Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

A Review of Ultrasonic Wave Propagation through Liquid Solutions

Author(s): Rajalaxmi Panda, Subhraraj Panda* and Susanta Kumar Biswal

Volume 11, Issue 1, 2024

Published on: 15 March, 2024

Page: [2 - 15] Pages: 14

DOI: 10.2174/0122133356288437240131061541

Price: $65

Abstract

Understanding the molecular interactions in liquids or liquid mixtures of binary or ternary liquids is crucial for various applications. Numerous methods and tools exist to elucidate how atoms interact in such mixtures. This review examines multiple research papers investigating molecular interactions, focusing on the acoustic/ultrasonic technique. This technique employs ultrasonic waves to probe molecular interactions. Researchers utilized an ultrasonic interferometer to measure ultrasonic wave velocity, liquid density can be determined by using a specific gravity bottle, and employed the Ostwald viscometer for viscosity measurements. Researchers derived several acoustic and thermodynamic parameters by evaluating ultrasonic wave velocity, liquid density, and viscosity. This comprehensive study dramatically contributes to understanding the molecular interactions within specific samples, with detailed explanations provided for the observed parameters. Ultrasonic wave propagation influences the medium's physical characteristics; it includes knowledge of the physics of liquid and solution. How frequency and temperature affect thermo acoustical characteristics has been investigated. The nature of forces between molecules, including hydrogen bonds, charge transfer complexes, hydrogen bond breaking, and complexes, has been deduced from the investigations above.

Graphical Abstract

[1]
Jyothirmai, G.; Nayeem, S.M.; Khan, I.; Anjaneyulu, C. Thermophysicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). J. Therm. Anal. Calorim., 2018, 132(1), 693-707.
[http://dx.doi.org/10.1007/s10973-017-6926-8]
[2]
Zolkiflee, N.F.; Affandi, M.M.R.M.M.; Majeed, A.B.A. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis. J. Mol. Liq., 2019, 279, 386-391.
[http://dx.doi.org/10.1016/j.molliq.2019.01.102]
[3]
Panda, S. Thermo-acoustic parameters of polymer dextran with aqueous sodium hydroxide: An ultrasonic study, current. Mater. Sci., 2023, 16(2), 217-224.
[4]
Singh, S.; Talukdar, M.; Dash, U.N. Ultrasonic studies on paracetamol in aqueous solutions of sodium salicylate and nicotinamide. J. Mol. Liq., 2018, 249, 815-824.
[http://dx.doi.org/10.1016/j.molliq.2017.11.099]
[5]
Beebi, S.; Nayeem, S.M.; Rambabu, C. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K. J. Therm. Anal. Calorim., 2019, 135(6), 3387-3399.
[http://dx.doi.org/10.1007/s10973-018-7574-3]
[6]
Patnaik, P.; Chakraborty, N.; Kaur, P.; Juglan, K.C.; Kumar, H. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures. In: Advances in Functional and Smart Materials; Springer: Singapore, 2023, pp. 403-424.
[http://dx.doi.org/10.1007/978-981-19-4147-4_41]
[7]
Panda, S. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies. Asia-Pacific Journal of Science and Technology, 2022, 27(6), 1-7.
[8]
Nikam, PS; Hasan, M; Pathak, RB Densities and speeds of sound for aniline + aliphatic alcohols (c1-c2) at different temperatures. J of pure and applied ultrasonics, 1996, 18, 19-25.
[9]
Kaur, K.; Juglan, K.C. Studies of molecular interaction in the binary mixture of chloroform and methanol by using ultrasonic technique. Pharma Chem., 2015, 7(2), 160-167.
[10]
Panda, S. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions. Songklanakarin J. Sci. Technol., 2022, 44(4), 1125-1130.
[11]
Naseem, B.; Ashraf, N. Volumetric behavior of nitroimidazoles in binary solvent mixtures. J. Mol. Liq., 2016, 224, 377-386.
[http://dx.doi.org/10.1016/j.molliq.2016.10.004]
[12]
Panda, S. Analysis of aqueous dextran: An ultrasonic study. Curr. Microw. Chem., 2022, 9(1), 30-36.
[http://dx.doi.org/10.2174/2213335609666220324144409]
[13]
Mehra, R.; Malav, B.B. Ultrasonic, volumetric and viscometric studies of lactose in mixed solvent of DMF–H2O at 298, 308 and 318 K. Arab. J. Chem., 2017, 10, S1894-S1900.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.018]
[14]
Dehury, S.K.; Talukdar, M.; Dash, U.N. Thermo-acoustic parameters of multi-charged electrolytes (sodium thiosulphate and sodium chromate) in aqueous binary fructose solutions and derivation of surface excess values from ultrasonic velocity measurements. Int. J. Pharm. Sci. Rev. Res., 2014, 26(1), 92-97.
[15]
Rajulu, A.V.; Sreenivasulu, G.; Raghuraman, K.S. Ultrasonic attenuation in aqueous dispersion of polytetrafluoroethylene. Indian J. Chem. Technol., 1994, 1(5), 302-304.
[16]
Reddy, G. Ultrasonic velocities and rao formalism in solutions of polymers of differing molecular-structures. Acustica, 1981, 47(4), 343-346.
[17]
Armishaw, R.F.; James, D.W. Structure of aqueous solutions. Relative intensity studies of the infrared librational band in nitrate solutions. J. Phys. Chem., 1976, 80(5), 501-508.
[http://dx.doi.org/10.1021/j100546a016]
[18]
Kay, R.L.; Broadwater, T.L. Solvent structure in aqueous mixtures. III. Ionic conductances in ethanol-water mixtures at 10 and 25oC. J. Solution Chem., 1976, 5(1), 57-76.
[http://dx.doi.org/10.1007/BF00647181]
[19]
Panda, S. Thermoacoustical Analysis of Polymer Dextran at Different Frequencies. Bulg J Phys, 2022, 49(2), 136-144.
[20]
Palani, R.; Geetha, A.; Swara, R.K. Ultrasonic studies on molecular interaction and physico-chemical behaviour of some divalent transition metal sulphates in aqueous propylene glycol at 303.15 k. Rasyan J. Chem, 2009, 2(3), 602-608.
[21]
Panda, S. Molecular interaction study of binary liquid solution using ultrasonic technique. Recent Innov. Chem. Eng., 2022, 15(2), 138-146.
[http://dx.doi.org/10.2174/2405520415666220707142909]
[22]
Panda, S. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters. Indian Journal of Pharmaceutical Education and Research, 2020, 54(3), 630-636.
[http://dx.doi.org/10.5530/ijper.54.3.112]
[23]
Tiwari, S.; Kusmariya, B.S.; Tiwari, A.; Pathak, V.; Mishra, A.P. Acoustical and viscometric studies of buspirone hydrochloride with cobalt(II) and copper(II) ions in aqueous medium. J. Taibah Univ. Sci., 2017, 11(1), 101-109.
[http://dx.doi.org/10.1016/j.jtusci.2015.10.012]
[24]
Panda, S.; Mahapatra, A.P. Variation of thermo-acoustic parameters of dextran with concentration and temperature. J. Chem. Pharm. Res., 2014, 6(10), 818-5.
[25]
Kaur, M.; Pathania, V.; Vermani, B.K.; Anand, V.; Gill, D.S. Ultrasonic velocity and thermoacoustic parameters for copper(I) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 K. Curr. Phys. Chem., 2022, 12(2), 136-158.
[http://dx.doi.org/10.2174/1877946812666220331122201]
[26]
Sharma, A.K.; Sharma, R.; Gangwal, A. Ultrasonic studies and acoustic parameters of complexes containing copper surfactants with 2-amino-6-methyl benzo-thiazole. Curr. Phys. Chem., 2019, 8(3), 222-229.
[http://dx.doi.org/10.2174/1573412914666181003151414]
[27]
Alisha, S.B.; Banu, S.N.; Rao, K.K.; Subha, M.C.S.; Rao, K.C. Ultrasonic studies on binary liquid mixtures of triethylamine with carbitols at 308.15 K. Indian Journal of advances in chemical science, 2017, 5(3), 148-154.
[28]
Mistry, A.A.; Bhandakkar, V.D.; Chimankar, O.P. Acoustical studies on ternary mixture of toluene in cyclohexane&nitrobenzene at 308k using ultrasonic technique. J. Chem. Pharm. Res., 2012, 4(1), 170-174.
[29]
Panda, S. Ultrasonic investigation of dextran with glycine at different temperatures and frequencies. Indian Journal of Natural Sciences, 2020, 10(59), 18436-18441.
[30]
Maken, S.; Deshwal, B.R.; Chadha, R.; Anu; Singh, K.C.; Kim, H.; Park, J-W. Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess volumes and molar excess enthalpies. Fluid Phase Equilib., 2005, 235(1), 42-49.
[http://dx.doi.org/10.1016/j.fluid.2005.06.011]
[31]
Akhtar, Y.; Ibrahim, S.F. Ultrasonic and thermodynamic studies of glycine in aqueous electrolytes solutions at 303K. Arab. J. Chem., 2011, 4(4), 487-490.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.009]
[32]
Swain, B.; Mishra, R.N.; Dash, U.N. Viscometric and thermodynamic studies on strong electrolytes-Metal chlorides and metal sulphates in aqueous medium at different temperatures. Int. J. Chem. PhySci, 2015, 4, 66-76.
[33]
Sastry, N.V.; George, J. Thermophysical properties of nonelectrolyte mixtures. Densities, viscosities, and sound speeds of binary mixtures of methyl methacrylate+ branched alcohols (propan-2-ol, 2-methylpropan-1-ol, butan-2-ol, and 2-methylpropan-2-ol) at T= 298.15 and 308.15 K. Int. J. Thermophys., 2003, 24(4), 1089-1104.
[http://dx.doi.org/10.1023/A:1025061103289]
[34]
Panda, S.; Praharaj, M. Evaluation of ultrasonic parameters in binary solution of dextran and urea at various concentration and temperatures. Indian J of Natural Sciences, 2020, 10(59), 18552-18557.
[35]
Panda, S.; Mahapatra, A.P. Molecular interaction of dextran with urea through ultrasonic technique. Clay Res., 2019, 38(1), 35-42.
[36]
Dudhe, V.G.; Tabhane, V.A.; Chimankar, O.P.; Dudhe, C.M. Study on molecular interaction of aqueous ascorbic acid (Vitamin C) at 293k. Universal Journal of Applied Science, 2014, 2(2), 53-56.
[http://dx.doi.org/10.13189/ujas.2014.020203]
[37]
Takaya, H.; Nii, S.; Kawaizumi, F.; Takahashi, K. Enrichment of surfactant from its aqueous solution using ultrasonic atomization. Ultrason. Sonochem., 2005, 12(6), 483-487.
[http://dx.doi.org/10.1016/j.ultsonch.2004.06.012] [PMID: 15848112]
[38]
Praharaj, M.K.; Satapathy, A.; Mishra, P.R.; Mishra, S. Study of acoustical and thermodynamic properties of aqueous solution of NaCl at different concentrations and temperatures through ultrasonic technique. Arch. Appl. Sci. Res., 2012, 4(2), 837-845.
[39]
Pal, A.; Kumar, H.; Kumar, B.; Gaba, R. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures. J. Mol. Liq., 2013, 187, 278-286.
[http://dx.doi.org/10.1016/j.molliq.2013.08.009]
[40]
Panda, S.; Mahapatra, A.P. Intermolecular interaction of dextran with urea. Int. J. Innov. Technol. Explor. Eng., 2019, 8(11), 742-748.
[http://dx.doi.org/10.35940/ijitee.K1445.0981119]
[41]
Panda, S.; Mahapatra, A.P. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies. World Journal of Pharmaceutical and Life Sciences, 2018, 4(12), 76-82.
[42]
Panda, S.; Mahapatra, A.P. Ultrasonic study of acoustical parameters of dextran solution with 1(N) NaOH at different temperatures and concentration. J. Pure Appl. Ultrasonic, 2018, 40, 100-105.
[43]
Panda, S.; Mahapatra, A.P. Study of acoustical parameters of dextran in 2 (M) glycine using ultrasonic technique at different frequencies. J. Pure Appl. Ultrasonic, 2017, 39, 83-87.
[44]
Rao, D.N.; Krishnaiah, A.; Naidu, P.R. Acta Chir. Acad. Sci. Hung., 1981, 107(1), 49-55.
[45]
Panda, S.; Mahapatra, A.P. Acoustic and ultrasonic studies of dextran in 2(M) glycine-variation with frequencies and concentrations. International Journal of Pure and Applied Physics, 2016, 12(1), 71-79.
[46]
Hassun, S.K. Influence of the molecular structure of high-impact polystyrene in different solvents on ultrasonic absorption. Acoust. Lett., 1988, 11(10), 195-199.
[47]
Panda, S.; Mahapatra, A.P. Variation of acoustical parameters of dextran in 2 (M) glycine with temperature and concentrations. International Journal of Chemical and Physical Sciences, 2016, 5(5), 15-22.
[48]
Kittel, C. Ultrasonic propagation in liquids. II. Theoretical study of the free volume model of the liquid state. J. Chem. Phys., 1946, 14(10), 614-624.
[http://dx.doi.org/10.1063/1.1724073]
[49]
Eyring, H.; Hirschfelder, J. The theory of the liquid state. J. Phys. Chem., 1937, 41(2), 249-257.
[http://dx.doi.org/10.1021/j150380a007]
[50]
Kincaid, J.F.; Eyring, H. The liquid state. J. Phys. Chem., 1939, 43(1), 37-47.
[http://dx.doi.org/10.1021/j150388a004]
[51]
Jacobson, B.; Gralén, N.; Ehrensvärd, G. Intermolecular free lengths in liquids in relation to compressibility, surface tension and viscosity. Acta Chem. Scand., 1951, 5, 1214-1216.
[http://dx.doi.org/10.3891/acta.chem.scand.05-1214]
[52]
Jacobson, B. Ultrasonic velocity in liquids and liquid mixtures. J. Chem. Phys., 1952, 20(5), 927-928.
[http://dx.doi.org/10.1063/1.1700615]
[53]
Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev., 1935, 17(1), 65-77.
[http://dx.doi.org/10.1021/cr60056a006]
[54]
Suryanarayana, C.V.; Kuppusamy, J. Free volume and internal pressure of liquids from ultrasonic velocity. J. Acoust. Soc. India, 1976, 4, 75-82.
[55]
Kumar, H.; Chahal, S. Studies of some thermodynamic properties of binary mixtures of acrylonitrile with aromatic ketones at T= 308.15 K. J. Solution Chem., 2011, 40(2), 165-181.
[http://dx.doi.org/10.1007/s10953-010-9645-3]
[56]
Panda, S.; Mahapatra, A.P. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique. Int. J. Sci. Res., 2015, 503-508.
[57]
Richards, T.W. A brief history of the investigation of internal pressures. Chem. Rev., 1925, 2(3), 315-348.
[http://dx.doi.org/10.1021/cr60007a002]
[58]
Vander Waals, J.D. Essay on the continuity of the gaseous and liquid states. Studies in statistical mechanics, 1873, 14, 121-125.
[59]
Hill, T.L. Free-volume models for liquids. J. Phys. Colloid Chem., 1947, 51(6), 1219-1232.
[http://dx.doi.org/10.1021/j150456a001] [PMID: 20269033]
[60]
Panda, S.; Mahapatra, A.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency. Scholars Research Library Archives of Physics Research, 2015, 6(1), 6-12.
[61]
Hassun, S.K.; Al-Madfai, S.H.F.; Al-Jarrah, M.M.F. Ultrasonic study of molecular association of poly(vinyl chloride) solution in tetrahydrofuran. Br. Polym. J., 1985, 17(4), 330-333.
[http://dx.doi.org/10.1002/pi.4980170402]
[62]
Rao, M.R. Velocity of sound in liquids and chemical constitution. J. Chem. Phys., 1941, 9(9), 682-685.
[http://dx.doi.org/10.1063/1.1750976]
[63]
Wada, Y. On the relation between compressibility and molal volume of organic liquids. J. Phys. Soc. Jpn., 1949, 4(4-6), 280-283.
[http://dx.doi.org/10.1143/JPSJ.4.280]
[64]
Reddy, V.K.; Reddy, K.S.; Krishnaiah, A. Excess volumes, speeds of sound, and viscosities for mixtures of 1, 2-ethanediol and alkoxy alcohols with water at 308.15 K. J. Chem. Eng. Data, 1994, 39(3), 615-617.
[http://dx.doi.org/10.1021/je00015a051]
[65]
Banerjee, T.; Kishore, N. Interactions of peptides and lysozyme with aqueous tetraethylammonium bromide at 298.15 K. J. Solution Chem., 2006, 35(10), 1389-1399.
[http://dx.doi.org/10.1007/s10953-006-9069-2]
[66]
Zatale, D.A.; Chaware, A.R.; Zatale, K.D. Study and analysis of thermoacoustic parameters of petrochemiscal product and its mixtures at different temperatures from 298.15 K to 318.15 K. Arch. Physiol. Res., 2011, 2, 202-207.
[67]
Mirikar, S.A.; Pawar, P.P.; Bichile, G.K. Studies in thermodynamic properties of glycine in aqueous solutions of mono and divalent electrolytes at different temperatures. Arch. Appl. Sci. Res., 2011, 3(5), 233-241.
[68]
Dehury, S.K.; Talukdar, M.; Dash, U. (Potassium ferri and ferro cyanide) in aqueous dextrose solutions at 298.15 K. Chem. Sci. Trans., 2(4), 1340-1345.
[69]
Singla, M.; Jindal, R.; Kumar, H. Volumetric, acoustic, and UV absorption studies on solute–solvent interactions of dipeptides of glycine with aqueous amoxicillin solutions. Thermochim. Acta, 2014, 591, 140-151.
[http://dx.doi.org/10.1016/j.tca.2014.07.025]
[70]
Magotra, U.; Sandarve, G.V.; Sharma, M. Interactions of L-alanine with anionic, cationic and nonionic surfactants at different temperatures: A volumetric and viscometric study. J. Chem. Pharm. Res., 2014, 6(6), 809-815.
[71]
Shankarwar, A.G.; Shelke, V.A.; Shankarwar, S.G. Viscosity B-coefficient and partial molar volume between 25° C and 45° C for mono and diphosphate ions in aqueous solution. Adv. Appl. Sci. Res., 2011, 2, 426-430.
[72]
Rao, K.P. Excess isentropic compressibilities of N,N-dimethylformamide and N,N-dimethylacetamide with aliphatic esters at 303.15 K. Ultrasonics, 1990, 28(2), 120-124.
[http://dx.doi.org/10.1016/0041-624X(90)90008-C]
[73]
Ali, A.; Nain, A.K.; Sharma, V.K.; Ahmad, S. Molecular interactions in binary mixtures of tetrahydrofuran with alkanols (C 6, C 8, C 10): an ultrasonic and volumetric studyMolecular interactions in binary mixtures of tetrahydrofuran with alkanols (C 6, C 8, C 10): an ultrasonic and volumetric study. Indian Journal of Pure & Applied Physics, 2004.
[74]
Reddy, Y.N. Subramanyam Naidu,. P.; and Ravindra Prasad,. K.Indian J. Pure Appl. Phy., 1994, 32, 958-963.
[75]
Mehra, R. Ultrasonic, volumetric and viscometric studies of molecular interactions in binary liquid mixtures of hexadecane with 1-pentanol, 1-hexanol, and 1-heptanol at (298, 308 and 318). K. Z. Phys. Chem., 2005, 219(4), 425-437.
[http://dx.doi.org/10.1524/zpch.219.4.425.61662]
[76]
Magazù, S.; Migliardo, P.; Musolino, A.M.; Sciortino, M.T. α, α-trehalose-water solutions. 1. Hydration phenomena and anomalies in the acoustic properties. J. Phys. Chem. B, 1997, 101(13), 2348-2351.
[http://dx.doi.org/10.1021/jp961139s]
[77]
Thirumaran, S.; George, D. Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), 2009, 4(4), 1-11.
[78]
Pandiyan, V.; Oswal, S.L.; Vasantharani, P. Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,N-diethylaniline at 303.15, 313.15 and 323.15K. Thermochim. Acta, 2011, 518(1-2), 36-46.
[http://dx.doi.org/10.1016/j.tca.2011.02.004]
[79]
Awasthi, A.; Awasthi, A. Intermolecular interactions in formamide+2-alkoxyethanols: Viscometric study. Thermochim. Acta, 2012, 537, 57-64.
[http://dx.doi.org/10.1016/j.tca.2012.03.001]
[80]
Yan, Z.; Wang, J.; Liu, W.; Lu, J. Apparent molar volumes and viscosity B-coefficients of some α-amino acids in aqueous solutions from 278.15 to 308.15K. Thermochim. Acta, 1999, 334(1-2), 17-27.
[http://dx.doi.org/10.1016/S0040-6031(99)00107-0]
[81]
Parmar, M.L.; Thakur, R.C. Effect of temperature on the partial molar volumes of some divalent transition metal sulphates and magnesium sulphate in the water-rich region of aqueous mixtures of ethylene glycol. J. Mol. Liq., 2006, 128(1-3), 85-89.
[http://dx.doi.org/10.1016/j.molliq.2005.12.011]
[82]
Pal, A.; Kumar, S. Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq., 2004, 109(1), 23-31.
[http://dx.doi.org/10.1016/j.molliq.2003.07.003]
[83]
Burton, C.J. A study of ultrasonic velocity and absorption in liquid mixtures. J. Acoust. Soc. Am., 1948, 20(2), 186-199.
[http://dx.doi.org/10.1121/1.1906362]
[84]
Khanuja, P.; Chourey, V.R.; Ansari, A.A. Apparent molar volume and viscometric study of glucose in aqueous solution. J. Chem. Pharm. Res., 2012, 4(6), 3047-3050.
[85]
Chowdoji Rao, K.; Venkata Naidu, S.; Varada Rajulu, A. Acoustical parameters of poly(vinyl pyrrolidone) in N,N-dimethyl formamide solutions. Eur. Polym. J., 1990, 26(6), 657-659.
[http://dx.doi.org/10.1016/0014-3057(90)90224-R]
[86]
Chauhan, R. Apparent molar volumes of some tetraalkylammonium salts in water-tert-butyl alcohol mixtures of varying dielectric-constants. Indian journal of chemistry section a-inorganic bio-inorganic physical theoretical & analytical chemistry, 1981, 20(2), 173-175.
[87]
Parmar, M.L.; Rao, C.V.N. Partial molar volumes and viscosities of some multicharged electrolytes in dimethyl sulphoxide-water mixtures., 1990.
[88]
Sinha, B.; Roy, P.K.; Roy, M.N. Apparent molar volumes and viscosity B-coefficients of glycine in aqueous silver sulphate solutions at T = (298.15, 308.15, 318.15) k. Acta Chim. Slov., 2010, 57(3), 651-659.
[PMID: 24061813]
[89]
Khanuja, P.A.R.V.I.N.D.E.R. Volumetric and viscometric study of interactions of amino acids in aqueous sucrose solution at different temperatures. Chem. Sci. Trans., 2013, 2(4), 1268-1275.
[90]
Tiwari, V.; Pande, R. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone +water solvent at temperatures 303.15 and 313.15K. Thermochim. Acta, 2006, 443(2), 206-211.
[http://dx.doi.org/10.1016/j.tca.2006.01.019]
[91]
Singh, G.; Patyar, P.; Kaur, T.; Kaur, G. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures. J. Mol. Liq., 2016, 222, 804-817.
[http://dx.doi.org/10.1016/j.molliq.2016.07.042]
[92]
Panda, S. Ultrasonic study of novel polymer dextran in aqueous media at 12 MHz. current microwave chemistry, 2023, 237-243.
[http://dx.doi.org/10.2174/2213335610666230810094605]
[93]
Ramasami, P.; Kakkar, R. Partial molar volumes and adiabatic compressibilities at infinite dilution of aminocarboxylic acids and glycylglycine in water and aqueous solutions of sodium sulphate at (288.15, 298.15 and 308.15) K. J. Chem. Thermodyn., 2006, 38(11), 1385-1395.
[http://dx.doi.org/10.1016/j.jct.2006.01.014]
[94]
Ali, K.F.; Hummadi, H.H. A study of some physical properties for B12 in aqueous solution at four temperatures. Al-Nahrain Journal of Science, 2007, 10(1), 13-17.
[95]
Kant, S.H.A.S.H.I.; Sharma, K.A.M.I.N.I. Apparent molar volume, viscometric and conductance studies of sodium chloride in different composition of lactose. Chem. Sci. Trans., 2013, 2, 911-921.
[96]
Sarkar, A.; Sinha, B. Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc., 2013, 78(8), 1225-1240.
[http://dx.doi.org/10.2298/JSC111212027S]
[97]
Pal, B.; Kundu, S. Anomalous ultrasonic attenuation in aqueous NaCl solutions. 1206.2779, 2012.
[98]
Nain, A.K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2-ethanediol and 1,2-propanediol at different temperatures. J. Mol. Liq., 2008, 140(1-3), 108-116.
[http://dx.doi.org/10.1016/j.molliq.2008.01.016]
[99]
Meshram, B.; Agrawal, P.; Chandak, H.; Chapke, U. A study of acoustical behaviour of paracetamol in 70% methanol at various temperature. International Journal of Emerging Technologies in Computational and Applied Sciences, 2013, 5, 369-373.
[100]
Priya, C.S.; Nithya, S.; Velraj, G.; Kanappan, A.N. Molecular interactions studies in liquid mixture using ultrasonic technique. J Adv Sci Technol, 2010, 18, 59-74.
[101]
Geetha, R.; Padmavathy, R.; Muhamed, R.R. Molecular interactions in ternary system of K-contin and (2-Aminoacetamido)acetic acid at various temperatures–ultrasonic and viscometric analysis. SN Applied Sciences, 2023, 5(12), 383.
[http://dx.doi.org/10.1007/s42452-023-05597-0]
[102]
Godhani, D.R.; Dobariya, P.B.; Sanghani, A.M.; Mehta, J.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure. Arab. J. Chem., 2017, 10, S422-S430.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.002]
[103]
Sarkar, A.; Sinha, B. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach. Food Chem., 2016, 211, 590-597.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.099] [PMID: 27283672]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy