions and ionic liquids: A perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev., 2011, 40(3), 1347-1357.
[http://dx.doi.org/10.1039/C0CS00013B] [PMID: 20963207]
[27]
Banerjee, B.; Sharma, A. Ionic liquid-mediated biocatalyzed organic transformations. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, R.B.; Ahamed, M.I.; Asiri, A.M., Eds.; Elsevier, 2021; pp. 277-299.
[http://dx.doi.org/10.1016/B978-0-12-819721-9.00001-7]
[28]
Keglevich, G.; Grün, A.; Hermecz, I.; Odinets, I.L. Quaternary phosphonium salt and 1,3-dialkylimidazolium hexafluorophosphate ionic liquids as green chemical tools in organic syntheses. Curr. Org. Chem., 2011, 15, 3824-3848.
[http://dx.doi.org/10.2174/138527211797884557]
[29]
Keglevich, G.; Baán, Z.; Hermecz, I.; Novák, T.; Odinets, I. The phosphorus aspects of green chemistry: The use of quaternary phosphonium salts and 1,3-dialkylimidazolium hexafluorophosphates in organic synthesis. Curr. Org. Chem., 2007, 11(1), 107-126.
[http://dx.doi.org/10.2174/138527207779316552]
[30]
Keglevich, G.; Kovács, R.; Drahos, L. Diels–Alder cycloadditions of 1,2-dihydrophosphinine oxides and fragmentation-related phosphorylations with 2-phosphabicyclo[2.2.2]octadiene oxides under green chemical conditions – the role of microwave and ionic liquids. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(11), 2172-2179.
[http://dx.doi.org/10.1080/10426507.2011.597807]
[31]
Kiss, N.Z.; Keglevich, G. Microwave-assisted direct esterification of cyclic phosphinic acids in the presence of ionic liquids. Tetrahedron Lett., 2016, 57(9), 971-974.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.044]
[32]
Grün, A.; Nagy, I.D.; Garadnay, S.; Greiner, I.; Keglevich, G. Efficient synthesis of pamidronic acid using an ionic liquid additive. Lett. Drug Des. Discov., 2016, 13(6), 475-478.
[http://dx.doi.org/10.2174/1570180812666151022221805]
[33]
Kiss, N.Z.; Rádai, Z.G.; Keglevich, G. Derivatization of phosphinic acids in the presence of ionic liquids. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(11-12), 1494-1496.
[http://dx.doi.org/10.1080/10426507.2016.1212052]
[34]
Nagy, D.I.; Grün, A.; Garadnay, S.; Greiner, I.; Keglevich, G. The synthesis of dronic acid derivatives in sulfolane or in the presence of ionic liquids. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(11), 1619-1620.
[http://dx.doi.org/10.1080/10426507.2016.1217219]
[35]
Nagy, D.I.; Grün, A.; Garadnay, S.; Greiner, I.; Keglevich, G. Investigation of the effect of medium in the preparation of alendronate: Till now the best synthesis in the presence of an ionic liquid additive. Heteroatom Chem., 2017, 28(3), e21370.
[http://dx.doi.org/10.1002/hc.21370]
[36]
Nagy, D.I.; Grün, A.; Pavela, O.; Garadnay, S.; Greiner, I.; Keglevich, G. Efficient synthesis of ibandronate in the presence of an ionic liquid. Lett. Drug Des. Discov., 2018, 15(7), 713-720.
[http://dx.doi.org/10.2174/1570180814666171027160324]
[37]
Rádai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[38]
Kiss, N.Z.; Keglevich, G. Direct esterification of phosphinic and phosphonic acids enhanced by ionic liquid additives. Pure Appl. Chem., 2019, 91(1), 59-65.
[http://dx.doi.org/10.1515/pac-2018-1008]
[39]
Nagy, D.I.; Grün, A.; Sinkovicz, J.; Garadnay, S.; Greiner, I.; Keglevich, G. A study on the synthesis of risedronic acid; The role of ionic liquid additive. Lett. Drug Des. Discov., 2019, 16(3), 238-244.
[http://dx.doi.org/10.2174/1570180815666180626122630]
[40]
Harsági, N.; Szőllősi, B.; Kiss, N.Z.; Keglevich, G. MW irradiation and ionic liquids as green tools in hydrolyses and alcoholyses. Green Process. Synth., 2021, 10, 1-10.
[41]
Harsági, N.; Bertha, C.; Kiss, N.Z.; Henyecz, R.; Varga, P.R.; Balogh, A.P.; Drahos, L.; Keglevich, G. Alcoholysis versus fission of the ester group during the reaction of dialkyl phenylphosphonates in the presence of ionic liquids. Curr. Org. Chem., 2021, 25(7), 842-848.
[http://dx.doi.org/10.2174/1385272825666210212115649]
[42]
Harsági, N.; Henyecz, R.; Ábrányi-Balogh, P.; Drahos, L.; Keglevich, G. Microwave-assisted ionic liquid-catalyzed selective monoesterification of alkylphosphonic acids – An experimental and a theoretical study. Molecules, 2021, 26(17), 5303.
[http://dx.doi.org/10.3390/molecules26175303] [PMID: 34500735]
[43]
Kiss, N.Z.; Harsági, N.; Keglevich, G. Ionic liquid-promoted synthesis of phosphinates and other derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(5-6), 551-553.
[http://dx.doi.org/10.1080/10426507.2021.2011878]
[44]
Keglevich, G.; Harsági, N.; Kiss, N.Z.; Drahos, L. Synthesis of cyclic phosphinates by microwave-assisted ionic liquid-promoted alcoholysis. Synthesis, 2022, 54(17), 3899-3905.
[http://dx.doi.org/10.1055/a-1504-8924]
[45]
Kiss, N.Z.; Nagy, D.I.; Keglevich, G. Ionic liquid-promoted synthesis of phosphinates and bisphosphonic acid derivatives. In: Advances in Chemistry Research; Taylor, J.C., Ed.; Nova Science Publishers Inc: New York, 2017; Vol. 37, pp. 121-140.
[46]
Kidwai, M.; Jain, A.; Nemaysh, V.; Kumar, R.; Luthra, P.M. Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity. Med. Chem. Res., 2013, 22(6), 2717-2723.
[http://dx.doi.org/10.1007/s00044-012-0249-x]
[47]
Kaur, R.; Naaz, F.; Sharma, S.; Mehndiratta, S.; Gupta, M.K.; Bedi, P.M.S.; Nepali, K. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: Synthesis, biological evaluation and docking studies. Med. Chem. Res., 2015, 24(8), 3334-3349.
[http://dx.doi.org/10.1007/s00044-015-1382-0]
[48]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Zarei, M.; Karamian, R.; Asadbegy, M. Synthesis and characterization of acetic acid functionalized poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. Chem., 2016, 425, 217-228.
[http://dx.doi.org/10.1016/j.molcata.2016.10.011]
[49]
Mahdavi, S.M.; Habibi, A.; Dolati, H.; Shahcheragh, S.M.; Sardari, S.; Azerang, P. Synthesis and antimicrobial evaluation of 4H-pyrans and schiff bases fused 4H-pyran derivatives as inhibitors of Mycobacterium bovis (BCG). Iran. J. Pharm. Res., 2018, 17(4), 1229-1239.
[PMID: 30568683]
[50]
Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jain, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7(59), 36977-36999.
[http://dx.doi.org/10.1039/C7RA05441F]
[51]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem. Eng., 2014, 2(3), 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[52]
Brahmachari, G.; Laskar, S.; Banerjee, B. Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Heterocycl. Chem., 2014, 51(S1), 303-308.
[http://dx.doi.org/10.1002/jhet.1974]
[53]
Banerjee, B.; Priya, A.; Kaur, M.; Sharma, A.; Singh, A.; Gupta, V.K.; Jaitak, V. Sodium dodecyl sulphate catalyzed one-pot three-component synthesis of structurally diverse 2-amino-3-cyano substituted tetrahydrobenzo[b]pyrans and spiropyrans in water at room temperature. Catal. Lett., 2023, 153(12), 3547-3560.
[http://dx.doi.org/10.1007/s10562-022-04256-0]
[54]
Banerjee, B.; Kaur, M.; Sharma, A.; Singh, A.; Priya, A.; Gupta, V.K.; Jaitak, V. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions. Curr. Green Chem., 2022, 9(3), 162-173.
[http://dx.doi.org/10.2174/2213346110666221212152202]
[55]
Banerjee, B.; Kaur, M.; Priya, A.; Singh, A.; Sharma, A.; Kaur, G. Multicomponent synthesis of biologically promising pyrans and pyran annulated heterocycles using magnetically recoverable nanocatalysts. In: Synthetic Applications; Varma, R.S.; Banerjee, B., Eds.; De Gruyter: Berlin, Boston, 2022; Vol. 1, pp. 411-434.
[http://dx.doi.org/10.1515/9783110730357-011]
[56]
Peng, Y.; Song, G.; Huang, F. Tetramethylguanidine-[bmim][BF4]. An efficient and recyclable catalytic system for one-pot synthesis of 4H-pyrans. Monatsh. Chem., 2005, 136(5), 727-731.
[http://dx.doi.org/10.1007/s00706-004-0270-y]
[57]
Peng, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal. Commun., 2007, 8(2), 111-114.
[http://dx.doi.org/10.1016/j.catcom.2006.05.031]
[58]
Fang, D.; Yang, J.; Zhang, H.; Jiao, C. Synthesis of 4H-pyrans catalyzed by thermol-regulated PEG1000-based ionic liquid/EM. J. Ind. Eng. Chem., 2011, 17(3), 386-388.
[http://dx.doi.org/10.1016/j.jiec.2010.09.028]
[59]
Khurana, J.M.; Chaudhary, A. Efficient and green synthesis of 4H-pyrans and 4H-pyrano[2,3-c]pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent-free conditions. Green Chem. Lett. Rev., 2012, 5(4), 633-638.
[http://dx.doi.org/10.1080/17518253.2012.691183]
[60]
Honarmand, M.; Tzani, A.; Detsi, A. Synthesis of novel multi-OH functionalized ionic liquid and its application as dual catalyst-solvent for the one-pot synthesis 4H-pyrans. J. Mol. Liq., 2019, 290, 111358.
[http://dx.doi.org/10.1016/j.molliq.2019.111358]
[61]
Mehrjardi, M.; Shirzadi, M.; Banitaba, S.H. A new basic ionic liquid supported on magnetite nanoparticles: An efficient phase-transfer catalyst for the green synthesis of 2-amino-3-cyano-4H pyrans. Polycycl. Aromat. Compd., 2020, 2020(5), 2198-2209.
[62]
Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104(1-2), 39-43.
[http://dx.doi.org/10.1007/s10562-005-7433-2]
[63]
Zhao-Qin, J.; Shun-Jun, J.; Jun, L.; Jin-Ming, Y. A mild and efficient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-benzo-[b]-pyran derivatives in room temperature ion. Chin. J. Chem., 2005, 23(8), 1085-1089.
[http://dx.doi.org/10.1002/cjoc.200591085]
[64]
Ranu, B.C.; Banerjee, S.; Roy, S. A task specific basic ionic liquid, [bmIm]OH-promoted efficient, green and one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. Indian J. Chem., 2008, 47B, 1108-1112.
[65]
Fang, D.; Zhang, H.B.; Liu, Z.L. Synthesis of 4H‐benzopyrans catalyzed by acyclic acidic ionic liquids in aqueous media. J. Heterocycl. Chem., 2010, 47(1), 63-67.
[http://dx.doi.org/10.1002/jhet.254]
[66]
Salvi, P.P.; Mandhare, A.M.; Sartape, A.S.; Pawar, D.K.; Han, S.H.; Kolekar, S.S. An efficient protocol for synthesis of tetrahydrobenzo[b]pyrans using amino functionalized ionic liquid. C. R. Chim., 2011, 14(10), 878-882.
[http://dx.doi.org/10.1016/j.crci.2011.02.007]
[67]
Zheng, J.; Li, Y. Basic ionic liquid-catalyzed multicomponent synthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes. Mendeleev Commun., 2011, 21(5), 280-281.
[http://dx.doi.org/10.1016/j.mencom.2011.09.017]
[68]
Shaterian, H.R.; Arman, M.; Rigi, F. Domino knoevenagel condensation, michael addition, and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable catalyst. J. Mol. Liq., 2011, 158(2), 145-150.
[http://dx.doi.org/10.1016/j.molliq.2010.11.010]
[69]
Wang, Y.L.; Li, Z.; Luo, J.; Liu, Z.L. One-pot synthesis of tetrahydrobenzo[b]pyrans catalyzed by peg-1000 bridged primary amine functionalized dicationic ionic liquid in water. J. Chin. Chem. Soc., 2013, 60(12), 1431-1436.
[http://dx.doi.org/10.1002/jccs.201300285]
[70]
Hu, H.; Qiu, F.; Ying, A.; Yang, J.; Meng, H. An environmentally benign protocol for aqueous synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid. Int. J. Mol. Sci., 2014, 15(4), 6897-6909.
[http://dx.doi.org/10.3390/ijms15046897] [PMID: 24758931]
[71]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Afsar, J.; Khakyzadeh, V.; Khaledian, O. Knoevenagel-Michael-cyclocondensation tandem reaction of malononitrile, various aldehydes and dimedone catalyzed by sulfonic acid functionalized pyridinium chloride as a new ionic liquid and catalyst. J. Chin. Chem. Soc., 2015, 62(5), 398-403.
[http://dx.doi.org/10.1002/jccs.201400413]
[72]
Yang, J.; Liu, S.; Hu, H.; Ren, S.; Ying, A. One-pot three-component synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid in aqueous medium. Chin. J. Chem. Eng., 2015, 23(8), 1416-1420.
[http://dx.doi.org/10.1016/j.cjche.2015.04.020]
[73]
Habibi, D.; Shamsian, A.; Nematollahi, D. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites. Chem. Pap., 2015, 69(4), 586-595.
[http://dx.doi.org/10.1515/chempap-2015-0066]
[74]
Sharma, H.; Srivastava, S. Anion–cation co-operative catalysis by artificial sweetener saccharine-based ionic liquid for sustainable synthesis of 3,4-dihydropyrano[c]chromenes, 4,5-dihydropyrano[4,3-b]pyran and tetrahydrobenzo[b]pyrans in aqueous medium. RSC Advances, 2018, 8(68), 38974-38979.
[http://dx.doi.org/10.1039/C8RA06889E] [PMID: 35558303]
[75]
Khaligh, N.G.; Mihankhah, T.; Johan, M.R. Synthesis of new low-viscous sulfonic acid-functionalized ionic liquid and its application as a Brönsted liquid acid catalyst for the one-pot mechanosynthesis of 4H-pyrans through the ball milling process. J. Mol. Liq., 2019, 277, 794-804.
[http://dx.doi.org/10.1016/j.molliq.2019.01.024]
[76]
Mane, V.U.; Chavan, S.M.; Choudhari, B.R.; Mane, D.V. Microwave assisted synthesis of tetrahydrobenzo[b]pyrans via one pot multicomponent reaction using [Et3NH][HSO4] as ionic liquid catalyst. J. Pharm. Chem. Biol. Sci, 2019, 6, 311-319.
[77]
Zarei, A.; Yarie, M.; Zolfigol, M.A.; Niknam, K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J. Chin. Chem. Soc., 2020, 67(6), 1120-1131.
[http://dx.doi.org/10.1002/jccs.201800468]
[78]
Zabihzadeh, M.; Omidi, A.; Shirini, F.; Tajik, H.; Langarudi, M.S.N. Introduction of an efficient DABCO-based bis-dicationic ionic salt catalyst for the synthesis of arylidenemalononitrile, pyran and polyhydroquinoline derivatives. J. Mol. Struct., 2020, 1206, 127730-127740.
[http://dx.doi.org/10.1016/j.molstruc.2020.127730]
[79]
Shaterian, H.R.; Honarmand, M. Task-specific ionic liquid as the recyclable catalyst for the rapid and green synthesis of dihydropyrano[3,2-c]chromene derivatives. Synth. Commun., 2011, 41(23), 3573-3581.
[http://dx.doi.org/10.1080/00397911.2010.519594]
[80]
Niknam, K.; Piran, A. Silica-grafted ionic liquids as recyclable catalysts for the synthesis of 3,4-dihydropyrano[c]chromenes and pyrano[2,3-c]pyrazoles. Curr. Opin. Green Sustain. Chem., 2013, 3(2), 1-8.
[http://dx.doi.org/10.4236/gsc.2013.32A001]
[81]
Shaikh, M.A.; Farooqui, M.; Abed, S. Novel task-specific ionic liquid [Et2NH(CH2)2CO2H][AcO] as a robust catalyst for the efficient synthesis of some pyran-annulated scaffolds under solvent-free conditions. Res. Chem. Intermed., 2019, 45(3), 1595-1617.
[http://dx.doi.org/10.1007/s11164-018-3696-2]
[82]
Shaterian, H.R.; Kangani, M. Mild Brønsted basic ionic liquids catalyzed three component synthesis of pyrazolo [1,2-a][1,2,4]triazole-1,3-dione and 2-amino-3-cyano-5,10-dioxo-4-phenyl-5,10-dihydro-4H-benzo[g]chromene derivatives. Sci. Iran. C., 2013, 20, 571-579.
[83]
Shaterian, H.R.; Mohammadnia, M. Effective preparation of 2-amino-3-cyano-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene and hydroxyl naphthalene-1,4-dione derivatives under ambient and solvent-free conditions. J. Mol. Liq., 2013, 177, 353-360.
[http://dx.doi.org/10.1016/j.molliq.2012.10.012]
[84]
Yu, J.; Wang, H. Green synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquids. Synth. Commun., 2005, 35(24), 3133-3140.
[http://dx.doi.org/10.1080/00397910500282661]
[85]
Yadav, D.K.; Quraishi, M.A. Choline chloride.ZnCl2: Green, effective and reusable ionic liquid for synthesis of 7-amino-2, 4-dioxo-5-phenyl-2, 3, 4, 5-tetrahydro-1H-pyrano [2, 3-d] pyrimidine-6-carbonitrile derivative. J. Mater. Environ. Sci., 2014, 5, 1075-1078.
[86]
Seyyedi, N.; Shirini, F.; Langarudi, N.M.S. DABCO-based ionic liquids: Green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Advances, 2016, 6(50), 44630-44640.
[http://dx.doi.org/10.1039/C6RA05878G]
[87]
Moghaddampour, M.I.; Shirini, F.; Langarudi, S.N.M. Introduction of agar-entrapping as a novel strategy to improve the catalytic activity of moisture-absorbing acidic ionic liquids: A case study in the synthesis of 5-arylidene barbituric acids and pyrano[2,3-d]pyrimidinones. Polycycl. Aromat. Compd., 2022, 42(5), 2471-2482.
[http://dx.doi.org/10.1080/10406638.2020.1836003]
[88]
Daneshvar, N.; Nasiri, M.; Shirzad, M.; Langarudi, S.N.M.; Shirini, F.; Tajik, H. The introduction of two new imidazole-based bis-dicationic Brönsted acidic ionic liquids and comparison of their catalytic activity in the synthesis of barbituric acid derivatives. New J. Chem., 2018, 42(12), 9744-9756.
[http://dx.doi.org/10.1039/C8NJ01179F]
[89]
Sharifi, Z.; Daneshvar, N.; Langarudi, M.S.N.; Shirini, F. Comparison of the efficiency of two imidazole-based dicationic ionic liquids as the catalysts in the synthesis of pyran derivatives and Knoevenagel condensations. Res. Chem. Intermed., 2019, 45(10), 4941-4958.
[http://dx.doi.org/10.1007/s11164-019-03874-5]
[90]
Gong, K.; Wang, H.L.; Luo, J.; Liu, Z.L. One‐pot synthesis of polyfunctionalized pyrans catalyzed by basic ionic liquid in aqueous media. J. Heterocycl. Chem., 2009, 46(6), 1145-1150.
[http://dx.doi.org/10.1002/jhet.193]
[91]
Khurana, J.M.; Nand, B.; Kumar, S. Rapid synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room1temperature ionic liquids. Synth. Commun., 2011, 41(3), 405-410.
[http://dx.doi.org/10.1080/00397910903576669]
[92]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci., 2012, 124(5), 1013-1017.
[http://dx.doi.org/10.1007/s12039-012-0310-9]
[93]
Mahmoudi, Z.; Ghasemzadeh, M.A.; Kabiri-Fard, H. Fabrication of UiO-66 nanocages confined brønsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo[40′,3′:5,6]pyrano [2,3-d]pyrimidines. J. Mol. Struct., 2019, 1194, 1-10.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.079]
[94]
Gupta, A.K.; Kumari, K.; Singh, N.; Raghuvanshi, D.S.; Singh, K.N. An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature. Tetrahedron Lett., 2012, 53(6), 650-653.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.116]
[95]
Moghadam, R.K.; Valadi, T.A.; Alipour, A. LiBF4 integrated into [BMIm]BF4: An ionic‐liquid metal composite and homogeneous catalyst for efficient synthesis of pyran‐annulated heterocycles. Appl. Organomet. Chem., 2014, 28(3), 146-150.
[http://dx.doi.org/10.1002/aoc.3099]
[96]
Shaterian, H.R.; Mohammadnia, M.; Moradi, F. Acidic ionic liquids catalyzed three-component synthesis of 12-aryl-12H-indeno[1,2-b]naphtho[3,2-e]pyran-5,11,13-trione and 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-one derivatives. J. Mol. Liq., 2012, 172, 88-92.
[http://dx.doi.org/10.1016/j.molliq.2012.05.018]
[97]
Shaterian, H.R.; Mohammadnia, M. Mild basic ionic liquid catalyzed four component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. J. Mol. Liq., 2013, 177, 162-166.
[http://dx.doi.org/10.1016/j.molliq.2012.11.006]
[98]
Shen, J.; Jin, R.; Yuan, K.; Zhang, M.; Wang, X.A. A green synthesis of fused polycyclic 5H-chromeno[3,2-c]quinoline-6,8(7H,9H)-dione derivatives catalyzed by TsOH in ionic liquids. Polycycl. Aromat. Compd., 2016, 36, 758-772.
[http://dx.doi.org/10.1080/10406638.2015.1053502]
[99]
Hasaninejad, A.; Golzar, N.; Beyrati, M.; Zare, A.; Doroodmand, M.M. Silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo[b]pyran, bis(benzo[b]pyran) and spiro-pyran derivatives. J. Mol. Catal. Chem., 2013, 372, 137-150.
[http://dx.doi.org/10.1016/j.molcata.2013.02.022]
[100]
Moghadam, R.K.; Miri, Y.L. Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF4 catalysis. Tetrahedron, 2011, 67(31), 5693-5699.
[http://dx.doi.org/10.1016/j.tet.2011.05.077]
[101]
Goli-Jolodar, O.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liq., 2016, 224, 1092-1101.
[http://dx.doi.org/10.1016/j.molliq.2016.10.093]
[102]
Li, M.M.; Duan, C.S.; Yu, Y.Q.; Xu, D.Z. A general and efficient one-pot synthesis of spiro[2-amino-4H-pyrans] via tandem multi-component reactions catalyzed by Dabco-based ionic liquids. Dyes Pigments, 2018, 150, 202-206.
[http://dx.doi.org/10.1016/j.dyepig.2017.12.007]
[103]
Jin, S.S.; Wang, H.; Guo, H.Y. Ionic liquid catalyzed one-pot synthesis of novel spiro-2-amino-3-phenylsulfonyl-4H-pyran derivatives. Tetrahedron Lett., 2013, 54(19), 2353-2356.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.073]
[104]
Abadi, Y.E.A.; Mohebat, R.; Kangani, M. Microwave-assisted domino cyclization for the synthesis of novel spiro-benzo[a] phenazine annulated heterocycles catalyzed by a basic ionic liquid. J. Chin. Chem. Soc., 2017, 64(6), 690-698.
[http://dx.doi.org/10.1002/jccs.201700034]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy