Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Paper-based Microfluidic Devices for the Analysis of Various Pathogens from Diverse Samples

Author(s): Namita Ashish Singh*, Nitish Rai, Ashish Kumar Singh, Vidhi Jain and Jagriti Narang

Volume 20, Issue 6, 2024

Published on: 13 March, 2024

Page: [367 - 382] Pages: 16

DOI: 10.2174/0115734110292458240306055653

Price: $65

Abstract

In today’s era, detection of disease is utmost important for the management of disease. Early detection leads to early management of disease. Paper-based microfluidic devices are promising technologies that are cost-effective, portable and easy to use over conventional methods. In addition, paper-based microfluidics offers low reagent/sample volume, less response time and can be used in resource-limited settings. Researchers are highly fascinated by this technology as it has a lot of potential to convert into commercial monitoring devices. The present article covers the uses of paper-based microfluidic technology for the swift and sensitive detection of pathogens from diverse samples, viz. food, water and blood. In this comprehensive review, paper-based microfluidic devices are introduced, including the basic concepts, current status and applications, along with the discussion of the limitations of microfluidics for the detection of pathogens. Although paper-based microfluidic devices are being developed, their commercialization requires simplification of manufacturing processes, reduction in production costs as well as an increase in production efficiency. Nonetheless, the integration of artificial intelligence (AI) and the Internet of Things (IoT) like smartphones, digital cameras, webcam etc. with paper-associated diagnosis has transformed the point-of-care (POC) diagnostics.

Next »
Graphical Abstract

[1]
Campbell, J.; Balhoff, J.; Landwehr, G.; Rahman, S.; Vaithiyanathan, M.; Melvin, A. Microfluidic and paper-based devices for disease detection and diagnostic research. Int. J. Mol. Sci., 2018, 19(9), 2731.
[http://dx.doi.org/10.3390/ijms19092731] [PMID: 30213089]
[2]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, S14459.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[3]
Yuan, G.C.; Cai, L.; Elowitz, M.; Enver, T.; Fan, G.; Guo, G.; Irizarry, R.; Kharchenko, P.; Kim, J.; Orkin, S.; Quackenbush, J.; Saadatpour, A.; Schroeder, T.; Shivdasani, R.; Tirosh, I. Challenges and emerging directions in single-cell analysis. Genome Biol., 2017, 18(1), 84.
[http://dx.doi.org/10.1186/s13059-017-1218-y] [PMID: 28482897]
[4]
Zhao, X.; Li, M.; Liu, Y. Microfluidic-based approaches for foodborne pathogen detection. Microorganisms, 2019, 7(10), 381.
[http://dx.doi.org/10.3390/microorganisms7100381] [PMID: 31547520]
[5]
Das, S. Gagandeep; Bhatia, R. Paper-based microfluidic devices: Fabrication, detection, and significant applications in various fields. Rev. Anal. Chem., 2022, 41(1), 112-136.
[http://dx.doi.org/10.1515/revac-2022-0037]
[6]
Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip, 2012, 12(14), 2469-2486.
[http://dx.doi.org/10.1039/c2lc40100b] [PMID: 22592150]
[7]
Park, J.S.; Cho, D.H.; Yang, J.H.; Kim, M.Y.; Shin, S.M.; Kim, E.C.; Park, S.S.; Seong, M.W. Usefulness of a rapid real-time PCR assay in prenatal screening for group B streptococcus colonization. Ann. Lab. Med., 2013, 33(1), 39-44.
[http://dx.doi.org/10.3343/alm.2013.33.1.39] [PMID: 23301221]
[8]
Trinh, T.N.D.; Nam, N.N. Isothermal amplification-based microfluidic devices for detecting foodborne pathogens: A review. Anal. Methods, 2024, 16(8), 1150-1157.
[http://dx.doi.org/10.1039/D3AY02039H] [PMID: 38323529]
[9]
Li, W.; Ma, X.; Yong, Y.C.; Liu, G.; Yang, Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal. Chim. Acta, 2023, 1278, 341614.
[http://dx.doi.org/10.1016/j.aca.2023.341614] [PMID: 37709421]
[10]
Silva-Neto, H.A.; Arantes, I.V.S.; Ferreira, A.L.; do Nascimento, G.H.M.; Meloni, G.N.; de Araujo, W.R.; Paixão, T.R.L.C.; Coltro, W.K.T. Recent advances on paper-based microfluidic devices for bioanalysis. Trends Analyt. Chem., 2023, 158, 116893.
[http://dx.doi.org/10.1016/j.trac.2022.116893]
[11]
Brazaca, L.C.; Imamura, A.H.; Blasques, R.V.; Camargo, J.R.; Janegitz, B.C.; Carrilho, E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens. Bioelectron., 2024, 246, 115846.
[http://dx.doi.org/10.1016/j.bios.2023.115846] [PMID: 38006702]
[12]
Anushka, B.A.; Bandopadhyay, A.; Das, P.K. Paper based microfluidic devices: A review of fabrication techniques and applications. Eur. Phys. J. Spec. Top., 2023, 232(6), 781-815.
[http://dx.doi.org/10.1140/epjs/s11734-022-00727-y] [PMID: 36532608]
[13]
Nagavalli, M.; Swaroopa, T.S.; Sri Vidya Gayathri, P.; Reddy, V.D.K.; Donepudi, N.S.; Yalamanchili, D.; Guha, K.; Sateesh, J. A road map to paper-based microfluidics towards affordable disease detection. MEMS and Microfluidics in Healthcare: Devices and Applications Perspectives.,, 2023, 47-64.
[http://dx.doi.org/10.1007/978-981-19-8714-4_4]
[14]
Jena, S.; Gaur, D.; Dubey, N.C.; Tripathi, B.P. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int. J. Biol. Macromol., 2023, 242(Pt 3), 125089.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125089] [PMID: 37245760]
[15]
Li, J.; Zhu, Y.; Wu, X.; Hoffmann, M.R. Rapid detection methods for bacterial pathogens in ambient waters at the point of sample collection: A brief review. Clin. Infect. Dis., 2020, 71(2), S84-S90.
[http://dx.doi.org/10.1093/cid/ciaa498] [PMID: 32725238]
[16]
Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip, 2020, 20(1), 9-34.
[http://dx.doi.org/10.1039/C9LC00903E]
[17]
Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem., 2015, 87(1), 19-41.
[http://dx.doi.org/10.1021/ac503968p] [PMID: 25375292]
[18]
Mahadeva, S.K.; Walus, K.; Stoeber, B. Paper as a platform for sensing applications and other devices: A review. ACS Appl. Mater. Interfaces, 2015, 7(16), 8345-8362.
[http://dx.doi.org/10.1021/acsami.5b00373] [PMID: 25745887]
[19]
Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta, 2018, 1001, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.11.010] [PMID: 29291790]
[20]
Yang, Y.; Noviana, E.; Nguyen, M.P.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Paper-based microfluidic devices: Emerging themes and applications. Anal. Chem., 2017, 89(1), 71-91.
[http://dx.doi.org/10.1021/acs.analchem.6b04581] [PMID: 27936612]
[21]
Soum, V.; Park, S.; Brilian, A.I.; Kwon, O.S.; Shin, K. Programmable paper-based microfluidic devices for biomarker detections. Micromachines, 2019, 10(8), 516.
[http://dx.doi.org/10.3390/mi10080516] [PMID: 31382502]
[22]
Li, Y.; He, R.; Niu, Y.; Li, F. Paper-based electrochemical biosensors for point-of-care testing of neurotransmitters. J. Anal. Test., 2019, 3(1), 19-36.
[http://dx.doi.org/10.1007/s41664-019-00085-0]
[23]
Coltro, W. Paper-based microfluidics: What can we expect? Brazilian J. Anal. Chem., 2022, 9(37), 11-13.
[http://dx.doi.org/10.30744/brjac.2179-3425.point-of-view-wktcoltro.N37]
[24]
Abdollahi-Aghdam, A.; Majidi, M.R.; Omidi, Y. Microfluidic paper-based analytical devices (µPADs) for fast and ultrasensitive sensing of biomarkers and monitoring of diseases. Bioimpacts, 2018, 8(4), 237-240.
[http://dx.doi.org/10.15171/bi.2018.26] [PMID: 30397578]
[25]
Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem., 2009, 81(16), 7091-7095.
[http://dx.doi.org/10.1021/ac901071p] [PMID: 20337388]
[26]
Tenda, K.; Ota, R.; Yamada, K.; Henares, T.; Suzuki, K.; Citterio, D. High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines, 2016, 7(5), 80.
[http://dx.doi.org/10.3390/mi7050080] [PMID: 30404255]
[27]
Strong, E.B.; Schultz, S.A.; Martinez, A.W.; Martinez, N.W. Fabrication of miniaturized paper-based microfluidic devices (MicroPADs). Sci. Rep., 2019, 9(1), 7.
[http://dx.doi.org/10.1038/s41598-018-37029-0] [PMID: 30626903]
[28]
Bakirhan, N.K.; Uslu, B.; Ozkan, S.A. Food Safety and Preservation; Academic Press Cambridge: MA, USA, 2018, pp. 91-141.
[http://dx.doi.org/10.1016/B978-0-12-814956-0.00005-6]
[29]
Zhang, R.Q.; Liu, S.L.; Zhao, W.; Zhang, W.P.; Yu, X.; Li, Y.; Li, A.J.; Pang, D.W.; Zhang, Z.L. A simple point-of-care microfluidic immunomagnetic fluorescence assay for pathogens. Anal. Chem., 2013, 85(5), 2645-2651.
[http://dx.doi.org/10.1021/ac302903p] [PMID: 23391352]
[30]
Tachibana, H.; Saito, M.; Shibuya, S.; Tsuji, K.; Miyagawa, N.; Yamanaka, K.; Tamiya, E. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens. Bioelectron., 2015, 74, 725-730.
[http://dx.doi.org/10.1016/j.bios.2015.07.009] [PMID: 26210470]
[31]
Sun, Y.; Quyen, T.L.; Hung, T.Q.; Chin, W.H.; Wolff, A.; Bang, D.D. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip, 2015, 15(8), 1898-1904.
[http://dx.doi.org/10.1039/C4LC01459F] [PMID: 25715949]
[32]
Chen, Q.; Wang, D.; Cai, G.; Xiong, Y.; Li, Y.; Wang, M.; Huo, H.; Lin, J. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosens. Bioelectron., 2016, 86, 770-776.
[http://dx.doi.org/10.1016/j.bios.2016.07.071] [PMID: 27476059]
[33]
Roy, S.; Mohd-Naim, N.F.; Safavieh, M.; Ahmed, M.U. Colorimetric nucleic acid detection on paper microchip using loop mediated isothermal amplification and crystal violet dye. ACS Sens., 2017, 2(11), 1713-1720.
[http://dx.doi.org/10.1021/acssensors.7b00671] [PMID: 29090907]
[34]
Sayad, A.; Ibrahim, F.; Mukim Uddin, S.; Cho, J.; Madou, M.; Thong, K.L. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosens. Bioelectron., 2018, 100, 96-104.
[http://dx.doi.org/10.1016/j.bios.2017.08.060] [PMID: 28869845]
[35]
Pang, B.; Fu, K.; Liu, Y.; Ding, X.; Hu, J.; Wu, W.; Xu, K.; Song, X.; Wang, J.; Mu, Y.; Zhao, C.; Li, J. Development of a self-priming PDMS/paper hybrid microfluidic chip using mixed-dye-loaded loop-mediated isothermal amplification assay for multiplex foodborne pathogens detection. Anal. Chim. Acta, 2018, 1040, 81-89.
[http://dx.doi.org/10.1016/j.aca.2018.07.024] [PMID: 30327116]
[36]
Somvanshi, S.B.; Ulloa, A.M.; Zhao, M.; Liang, Q.; Barui, A.K.; Lucas, A.; Jadhav, K.M.; Allebach, J.P.; Stanciu, L.A. Microfluidic paper-based aptasensor devices for multiplexed detection of pathogenic bacteria. Biosens. Bioelectron., 2022, 207, 114214.
[http://dx.doi.org/10.1016/j.bios.2022.114214] [PMID: 35349894]
[37]
Asgari, S.; Dhital, R.; Aghvami, S.A.; Mustapha, A.; Zhang, Y.; Lin, M. Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Mikrochim. Acta, 2022, 189(3), 111.
[http://dx.doi.org/10.1007/s00604-022-05187-8] [PMID: 35184204]
[38]
Zhuang, J.; Zhao, Z.; Lian, K.; Yin, L.; Wang, J.; Man, S.; Liu, G.; Ma, L. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens. Bioelectron., 2022, 207, 114167.
[http://dx.doi.org/10.1016/j.bios.2022.114167] [PMID: 35325722]
[39]
Chen, Y.; Hu, Y.; Lu, X. An Integrated paper microfluidic device based on isothermal amplification for simple sample-to-answer detection of campylobacter jejuni. Appl. Environ. Microbiol., 2023, 89(7), e00695-e23.
[http://dx.doi.org/10.1128/aem.00695-23] [PMID: 37382522]
[40]
Xie, M.; Chen, T.; Cai, Z.; Lei, B.; Dong, C. An all-in-one platform for on-site multiplex foodborne pathogen detection based on channel-digital hybrid microfluidics. Biosensors, 2024, 14(1), 50.
[http://dx.doi.org/10.3390/bios14010050] [PMID: 38248427]
[41]
Eid, C.; Santiago, J.G. Assay for Listeria monocytogenes cells in whole blood using isotachophoresis and recombinase polymerase amplification. Analyst, 2017, 142(1), 48-54.
[http://dx.doi.org/10.1039/C6AN02119K] [PMID: 27904893]
[42]
Reboud, J.; Xu, G.; Garrett, A.; Adriko, M.; Yang, Z.; Tukahebwa, E.M.; Rowell, C.; Cooper, J.M. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc. Natl. Acad. Sci., 2019, 116(11), 4834-4842.
[http://dx.doi.org/10.1073/pnas.1812296116] [PMID: 30782834]
[43]
Seok, Y.; Batule, B.S.; Kim, M.G. Lab-on-paper for all-in-one molecular diagnostics (LAMDA) of Zika, dengue, and chikungunya virus from human serum. Biosens. Bioelectron., 2020, 165, 112400.
[http://dx.doi.org/10.1016/j.bios.2020.112400] [PMID: 32729520]
[44]
Lu, Q.; Su, T.; Shang, Z.; Jin, D.; Shu, Y.; Xu, Q.; Hu, X. Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens. Bioelectron., 2021, 184, 113229.
[http://dx.doi.org/10.1016/j.bios.2021.113229] [PMID: 33894427]
[45]
Chen, Z.; Zhang, Z.; Zhai, X.; Li, Y.; Lin, L.; Zhao, H.; Bian, L.; Li, P.; Yu, L.; Wu, Y.; Lin, G. Rapid and sensitive detection of anti-sars-cov-2 igg, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem., 2020, 92(10), 7226-7231.
[http://dx.doi.org/10.1021/acs.analchem.0c00784] [PMID: 32323974]
[46]
Srisomwat, C.; Yakoh, A.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Amplification-free DNA sensor for the one-step detection of the Hepatitis B virus using an automated paper-based lateral flow electrochemical device. Anal. Chem., 2021, 93(5), 2879-2887.
[http://dx.doi.org/10.1021/acs.analchem.0c04283] [PMID: 33326737]
[47]
Zhao, H.; Liu, F.; Xie, W.; Zhou, T.C.; OuYang, J.; Jin, L.; Li, H.; Zhao, C.Y.; Zhang, L.; Wei, J.; Zhang, Y.P.; Li, C.P. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem., 2021, 327, 128899.
[http://dx.doi.org/10.1016/j.snb.2020.128899] [PMID: 32952300]
[48]
Li, S.; Meng, H.M.; Zong, H.; Chen, J.; Li, J.; Zhang, L.; Li, Z. Entropy-driven amplification strategy-assisted lateral flow assay biosensor for ultrasensitive and convenient detection of nucleic acids. Analyst, 2021, 146(5), 1668-1674.
[http://dx.doi.org/10.1039/D0AN02273J] [PMID: 33475625]
[49]
Alonzo, L.F.; Jain, P.; Hinkley, T.; Clute-Reinig, N.; Garing, S.; Spencer, E.; Dinh, V.T.T.; Bell, D.; Nugen, S.; Nichols, K.P.; Le Ny, A.L.M. Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. Sci. Rep., 2022, 12(1), 7741.
[http://dx.doi.org/10.1038/s41598-022-11468-2] [PMID: 35562180]
[50]
Hill, E.R.; Chun, C.L.; Hamilton, K.; Ishii, S. High-throughput microfluidic quantitative PCR platform for the simultaneous quantification of pathogens, fecal indicator bacteria, and microbial source tracking markers. ACS ES&T Water, 2023, 3(8), 2647-2658.
[http://dx.doi.org/10.1021/acsestwater.3c00169] [PMID: 37593240]
[51]
Karuppiah, S.; Mishra, N.C.; Tsai, W.C.; Liao, W.S.; Chou, C.F. Ultrasensitive and low-cost paper-based graphene oxide nanobiosensor for monitoring water-borne bacterial contamination. ACS Sens., 2021, 6(9), 3214-3223.
[http://dx.doi.org/10.1021/acssensors.1c00851] [PMID: 34461015]
[52]
Chang, C.H.; Wang, C.L.; Li, B.R. Rapid detection of live bacteria in water using nylon filter membrane-integrated centrifugal microfluidics. Biosens. Bioelectron., 2023, 236, 115403.
[http://dx.doi.org/10.1016/j.bios.2023.115403] [PMID: 37271096]
[53]
Gunda, N.S.K.; Dasgupta, S.; Mitra, S.K. DipTest: A litmus test for E. coli detection in water. PLoS One, 2017, 12(9), e0183234.
[http://dx.doi.org/10.1371/journal.pone.0183234] [PMID: 28877199]
[54]
Park, T.S.; Yoon, J.Y. Smartphone detection of Escherichiacoli from field water samples on paper microfluidics. IEEE Sens. J., 2015, 15(3), 1902-1907.
[http://dx.doi.org/10.1109/JSEN.2014.2367039]
[55]
Altintas, Z.; Akgun, M.; Kokturk, G.; Uludag, Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron., 2018, 100, 541-548.
[http://dx.doi.org/10.1016/j.bios.2017.09.046] [PMID: 28992610]
[56]
Kim, M.; Jung, T.; Kim, Y.; Lee, C.; Woo, K.; Seol, J.H.; Yang, S. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens. Bioelectron., 2015, 74, 1011-1015.
[http://dx.doi.org/10.1016/j.bios.2015.07.059] [PMID: 26264268]
[57]
Tian, F.; Lyu, J.; Shi, J.; Tan, F.; Yang, M. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sens. Actuators B Chem., 2016, 225, 312-318.
[http://dx.doi.org/10.1016/j.snb.2015.11.059]
[58]
Muhsin, S.A.; Al-Amidie, M.; Shen, Z.; Mlaji, Z.; Liu, J.; Abdullah, A.; El-Dweik, M.; Zhang, S.; Almasri, M. A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens. Biosens. Bioelectron., 2022, 203, 113993.
[http://dx.doi.org/10.1016/j.bios.2022.113993] [PMID: 35114471]
[59]
Chen, Y.; Cheng, N.; Xu, Y.; Huang, K.; Luo, Y.; Xu, W. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens. Bioelectron., 2016, 81, 317-323.
[http://dx.doi.org/10.1016/j.bios.2016.03.006] [PMID: 26985584]
[60]
Jin, B.; Yang, Y.; He, R.; Park, Y.I.; Lee, A.; Bai, D.; Li, F.; Lu, T.J.; Xu, F.; Lin, M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens. Actuators B Chem., 2018, 276, 48-56.
[http://dx.doi.org/10.1016/j.snb.2018.08.074]
[61]
Choi, J.R.; Yong, K.W.; Tang, R.; Gong, Y.; Wen, T.; Li, F.; Pingguan-Murphy, B.; Bai, D.; Xu, F. Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trends Analyt. Chem., 2017, 93, 37-50.
[http://dx.doi.org/10.1016/j.trac.2017.05.007]
[62]
Rengaraj, S.; Cruz-Izquierdo, Á.; Scott, J.L.; Di Lorenzo, M. Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sens. Actuators B Chem., 2018, 265, 50-58.
[http://dx.doi.org/10.1016/j.snb.2018.03.020]
[63]
Jin, J.; Duan, L.; Fu, J.; Chai, F.; Zhou, Q.; Wang, Y.; Shao, X.; Wang, L.; Yan, M.; Su, X.; Zhang, Y.; Pan, J.; Chen, J. A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters. Anal. Methods, 2021, 13(24), 2710-2721.
[http://dx.doi.org/10.1039/D1AY00492A] [PMID: 34041513]
[64]
Gowda, H.N.; Kido, H.; Wu, X.; Shoval, O.; Lee, A.; Lorenzana, A.; Madou, M.; Hoffmann, M.; Jiang, S.C. Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring. Sci. Total Environ., 2022, 813, 152556.
[http://dx.doi.org/10.1016/j.scitotenv.2021.152556] [PMID: 34952082]
[65]
Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol., 2014, 24(3), 297-312.
[http://dx.doi.org/10.4014/jmb.1310.10013] [PMID: 24375418]
[66]
Dou, M.; Sanjay, S.T.; Benhabib, M.; Xu, F.; Li, X. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta, 2015, 145, 43-54.
[http://dx.doi.org/10.1016/j.talanta.2015.04.068] [PMID: 26459442]
[67]
CDC Prevention; Listeria. 2022. Available from: https://www.cdc.gov/listeria/prevention.html/ (Accessed January 1 2022)
[68]
Jones, T.F.; Yackley, J. Foodborne disease outbreaks in the United States: A historical overview. Foodborne Pathog. Dis., 2018, 15(1), 11-15.
[http://dx.doi.org/10.1089/fpd.2017.2388] [PMID: 29337607]
[69]
Parisi, A.; Crump, J.A.; Kirk, M.; Glass, K.; Howden, B.; Gray, D.; Furuya-Kanamori, L.; Vilkins, S. Health outcomes from multi-drug-resistant salmonella infections in high-income countries: A systematic review and meta-analysis. Open Forum Infect. Dis., 2017, 4(1), S286.
[http://dx.doi.org/10.1093/ofid/ofx163.645]
[70]
Zhao, X.; Wei, C.; Zhong, J.; Jin, S. Research advance in rapid detection of foodborne Staphylococcus aureus. Biotechnol. Biotechnol. Equip., 2016, 30(5), 827-833.
[http://dx.doi.org/10.1080/13102818.2016.1209433]
[71]
Centers for disease control and prevention, people at risk. 2022. Available from: https://www.cdc.gov/listeria/risk.html/ (accessed January 1, 2022)
[72]
Zhao, X.; Zhong, J.; Wei, C.; Lin, C.W.; Ding, T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front. Microbiol., 2017, 8, 580.
[http://dx.doi.org/10.3389/fmicb.2017.00580] [PMID: 28421064]
[73]
Wang, Z.; Dai, Z. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale, 2015, 7(15), 6420-6431.
[http://dx.doi.org/10.1039/C5NR00585J] [PMID: 25805626]
[74]
Mi, F.; Hu, C.; Wang, Y.; Wang, L.; Peng, F.; Geng, P.; Guan, M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: A review. Anal. Bioanal. Chem., 2022, 414(9), 2883-2902.
[http://dx.doi.org/10.1007/s00216-021-03872-w] [PMID: 35064302]
[75]
Zhang, C.; Wang, H.; Xing, D. Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens. Biomed. Microdevices, 2011, 13(5), 885-897.
[http://dx.doi.org/10.1007/s10544-011-9558-y] [PMID: 21691814]
[76]
Jokerst, J.C.; Adkins, J.A.; Bisha, B.; Mentele, M.M.; Goodridge, L.D.; Henry, C.S. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem., 2012, 84(6), 2900-2907.
[http://dx.doi.org/10.1021/ac203466y] [PMID: 22320200]
[77]
Wang, Y.; Ping, J.; Ye, Z.; Wu, J.; Ying, Y. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens. Bioelectron., 2013, 49, 492-498.
[http://dx.doi.org/10.1016/j.bios.2013.05.061] [PMID: 23811484]
[78]
Kim, T.H.; Park, J.; Kim, C.J.; Cho, Y.K. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal. Chem., 2014, 86(8), 3841-3848.
[http://dx.doi.org/10.1021/ac403971h] [PMID: 24635032]
[79]
Wang, R.; Ni, Y.; Xu, Y.; Jiang, Y.; Dong, C.; Chuan, N. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal. Chim. Acta, 2015, 853, 710-717.
[http://dx.doi.org/10.1016/j.aca.2014.10.042] [PMID: 25467522]
[80]
Guo, P.L.; Tang, M.; Hong, S.L.; Yu, X.; Pang, D.W.; Zhang, Z.L. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens. Bioelectron., 2015, 74, 628-636.
[http://dx.doi.org/10.1016/j.bios.2015.07.019] [PMID: 26201979]
[81]
Oh, S.J.; Park, B.H.; Choi, G.; Seo, J.H.; Jung, J.H.; Choi, J.S.; Kim, D.H.; Seo, T.S. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab Chip, 2016, 16(10), 1917-1926.
[http://dx.doi.org/10.1039/C6LC00326E] [PMID: 27112702]
[82]
Renner, L.D.; Zan, J.; Hu, L.I.; Martinez, M.; Resto, P.J.; Siegel, A.C.; Torres, C.; Hall, S.B.; Slezak, T.R.; Nguyen, T.H.; Weibel, D.B. Detection of ESKAPE bacterial pathogens at the point of care using isothermal dna-based assays in a portable degas-actuated microfluidic diagnostic assay platform. Appl. Environ. Microbiol., 2017, 83(4), e02449-e16.
[http://dx.doi.org/10.1128/AEM.02449-16] [PMID: 27986722]
[83]
Srisa-Art, M.; Boehle, K.E.; Geiss, B.J.; Henry, C.S. Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal. Chem., 2018, 90(1), 1035-1043.
[http://dx.doi.org/10.1021/acs.analchem.7b04628] [PMID: 29211962]
[84]
Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron., 2019, 124-125, 143-149.
[http://dx.doi.org/10.1016/j.bios.2018.10.006] [PMID: 30366259]
[85]
Asif, M.; Awan, F.R.; Khan, Q.M.; Ngamsom, B.; Pamme, N. Paper-based analytical devices for colorimetric detection of S. aureus and E. coli and their antibiotic resistant strains in milk. Analyst, 2020, 145(22), 7320-7329.
[http://dx.doi.org/10.1039/D0AN01075H] [PMID: 32902519]
[86]
Kubo, I.; Kajiya, M.; Aramaki, N.; Furutani, S. Detection of Salmonella enterica in egg yolk by PCR on a microfluidic disc device using immunomagnetic beads. Sensors (Basel), 2020, 20(4), 1060.
[http://dx.doi.org/10.3390/s20041060] [PMID: 32075315]
[87]
Chen, Y.; Hu, Y.; Lu, X. Polyethersulfone-based microfluidic device integrated with dna extraction on paper and recombinase polymerase amplification for the detection of salmonella enterica. ACS Sens., 2023, 8(6), 2331-2339.
[http://dx.doi.org/10.1021/acssensors.3c00387] [PMID: 37228176]
[88]
Quan, H.; Wang, S.; Xi, X.; Zhang, Y.; Ding, Y.; Li, Y.; Lin, J.; Liu, Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens. Bioelectron., 2024, 245, 115837.
[http://dx.doi.org/10.1016/j.bios.2023.115837] [PMID: 38000308]
[89]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[90]
Ohlsson, P.; Evander, M.; Petersson, K.; Mellhammar, L.; Lehmusvuori, A.; Karhunen, U.; Soikkeli, M.; Seppä, T.; Tuunainen, E.; Spangar, A.; von Lode, P.; Rantakokko-Jalava, K.; Otto, G.; Scheding, S.; Soukka, T.; Wittfooth, S.; Laurell, T. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal. Chem., 2016, 88(19), 9403-9411.
[http://dx.doi.org/10.1021/acs.analchem.6b00323] [PMID: 27264110]
[91]
Choi, G.; Song, D.; Shrestha, S.; Miao, J.; Cui, L.; Guan, W. A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip, 2016, 16(22), 4341-4349.
[http://dx.doi.org/10.1039/C6LC01078D] [PMID: 27722377]
[92]
Jackson, S.; Lee, S.; Badu-Tawiah, A.K. Automated immunoassay performed on a 3D microfluidic paper-based device for malaria detection by ambient mass spectrometry. Anal. Chem., 2022, 94(12), 5132-5139.
[http://dx.doi.org/10.1021/acs.analchem.1c05530] [PMID: 35293204]
[93]
Ogunmolasuyi, A.M.; Fogel, R.; Hoppe, H.; Goldring, D.; Limson, J. A microfluidic paper analytical device using capture aptamers for the detection of PfLDH in blood matrices. Malar. J., 2022, 21(1), 174.
[http://dx.doi.org/10.1186/s12936-022-04187-6] [PMID: 35672848]
[94]
Surawathanawises, K.; Wiedorn, V.; Cheng, X. Micropatterned macroporous structures in microfluidic devices for viral separation from whole blood. Analyst, 2017, 142(12), 2220-2228.
[http://dx.doi.org/10.1039/C7AN00576H] [PMID: 28555231]
[95]
Lee, D.; Shin, Y.; Chung, S.; Hwang, K.S.; Yoon, D.S.; Lee, J.H. Simple and highly sensitive molecular diagnosis of Zika virus by lateral flow assays. Anal. Chem., 2016, 88(24), 12272-12278.
[http://dx.doi.org/10.1021/acs.analchem.6b03460] [PMID: 28193014]
[96]
Song, J.; Pandian, V.; Mauk, M.G.; Bau, H.H.; Cherry, S.; Tisi, L.C.; Liu, C. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal. Chem., 2018, 90(7), 4823-4831.
[http://dx.doi.org/10.1021/acs.analchem.8b00283] [PMID: 29542319]
[97]
Kaarj, K.; Akarapipad, P.; Yoon, J.Y. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep., 2018, 8(1), 12438.
[http://dx.doi.org/10.1038/s41598-018-30797-9] [PMID: 30127503]
[98]
Park, T.S.; Li, W.; McCracken, K.E.; Yoon, J.Y. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip, 2013, 13(24), 4832-4840.
[http://dx.doi.org/10.1039/c3lc50976a] [PMID: 24162816]
[99]
Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; Daringer, N.M.; Bosch, I.; Dudley, D.M.; O’Connor, D.H.; Gehrke, L.; Collins, J.J. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 2016, 165(5), 1255-1266.
[http://dx.doi.org/10.1016/j.cell.2016.04.059] [PMID: 27160350]
[100]
Phillips, E.A.; Moehling, T.J.; Ejendal, K.F.K.; Hoilett, O.S.; Byers, K.M.; Basing, L.A.; Jankowski, L.A.; Bennett, J.B.; Lin, L.K.; Stanciu, L.A.; Linnes, J.C. Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip, 2019, 19(20), 3375-3386.
[http://dx.doi.org/10.1039/C9LC00506D] [PMID: 31539001]
[101]
Prat-Trunas, J.; Arias-Alpizar, K.; Álvarez-Carulla, A.; Orio-Tejada, J.; Molina, I.; Sánchez-Montalvá, A.; Colomer-Farrarons, J.; del Campo, F.J.; Miribel-Català, P.L.; Baldrich, E. Paper-based microfluidic electro-analytical device (PMED) for magneto-assay automation: Towards generic point-of-care diagnostic devices. Biosens. Bioelectron., 2024, 246, 115875.
[http://dx.doi.org/10.1016/j.bios.2023.115875] [PMID: 38039728]
[102]
Islam, M.N.; Jaiswal, B.; Gagnon, Z.R. High-throughput continuous free-flow dielectrophoretic trapping of micron-scale particles and cells in paper using localized nonuniform pore-scale-generated paper-based electric field gradients. Anal. Chem., 2024, 96(3), 1084-1092.
[http://dx.doi.org/10.1021/acs.analchem.3c03740] [PMID: 38194698]
[103]
Arias-Alpízar, K.; Sánchez-Cano, A.; Prat-Trunas, J.; de la Serna Serna, E.; Alonso, O.; Sulleiro, E.; Sánchez-Montalvá, A.; Diéguez, A.; Baldrich, E. Malaria quantitative POC testing using magnetic particles, a paper microfluidic device and a hand-held fluorescence reader. Biosens. Bioelectron., 2022, 215, 114513.
[http://dx.doi.org/10.1016/j.bios.2022.114513] [PMID: 35917611]
[104]
Ali, M.; Nelson, A.R.; Lopez, A.L.; Sack, D.A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis., 2015, 9(6), e0003832.
[http://dx.doi.org/10.1371/journal.pntd.0003832] [PMID: 26043000]
[105]
Ingerson-Mahar, M.; Reid, A. Microbes in pipes: The microbiology of the water distribution system; ASM Academy: Boulder, CO, USA, 2013, p. 26.
[106]
Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. AMB Express, 2014, 4(1), 51.
[http://dx.doi.org/10.1186/s13568-014-0051-x] [PMID: 25006540]
[107]
Nwachcuku, N.; Gerba, C.P. Emerging waterborne pathogens: Can we kill them all? Curr. Opin. Biotechnol., 2004, 15(3), 175-180.
[http://dx.doi.org/10.1016/j.copbio.2004.04.010] [PMID: 15193323]
[108]
Bitton, G. Microbiology of drinking water production and distribution, 1st ed; John Wiley & Sons Inc: Hoboken, NJ, USA, 2014, pp. 1-312.
[http://dx.doi.org/10.1002/9781118743942]
[109]
Woolhouse, M.E.J. Where do emerging pathogens come from? Microbe, 2006, 1, 511-515.
[110]
Straub, T.M.; Chandler, D.P. Towards a unified system for detecting waterborne pathogens. J. Microbiol. Methods, 2003, 53(2), 185-197.
[http://dx.doi.org/10.1016/S0167-7012(03)00023-X] [PMID: 12654490]
[111]
Kostić T.; Stessl, B.; Wagner, M.; Sessitsch, A. Microarray analysis reveals the actual specificity of enrichment media used for food safety assessment. J. Food Prot., 2011, 74(6), 1030-1034.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-388] [PMID: 21669087]
[112]
Dunn, G.; Harris, L.; Cook, C.; Prystajecky, N. A comparative analysis of current microbial water quality risk assessment and management practices in British Columbia and Ontario, Canada. Sci. Total Environ., 2014, 468-469, 544-552.
[http://dx.doi.org/10.1016/j.scitotenv.2013.08.004] [PMID: 24055670]
[113]
Kumar, S.; Nehra, M.; Mehta, J.; Dilbaghi, N.; Marrazza, G.; Kaushik, A. Point-of-care strategies for detection of waterborne pathogens. Sensors, 2019, 19(20), 4476.
[http://dx.doi.org/10.3390/s19204476] [PMID: 31623064]
[114]
Sharma, H.; Mutharasan, R. Review of biosensors for foodborne pathogens and toxins. Sens. Actuators B Chem., 2013, 183, 535-549.
[http://dx.doi.org/10.1016/j.snb.2013.03.137]
[115]
Bhunia, A.K. One day to one hour: How quickly can foodborne pathogens be detected? Future Microbiol., 2014, 9(8), 935-946.
[http://dx.doi.org/10.2217/fmb.14.61] [PMID: 25302952]
[116]
The biofire film array system, biofire. Available from: https://www.biofiredx.com/products/filmarray/ (Accessed January 31, 2023)
[117]
Etherington, D. mesa biotech gains emergency fda approval for rapid, point-of-care COVID-19 test. 2020. Available from: https://techcrunch.com/2020/03/24/mesa-biotech-gains-emergencyfda-approval-for-rapid-point-of-care-covid-19-test/ (Accessed February 6, 2023).
[118]
Harding-Esch, E.M.; Cousins, E.C.; Chow, S.L.C.; Phillips, L.T.; Hall, C.L.; Cooper, N.; Fuller, S.S.; Nori, A.V.; Patel, R.; Thomas-William, S.; Whitlock, G.; Edwards, S.J.E.; Green, M.; Clarkson, J.; Arlett, B.; Dunbar, J.K.; Lowndes, C.M.; Sadiq, S.T.A. 30-Min nucleic acid amplification point-of-care test for genital chlamydia trachomatis infection in women: A prospective, multi-center study of diagnostic accuracy. EBioMedicine, 2018, 28, 120-127.
[http://dx.doi.org/10.1016/j.ebiom.2017.12.029] [PMID: 29396306]
[119]
The binx io. Available from: https://mybinxhealth.com/point-ofcare/ (Accessed March 16, 2023)
[120]
Alere™ q. A platform to answer global health needs: TB and beyond. Available from: https://www.finddx.org/wp-content/uploads/2016/03/FIND-7thSymposium-2014-DuncanBLAIR.pdf/ (Accessed March 16, 2023)
[121]
GeneXpert® infinity systems. Available from: https://www.cepheid.com/en_US/systems/GeneXpert-Family-of-Systems/GeneXpertInfinity/ (Accessed March 16, 2023)
[122]
The ePlex system: The true sample-to-answer solution Available from: https://genmarkdx.com/systems/eplex-system/ (Accessed March 16, 2023)
[123]
Ichip-400. Available from: http://www.bai (Accessed March 16, 2023)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy