Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Mini-Review Article

Bronchial Asthma and Mucociliary Clearance - A Bidirectional Relationship

Author(s): Daša Oppova, Peter Bánovčin, Peter Ďurdík, Michaela Babničová and Miloš Jeseňák*

Volume 20, Issue 4, 2024

Published on: 14 March, 2024

Page: [293 - 301] Pages: 9

DOI: 10.2174/011573398X296504240308070338

Price: $65

Abstract

The integrity of the airway epithelium plays an important role in the defence against pathogens and various immunogenic stimuli from the external environment. Properly functioning mucociliary clearance is an indispensable part of the respiratory system defence and it relies on adequate viscoelastic properties of mucus, as well as the intact function of a significant number of healthy ciliated cells. The movement of the cilia can be affected by many endogenous and exogenous factors. Complex mucociliary clearance dysfunction can be seen as a part of the respiratory system inflammation. Bronchial asthma is one of the most common inflammatory diseases of the respiratory system. It is characterised by structural and functional changes in the airways. The last decades of bronchial asthma research point to asthmatic inflammation as the cause of airway remodelling with subsequent impairment of mucociliary transport function.

Changes in the respiratory epithelium in patients with bronchial asthma include hypertrophy of secretory cells, overproduction of mucus, increase in mucus viscosity, decline of ciliated cells, decrease of ciliary beat frequency, and more. Cytokines of T2-high type of asthmatic inflammation, such as interleukin IL-13 and IL-4, have been shown to contribute to these changes in the airway epithelium significantly. There is strong evidence of cytokine-induced overexpression of important transcription factors, which results in hyper- and metaplasia of secretory cells and also transdifferentiation of ciliary cells. Impaired mucociliary clearance increases the risk of airway infection and contributes to the worsening of bronchial asthma control.

[1]
Marusiakova L, Durdik P, Jesenak M, et al. Ciliary beat frequency in children with adenoid hypertrophy. Pediatr Pulmonol 2020; 55(3): 666-73.
[http://dx.doi.org/10.1002/ppul.24622] [PMID: 31917900]
[2]
Jesenak M, Zelieskova M, Babusikova E. Oxidative stress and bronchial asthma in children—causes or consequences? Front Pediatr 2017; 5: 162.
[http://dx.doi.org/10.3389/fped.2017.00162] [PMID: 28791280]
[3]
Jesenak M, Durdik P, Oppova D, et al. Dysfunctional mucociliary clearance in asthma and airway remodeling – New insights into an old topic. Respir Med 2023; 218: 107372.
[http://dx.doi.org/10.1016/j.rmed.2023.107372] [PMID: 37516275]
[4]
Grosse-Onnebrink J, Werner C, Loges NT, et al. Effect of TH2 cytokines and interferon gamma on beat frequency of human respiratory cilia. Pediatr Res 2016; 79(5): 731-5.
[http://dx.doi.org/10.1038/pr.2016.8] [PMID: 26761121]
[5]
Laoukili J, Perret E, Willems T, et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest 2001; 108(12): 1817-24.
[http://dx.doi.org/10.1172/JCI200113557] [PMID: 11748265]
[6]
Corcoran TE, Huber AS, Hill SL, et al. Mucociliary clearance differs in mild asthma by levels of type 2 inflammation. Chest 2021; 160(5): 1604-13.
[http://dx.doi.org/10.1016/j.chest.2021.05.013] [PMID: 34029561]
[7]
Yaghi A, Dolovich M. Airway epithelial cell cilia and obstructive lung disease. Cells 2016; 5(4): 40.
[http://dx.doi.org/10.3390/cells5040040] [PMID: 27845721]
[8]
Tilley AE, Walters MS, Shaykhiev R, Crystal RG. Cilia dysfunction in lung disease. Annu Rev Physiol 2015; 77(1): 379-406.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071931] [PMID: 25386990]
[9]
Park KS, Wells JM, Zorn AM, et al. Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 2006; 34(2): 151-7.
[http://dx.doi.org/10.1165/rcmb.2005-0332OC] [PMID: 16239640]
[10]
Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007; 6(1): 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[11]
Rawlins EL, Hogan BLM. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 2008; 295(1): L231-4.
[http://dx.doi.org/10.1152/ajplung.90209.2008] [PMID: 18487354]
[12]
Heguy A, Harvey BG, Leopold PL, Dolgalev I, Raman T, Crystal RG. Responses of the human airway epithelium transcriptome to in vivo injury. Physiol Genomics 2007; 29(2): 139-48.
[http://dx.doi.org/10.1152/physiolgenomics.00167.2006] [PMID: 17164391]
[13]
Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14(5): 978-90.
[http://dx.doi.org/10.1038/s41385-020-00370-7] [PMID: 33608655]
[14]
Marušiaková L, Ďurdík P, Jošková M, Kuchta M, Buchanec J. Cíliopatie v detskom veku. Pediatria 2015; 10(4): 199-205.
[15]
Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol 2007; 69(1): 401-22.
[http://dx.doi.org/10.1146/annurev.physiol.69.040705.141253] [PMID: 16945069]
[16]
Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr 2016; 28(3): 339-47.
[http://dx.doi.org/10.1097/MOP.0000000000000358] [PMID: 27070443]
[17]
Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol 2008; 163(1-3): 202-7.
[http://dx.doi.org/10.1016/j.resp.2008.05.010] [PMID: 18586580]
[18]
Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med 2010; 363(23): 2233-47.
[http://dx.doi.org/10.1056/NEJMra0910061] [PMID: 21121836]
[19]
Whitsett JA. Airway epithelial differentiation and mucociliary clearance. Ann Am Thorac Soc 2018; 15 (Suppl. 3): S143-8.
[http://dx.doi.org/10.1513/AnnalsATS.201802-128AW] [PMID: 30431340]
[20]
Seibold MA. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Ann Am Thorac Soc 2018; 15 (Suppl. 2): S98-S102.
[http://dx.doi.org/10.1513/AnnalsATS.201711-868MG] [PMID: 29676620]
[21]
Joskova M, Mokry J, Franova S. Respiratory cilia as a therapeutic target of phosphodiesterase inhibitors. Front Pharmacol 2020; 11: 609.
[http://dx.doi.org/10.3389/fphar.2020.00609] [PMID: 32435198]
[22]
Mata M, Sarrion I, Armengot M, et al. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: Effectiveness of N-acetylcysteine. PLoS One 2012; 7(10): e48037.
[http://dx.doi.org/10.1371/journal.pone.0048037] [PMID: 23118923]
[23]
Smith CM, Kulkarni H, Radhakrishnan P, et al. Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur Respir J 2014; 43(2): 485-96.
[http://dx.doi.org/10.1183/09031936.00205312] [PMID: 23520320]
[24]
Kuek LE, Lee RJ. First contact: The role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319(4): L603-19.
[http://dx.doi.org/10.1152/ajplung.00283.2020] [PMID: 32783615]
[25]
Carson JL, Collier AM, Hu SS. Acquired ciliary defects in nasal epithelium of children with acute viral upper respiratory infections. N Engl J Med 1985; 312(8): 463-8.
[http://dx.doi.org/10.1056/NEJM198502213120802] [PMID: 3969108]
[26]
Lundgren R, Söderberg M, Hörstedt P, Stenling R. Morphological studies of bronchial mucosal biopsies from asthmatics before and after ten years of treatment with inhaled steroids. Eur Respir J 1988; 1(10): 883-9.
[http://dx.doi.org/10.1183/09031936.93.01100883] [PMID: 3224689]
[27]
Sisson JH, Pavlik JA, Wyatt TA. Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism. Alcohol Clin Exp Res 2009; 33(4): 610-6.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00875.x] [PMID: 19183138]
[28]
Devalia JL, Sapsford RJ, Rusznak C, Toumbis MJ, Davies RJ. The effects of salmeterol and salbutamol on ciliary beat frequency of cultured human bronchial epithelial cells, in vitro. Pulm Pharmacol 1992; 5(4): 257-63.
[http://dx.doi.org/10.1016/0952-0600(92)90068-R] [PMID: 1362105]
[29]
Wanner A. Effects of methylxanthines on airway mucociliary function. Am J Med 1985; 79(6): 16-21.
[http://dx.doi.org/10.1016/0002-9343(85)90082-8] [PMID: 3002175]
[30]
Iravani J, Melville GN. Effects of drugs and environmental factors on ciliary movement. Respiration 1975; 32(2): 157-64.
[http://dx.doi.org/10.1159/000193645]
[31]
Corssen G, Allen CR. Acetylcholine: Its significance in controlling ciliary activity of human respiratory epithelium in vitro. J Appl Physiol 1959; 14(6): 901-4.
[http://dx.doi.org/10.1152/jappl.1959.14.6.901] [PMID: 13812114]
[32]
Workman AD, Cohen NA. The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. Am J Rhinol Allergy 2014; 28(6): 454-64.
[http://dx.doi.org/10.2500/ajra.2014.28.4092] [PMID: 25514481]
[33]
Milara J, Armengot M, Bañuls P, et al. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166(8): 2243-62.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01929.x] [PMID: 22385203]
[34]
Hofmann T, Gugatschga M, Koidl B, Wolf G. Influence of preservatives and topical steroids on ciliary beat frequency in vitro. Arch Otolaryngol Head Neck Surg 2004; 130(4): 440-5.
[http://dx.doi.org/10.1001/archotol.130.4.440] [PMID: 15096427]
[35]
Zhang L, Han D, Song X, Wang H, Wang K, Liu Z. Effects of ephedrine on human nasal ciliary beat frequency. ORL J Otorhinolaryngol Relat Spec 2008; 70(2): 91-6.
[http://dx.doi.org/10.1159/000114531] [PMID: 18408406]
[36]
Phillips PP, McCaffrey TV, Kern EB. The in vivo and in vitro effect of phenylephrine (neo synephrine) on nasal ciliary beat frequency and mucociliary transport. Otolaryngol Head Neck Surg 1990; 103(4): 558-65.
[http://dx.doi.org/10.1177/019459989010300406] [PMID: 2123313]
[37]
Jiao J, Zhang L. Influence of intranasal drugs on human nasal mucociliary clearance and ciliary beat frequency. Allergy Asthma Immunol Res 2019; 11(3): 306-19.
[http://dx.doi.org/10.4168/aair.2019.11.3.306] [PMID: 30912321]
[38]
Simet SM, Pavlik JA, Sisson JH. Dietary antioxidants prevent alcohol-induced ciliary dysfunction. Alcohol 2013; 47(8): 629-35.
[http://dx.doi.org/10.1016/j.alcohol.2013.09.004] [PMID: 24169090]
[39]
Essaidi-Laziosi M, Brito F, Benaoudia S, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures. J Allergy Clin Immunol 2018; 141(6): 2074-84.
[http://dx.doi.org/10.1016/j.jaci.2017.07.018] [PMID: 28797733]
[40]
Feldman C, Read R, Rutman A, et al. The interaction of Streptococcus pneumoniae with intact human respiratory mucosa in vitro. Eur Respir J 1992; 5(5): 576-83.
[http://dx.doi.org/10.1183/09031936.93.05050576] [PMID: 1612157]
[41]
Kobayashi K, Salathé M, Pratt MM, et al. Mechanism of hydrogen peroxide-induced inhibition of sheep airway cilia. Am J Respir Cell Mol Biol 1992; 6(6): 667-73.
[http://dx.doi.org/10.1165/ajrcmb/6.6.667] [PMID: 1591015]
[42]
Bailey KL, LeVan TD, Yanov DA, et al. Non-typeable Haemophilus influenzae decreases cilia beating via protein kinase C ε. Respir Res 2012; 13(1): 49.
[http://dx.doi.org/10.1186/1465-9921-13-49] [PMID: 22712879]
[43]
Mewe M, Tielker D, Schönberg R, Schachner M, Jaeger KE, Schumacher U. Pseudomonas aeruginosa lectins I and II and their interaction with human airway cilia. J Laryngol Otol 2005; 119(8): 595-9.
[http://dx.doi.org/10.1258/0022215054516313] [PMID: 16102212]
[44]
Amitani R, Murayama T, Nawada R, et al. Aspergillus culture filtrates and sputum sols from patients with pulmonary aspergillosis cause damage to human respiratory ciliated epithelium in vitro. Eur Respir J 1995; 8(10): 1681-7.
[http://dx.doi.org/10.1183/09031936.95.08101681] [PMID: 8586122]
[45]
Riechelmann H, Kienast K, Schellenberg J, Mann WJ. An in vitro model to study effects of airborne pollutants on human ciliary activity. Rhinology 1994; 32(3): 105-8.
[PMID: 7839078]
[46]
Pedersen M. Ciliary activity and pollution. Lung 1990; 168(S1) (Suppl.): 368-76.
[http://dx.doi.org/10.1007/BF02718154] [PMID: 2117139]
[47]
Gerrity TR, Cotromanes E, Garrard CS, Yeates DB, Lourenço RV. The effect of aspirin on lung mucociliary clearance. N Engl J Med 1983; 308(3): 139-41.
[http://dx.doi.org/10.1056/NEJM198301203080306] [PMID: 6848905]
[48]
Matsuura S, Shirakami G, Iida H, Tanimoto K, Fukuda K. The effect of sevoflurane on ciliary motility in rat cultured tracheal epithelial cells: A comparison with isoflurane and halothane. Anesth Analg 2006; 102(6): 1703-8.
[http://dx.doi.org/10.1213/01.ane.0000216001.36932.a3] [PMID: 16717313]
[49]
Smith CM, Do Hyang Lee D, Kulkarni H, et al. Influenza virus infection of well-differentiated human airway epithelial cells by infectious aerosols: Insights into the earliest stages of infection. F1000 Res 2019; 8: 337.
[http://dx.doi.org/10.12688/f1000research.18513.1]
[50]
Carson JL, Lu TS, Brighton L, Hazucha M, Jaspers I, Zhou H. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke. in vitro Cell Dev Biol Anim 2010; 46(7): 606-12.
[http://dx.doi.org/10.1007/s11626-010-9310-6] [PMID: 20383665]
[51]
Zhou H, Wang X, Brighton L, Hazucha M, Jaspers I, Carson JL. Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhal Toxicol 2009; 21(10): 875-81.
[http://dx.doi.org/10.1080/08958370802555898] [PMID: 19555226]
[52]
Dalhamn T. The effect of cigarette smoke on ciliary activity in the upper respiratory tract. Arch Otolaryngol Head Neck Surg 1959; 70(2): 166-8.
[http://dx.doi.org/10.1001/archotol.1959.00730040172003] [PMID: 13669820]
[53]
Atef A, Zeid IA, Qotb M, Rab EGE. Effect of passive smoking on ciliary regeneration of nasal mucosa after functional endoscopic sinus surgery in children. J Laryngol Otol 2009; 123(1): 75-9.
[http://dx.doi.org/10.1017/S0022215108003678] [PMID: 18845033]
[54]
Auerbach O, Stout AP, Hammond EC, Garfinkel L. Changes in bronchial epithelium in relation to sex, age, residence, smoking and pneumonia. N Engl J Med 1962; 267(3): 111-9.
[http://dx.doi.org/10.1056/NEJM196207192670301] [PMID: 13863213]
[55]
Global strategy for asthma management and prevention (2023 update) global initiative for Asthma. 2023. Available from: https://ginasthma.org/2023-gina-main-report/
[56]
Thomas B, Rutman A, Hirst RA, et al. Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J Allergy Clin Immunol 2010; 126(4): 722-729.e2.
[http://dx.doi.org/10.1016/j.jaci.2010.05.046] [PMID: 20673980]
[57]
Jesenak M, Banovcin P, Havlicekova Z, Dobrota D, Babusikova E. Factors influencing the levels of exhaled carbon monoxide in asthmatic children. J Asthma 2014; 51(9): 900-6.
[http://dx.doi.org/10.3109/02770903.2014.936448] [PMID: 24945941]
[58]
Ordoñez CL, Khashayar R, Wong HH, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 2001; 163(2): 517-23.
[http://dx.doi.org/10.1164/ajrccm.163.2.2004039] [PMID: 11179133]
[59]
Cutz E, Levison H, Cooper DM. Ultrastructure of airways in children with asthma. Histopathology 2002; 41(3A): 22-36.
[http://dx.doi.org/10.1111/j.1365-2559.1978.tb01735.x] [PMID: 12405926]
[60]
Mezey RJ, Cohn MA, Fernandez RJ, Januszkiewicz AJ, Wanner A. Mucociliary transport in allergic patients with antigen-induced bronchospasm. Am Rev Respir Dis 1978; 118(4): 677-84.
[http://dx.doi.org/10.1164/arrd.1978.118.4.677] [PMID: 101106]
[61]
Messina MS, O’riordan TG, Smaldone GC. Changes in mucociliary clearance during acute exacerbations of asthma. Am Rev Respir Dis 1991; 143(5_pt_1): 993-7.
[http://dx.doi.org/10.1164/ajrccm/143.5_Pt_1.993] [PMID: 2024856]
[62]
Bateman JR, Pavia D, Sheahan NF, Agnew JE, Clarke SW. Impaired tracheobronchial clearance in patients with mild stable asthma. Thorax 1983; 38(6): 463-7.
[http://dx.doi.org/10.1136/thx.38.6.463] [PMID: 6879499]
[63]
Dulfano MJ, Luk CK. Sputum and ciliary inhibition in asthma. Thorax 1982; 37(9): 646-51.
[http://dx.doi.org/10.1136/thx.37.9.646] [PMID: 7157221]
[64]
Lay JC, Alexis NE, Zeman KL, Peden DB, Bennett WD. in vivo uptake of inhaled particles by airway phagocytes is enhanced in patients with mild asthma compared with normal volunteers. Thorax 2009; 64(4): 313-20.
[http://dx.doi.org/10.1136/thx.2008.096222] [PMID: 19052052]
[65]
Svenningsen S, Haider E, Boylan C, et al. CT and functional MRI to evaluate airway mucus in severe asthma. Chest 2019; 155(6): 1178-89.
[http://dx.doi.org/10.1016/j.chest.2019.02.403] [PMID: 30910637]
[66]
Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 2000; 105(6): 1063-70.
[http://dx.doi.org/10.1067/mai.2000.107604] [PMID: 10856136]
[67]
Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103(6): 779-88.
[http://dx.doi.org/10.1172/JCI5909] [PMID: 10079098]
[68]
Saatian B, Rezaee F, Desando S, et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 2013; 1(2): e24333.
[http://dx.doi.org/10.4161/tisb.24333] [PMID: 24665390]
[69]
Wang X, Lupardus P, LaPorte SL, Garcia KC. Structural biology of shared cytokine receptors. Annu Rev Immunol 2009; 27(1): 29-60.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090616] [PMID: 18817510]
[70]
Yang M, Hogan SP, Mahalingam S, et al. Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. J Allergy Clin Immunol 2003; 112(5): 935-43.
[http://dx.doi.org/10.1016/j.jaci.2003.08.010] [PMID: 14610483]
[71]
Ahdieh M, Vandenbos T, Youakim A. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-γ. Am J Physiol Cell Physiol 2001; 281(6): C2029-38.
[http://dx.doi.org/10.1152/ajpcell.2001.281.6.C2029] [PMID: 11698262]
[72]
Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Heaney LG, Shields MD. Effects of IL-13 on mucociliary differentiation of pediatric asthmatic bronchial epithelial cells. Pediatr Res 2011; 69(2): 95-100.
[http://dx.doi.org/10.1203/PDR.0b013e318204edb5] [PMID: 21076368]
[73]
Gomperts BN, Kim LJ, Flaherty SA, Hackett BP. IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol 2007; 37(3): 339-46.
[http://dx.doi.org/10.1165/rcmb.2006-0400OC] [PMID: 17541011]
[74]
Parker J, Sarlang S, Thavagnanam S, et al. A 3-D well-differentiated model of pediatric bronchial epithelium demonstrates unstimulated morphological differences between asthmatic and nonasthmatic cells. Pediatr Res 2010; 67(1): 17-22.
[http://dx.doi.org/10.1203/PDR.0b013e3181c0b200] [PMID: 19755931]
[75]
Turner J, Roger J, Fitau J, et al. Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am J Respir Cell Mol Biol 2011; 44(3): 276-84.
[http://dx.doi.org/10.1165/rcmb.2009-0304OC] [PMID: 20539013]
[76]
Temann UA, Prasad B, Gallup MW, et al. A novel role for murine IL-4 in vivo: Induction of MUC5AC gene expression and mucin hypersecretion. Am J Respir Cell Mol Biol 1997; 16(4): 471-8.
[http://dx.doi.org/10.1165/ajrcmb.16.4.9115759] [PMID: 9115759]
[77]
Xiang J, Rir-Sim-Ah J, Tesfaigzi Y. IL-9 and IL-13 induce mucous cell metaplasia that is reduced by IFN-gamma in a Bax-mediated pathway. Am J Respir Cell Mol Biol 2008; 38(3): 310-7.
[http://dx.doi.org/10.1165/rcmb.2007-0078OC] [PMID: 17901408]
[78]
Lachowicz-Scroggins ME, Yuan S, Kerr SC, et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med 2016; 194(10): 1296-9.
[http://dx.doi.org/10.1164/rccm.201603-0526LE] [PMID: 27845589]
[79]
Bonser LR, Zlock L, Finkbeiner W, Erle DJ. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest 2016; 126(6): 2367-71.
[http://dx.doi.org/10.1172/JCI84910] [PMID: 27183390]
[80]
Evans CM, Raclawska DS, Ttofali F, et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun 2015; 6(1): 6281.
[http://dx.doi.org/10.1038/ncomms7281] [PMID: 25687754]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy