Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Importance and Green Synthesis of Amines: A Review

Author(s): Ashok Raj Patel, Ishwar Patel and Subhash Banerjee*

Volume 28, Issue 5, 2024

Published on: 13 March, 2024

Page: [375 - 389] Pages: 15

DOI: 10.2174/0113852728296565240221082253

Price: $65

Abstract

Amines are “derivatives of ammonia” and important key intermediates for applications in the industrial, pharmaceutical, electronics, etc. They have been used to synthesize industrially important azo dyes, which are used to color various materials. Moreover, amine functionality is present in several important biological molecules. Biogenic amines are found in living organisms and play essential physiological functions in the body. They are prepared from the amination and transamination reaction of carbonyl compounds such as aldehydes and ketones and the decarboxylation reaction of amino acids. Thus, the various applications and requirements of essential amine scaffolds paid attention to researchers to develop novel synthetic protocols to synthesize these compounds. In organic chemistry, various methods synthesize amines; however, green synthetic methods have recently become a trend. By writing this review, our main focus was to provide a brief on the importance of some biogenic amines and the synthesis of both amines via green synthetic methods.

Graphical Abstract

[1]
Eller, K.; Henkes, E.; Rossbacher, R.; Hoke, H. Amines, aliphatic. In: Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH, 2011.
[2]
Eunsuk, K.; Han, S.; Moon, B.K. Efficient chemoselective reduction of nitro compounds and olefins using Pd-Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes. Catal. Commun., 2013, 45, 25-29.
[3]
Gupta, V.K.; Atar, N.; Yola, M.L.; Üstündağ, Z.; Uzun, L. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 2014, 48, 210-217.
[http://dx.doi.org/10.1016/j.watres.2013.09.027] [PMID: 24112627]
[4]
(a) Afanasyev, O.I.; Kuchuk, E.A.; Muratov, K.M.; Denisov, G.L.; Chusov, D. Symmetrical tertiary amines: Applications and synthetic approaches. Eur. J. Org. Chem., 2020, 4, 543-586.;
(b) Salman, M.; Jabbar, A.; Farooq, S.; Bashir, I.; Rafiq, M.S.K. New heterocyclic azo-disperse dyes; their synthesis, characterization, application, photo physical properties and solvatochromic studies. J. Mol. Struct., 2023, 1287, 135664.
[http://dx.doi.org/10.1016/j.molstruc.2023.135664];
(c) Mahmoud, S.E.; Fadda, A.A.; Latif, A.E.; Elmorsy, M.R. Synthesis of novel triphenylamine-based organic dyes with dual anchors for efficient dye-sensitized solar cells. Nanoscale Res. Lett., 2022, 17(1), 71.
[http://dx.doi.org/10.1186/s11671-022-03711-6] [PMID: 35927533];
(d) Xu, S.; Ye, L. Synthesis and properties of monomer cast nylon-6-b-polyether amine copolymers with different structures. RSC Advances, 2015, 5(41), 32460-32468.
[http://dx.doi.org/10.1039/C5RA03589A];
(e) Patel, G.; Patel, A.R.; Banerjee, S. Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. New J. Chem., 2020, 44(31), 13295-13300.
[http://dx.doi.org/10.1039/D0NJ02527E];
(f) Payra, S.; Saha, A.; Wu, C.M.; Selvaratnam, B.; Dramstad, T.; Mahoney, L.; Verma, S.K.; Thareja, S.; Koodali, R.; Banerjee, S. Fe–SBA-15 catalyzed synthesis of 2-alkoxyimidazo[1,2-a]pyridines and screening of their in silico selectivity and binding affinity to biological targets. New J. Chem., 2016, 40(11), 9753-9760.
[http://dx.doi.org/10.1039/C6NJ02134D];
(g) Payra, S.; Saha, A.; Banerjee, S. Nano-NiFe2O4 catalyzed microwave assisted one-pot regioselective synthesis of novel 2-alkoxyimidazo[1,2-a]pyridines under aerobic conditions. RSC Advances, 2016, 6(15), 12402-12407.
[http://dx.doi.org/10.1039/C5RA25540F];
(h) Mohammadi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Choghamarani, G.A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem., 2021, 97, 1-78.
[http://dx.doi.org/10.1016/j.jiec.2021.02.001]
[]
(i) Choghamarani, G.A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed., 2019, 45(11), 5705-5723.
[http://dx.doi.org/10.1007/s11164-019-03930-0]
[]
(j) Ghobakhloo, F.; Azarifar, D.; Mohammadi, M.; Keypour, H.; Zeynali, H. Copper(II) schiff-base complex modified UiO-66-NH2(Zr) metal–organic framework catalysts for knoevenagel condensation–michael addition–cyclization reactions. Inorg. Chem., 2022, 61(12), 4825-4841.
[http://dx.doi.org/10.1021/acs.inorgchem.1c03284] [PMID: 35285616]
[]
(k) Ghobakhloo, F.; Mohammadi, M.; Ghaemi, M.; Azarifar, D. Post-synthetic generation of amino-acid-functionalized UiO-66-NH2 metal–organic framework nanostructures as an amphoteric catalyst for organic reactions. ACS Appl. Nano Mater., 2024, 7(1), 1265-1277.
[http://dx.doi.org/10.1021/acsanm.3c05230]
[]
(l) Norouzi, M.; Noormoradi, N.; Mohammadi, M. Nanomagnetic tetraaza (N4 donor) macrocyclic Schiff base complex of copper(II): Synthesis, characterizations, and its catalytic application in Click reactions. Nanoscale Adv., 2023, 5(23), 6594-6605.
[http://dx.doi.org/10.1039/D3NA00580A] [PMID: 38024320];
(m) Mohammadi, M.; Choghamarani, G.A.; Khil, H.N. l–aspartic acid chelan–Cu (II) complex coted on ZrFe2O4 MNPs catalyzed one–pot annulation and cooperative geminal-vinylogous anomeric–based oxidation reactions. J. Phys. Chem. Solids, 2023, 177, 111300.
[http://dx.doi.org/10.1016/j.jpcs.2023.111300];
(n) Choghamarani, G.A.; Mohammadi, M.; Tamoradi, T.; Ghadermazi, M. Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron, 2019, 158, 25-35.
[http://dx.doi.org/10.1016/j.poly.2018.10.054];
(o) Kazemi, M.; Mohammadi, M. Magnetically recoverable catalysts: Catalysis in synthesis of polyhydroquinolines. Appl. Organomet. Chem., 2020, 34(3), e5400.
[http://dx.doi.org/10.1002/aoc.5400];
(p) Soleiman-Beigi, M.; Noroozian, Z.; Sarai, R.; Kohzadi, H.; Naghipour, A. Palladium and zirconium nanoparticles immobilized on functionalized natural asphalt sulfonate as magnetically and recoverable nanocatalysts for the synthesis of symmetrical and unsymmetrical disulfides. React. Kinet. Mech. Catal., 2023, 136(5), 2465-2480.
[http://dx.doi.org/10.1007/s11144-023-02487-9]
[5]
Yu, M.; Wang, M.; Chen, X.; Hong, B.; Zhang, X.; Cheng, C. Synthesis of OLED materials of several triarylamines by palladium catalysts and their light emitting property. J. Chem. Res., 2005, 2005(9), 558-560.
[http://dx.doi.org/10.3184/030823405774308961]
[6]
Kwong, K.V.; Meissner Iii, R.E.; Ahmed, S.; Wendt, C.J.; Wendt, C.J. Application of amines for treating flue gas from coal‐fired power plants. Environ. Prog., 1991, 10(3), 211-215.
[http://dx.doi.org/10.1002/ep.670100321]
[7]
Zhang, C.; Jiao, N. Copper‐catalyzed aerobic oxidative dehydrogenative coupling of anilines leading to aromatic azo compounds using dioxygen as an oxidant. Angew. Chem., 2010, 122(35), 6310-6313.
[http://dx.doi.org/10.1002/ange.201001651]
[8]
Sarkar, P.; Mukhopadhyay, C. First use of p-tert-butylcalix[4]arene-tetra-O-acetate as a nanoreactor having tunable selectivity towards cross azo-compounds by trapping silver ions. Green Chem., 2016, 18(2), 442-451.
[http://dx.doi.org/10.1039/C5GC01859E]
[9]
Georgiádes, Á.; Ötvös, S.B.; Fülöp, F. Exploring new parameter spaces for the oxidative homocoupling of aniline derivatives: Sustainable synthesis of azobenzenes in a flow system. ACS Sustain. Chem. Eng., 2015, 3(12), 3388-3397.
[http://dx.doi.org/10.1021/acssuschemeng.5b01096]
[10]
Wang, J.; He, J.; Zhi, C.; Luo, B.; Li, X.; Pan, Y.; Cao, X.; Gu, H. Highly efficient synthesis of azos catalyzed by the common metal copper (0) through oxidative coupling reactions. RSC Advances, 2014, 4(32), 16607-16611.
[http://dx.doi.org/10.1039/c4ra00749b]
[11]
Zhu, Y.; Shi, Y. Facile Cu(I)-catalyzed oxidative coupling of anilines to azo compounds and hydrazines with diaziridinone under mild conditions. Org. Lett., 2013, 15(8), 1942-1945.
[http://dx.doi.org/10.1021/ol4005917] [PMID: 23545123]
[12]
Ötvös, S.B.; Georgiádes, Á.; Mészáros, R.; Kis, K.; Pálinkó, I.; Fülöp, F. Continuous-flow oxidative homocouplings without auxiliary substances: Exploiting a solid base catalyst. J. Catal., 2017, 348, 90-99.
[http://dx.doi.org/10.1016/j.jcat.2017.02.012]
[13]
Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322(5908), 1661-1664.
[http://dx.doi.org/10.1126/science.1166401] [PMID: 19074342]
[14]
Cai, S.; Rong, H.; Yu, X.; Liu, X.; Wang, D.; He, W.; Li, Y. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal., 2013, 3(4), 478-486.
[http://dx.doi.org/10.1021/cs300707y]
[15]
Dutta, B.; Biswas, S.; Sharma, V.; Savage, N.O.; Alpay, S.P.; Suib, S.L. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew. Chem. Int. Ed., 2016, 55(6), 2171-2175.
[http://dx.doi.org/10.1002/anie.201508223] [PMID: 26749298]
[16]
Lu, W.; Xi, C. CuCl-catalyzed aerobic oxidative reaction of primary aromatic amines. Tetrahedron Lett., 2008, 49(25), 4011-4015.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.089]
[17]
Verma, S.; Varma, R.S. Photocatalytic oxidation of aromatic amines using MnO2@g-C3N4. Adv. Mater. Lett., 2017, 8(7), 754-756.
[http://dx.doi.org/10.5185/amlett.2017.1453] [PMID: 30220824]
[18]
Sarkar, S.; Sarkar, P.; Ghosh, P. Selective single-step oxidation of amine to cross-azo compounds with an unhampered primary benzyl alcohol functionality. Org. Lett., 2018, 20(21), 6725-6729.
[http://dx.doi.org/10.1021/acs.orglett.8b02829] [PMID: 30350675]
[19]
Patel, A.R.; Patel, G.; Maity, G.; Patel, S.P.; Bhattacharya, S.; Putta, A.; Banerjee, S. Direct oxidative azo coupling of anilines using a self-assembled flower-like CuCo2O4 material as a catalyst under aerobic conditions. ACS Omega, 2020, 5(47), 30416-30424.
[http://dx.doi.org/10.1021/acsomega.0c03562] [PMID: 33283089]
[20]
Mock, G.; Freeman, H. Dye application, manufacture of dyes and dye intermediates. In: Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology; Kent, J.A., Ed.; New York, 2007.
[21]
Santos, M.H.S. Biogenic amines: Their importance in foods. Int. J. Food Microbiol., 1996, 29(2-3), 213-231.
[http://dx.doi.org/10.1016/0168-1605(95)00032-1] [PMID: 8796424]
[22]
Vogt, P.F.; Gerulis, J.J. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000.
[23]
Mafra, I.; Herbert, P.; Santos, L.; Barros, P.; Alves, A. Evaluation of biogenic amines in some Portuguese quality wines by HPLC fluorescence detection of OPA derivatives. Am. J. Enol. Vitic., 1999, 50(1), 128-132.
[http://dx.doi.org/10.5344/ajev.1999.50.1.128]
[24]
Bjelakovic, G.; Stojanovic, I.; Stoimenov, T.J.; Pavlovic, D.; Kocic, G.; Bjelakovic, G.B.; Sokolovic, D.; Basic, J. Polyamines, folic acid supplementation and cancerogenesis. Pteridines, 2017, 28(3-4), 115-131.
[http://dx.doi.org/10.1515/pterid-2017-0012]
[25]
Maintz, L.; Novak, N. Histamine and histamine intolerance. Am. J. Clin. Nutr., 2007, 85(5), 1185-1196.
[http://dx.doi.org/10.1093/ajcn/85.5.1185] [PMID: 17490952]
[26]
Criado, P.R.; Criado, R.F.J.; Maruta, C.W.; Machado Filho, C. Histamine, histamine receptors and antihistamines: New concepts. An. Bras. Dermatol., 2010, 85(2), 195-210.
[http://dx.doi.org/10.1590/S0365-05962010000200010] [PMID: 20520935]
[27]
Shahid, M.; Tripathi, T.; Sobia, F.; Moin, S.; Siddiqui, M.; Khan, R.A. Histamine, histamine receptors, and their role in immunomodulation: An updated systematic review. Open Immunol. J., 2009, 2(1), 9-41.
[http://dx.doi.org/10.2174/1874226200902010009]
[28]
Qin, L.; Zhao, D.; Xu, J.; Ren, X.; Terwilliger, E.F.; Parangi, S.; Lawler, J.; Dvorak, H.F.; Zeng, H. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood, 2013, 121(11), 2154-2164.
[http://dx.doi.org/10.1182/blood-2012-07-443903] [PMID: 23315169]
[29]
Guzel, T.; Guzel, M.D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules, 2022, 27(5), 1680.
[http://dx.doi.org/10.3390/molecules27051680] [PMID: 35268781]
[30]
Triggiani, M.; Patella, V.; Staiano, R.I.; Granata, F.; Marone, G. Allergy and the cardiovascular system. Clin. Exp. Immunol., 2008, 153(S1), 7-11.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03714.x] [PMID: 18721322]
[31]
Nakamura, Y.; Ishimaru, K.; Shibata, S.; Nakao, A. Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci. Rep., 2017, 7(1), 39934.
[http://dx.doi.org/10.1038/srep39934] [PMID: 28074918]
[32]
Anwar, M.A.; Ford, W.R.; Broadley, K.J.; Herbert, A.A. Vasoconstrictor and vasodilator responses to tryptamine of rat‐isolated perfused mesentery: Comparison with tyramine and β‐phenylethylamine. Br. J. Pharmacol., 2012, 165(7), 2191-2202.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01706.x] [PMID: 21958009]
[33]
Jacob, G.; Gamboa, A.; Diedrich, A.; Shibao, C.; Robertson, D.; Biaggioni, I. Tyramine-induced vasodilation mediated by dopamine contamination: A paradox resolved. Hypertension, 2005, 46(2), 355-359.
[http://dx.doi.org/10.1161/01.HYP.0000172353.62657.8b] [PMID: 15967868]
[34]
Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem., 2007, 103(4), 1475-1486.
[http://dx.doi.org/10.1016/j.foodchem.2006.08.028]
[35]
Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F. Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol., 2015, 13(1), 26-46.
[http://dx.doi.org/10.2174/1570159X13666141210222409] [PMID: 26074742]
[36]
Benkerroum, N. Biogenic amines in dairy products: Origin, incidence, and control means. Compr. Rev. Food Sci. Food Saf., 2016, 15(4), 801-826.
[http://dx.doi.org/10.1111/1541-4337.12212] [PMID: 33401839]
[37]
Pegg, A.E.; Casero, R.A., Jr. Current status of the polyamine research field. Methods Mol. Biol., 2011, 720, 3-35.
[http://dx.doi.org/10.1007/978-1-61779-034-8_1] [PMID: 21318864]
[38]
Santiago, V.L.; Herrera, R.J. Stress and polyamine metabolism in fungi. Front Chem., 2014, 1, 42.
[http://dx.doi.org/10.3389/fchem.2013.00042] [PMID: 24790970]
[39]
(a) Ioannidis, N.E.; Sfichi, L.; Kotzabasis, K. Putrescine stimulates chemiosmotic ATP synthesis. Biochim. Biophys. Acta Bioenerg., 2006, 1757(7), 821-828.
[http://dx.doi.org/10.1016/j.bbabio.2006.05.034] [PMID: 16828052];
(b) Landete, J.M.; Arena, M.E.; Pardo, I.; de Nadra, M.M.C.; Ferrer, S. The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Int. Microbiol., 2010, 13(4), 169-177.
[PMID: 21404211]
[40]
(a) Jeong, S.; Yeon, Y.J.; Choi, E.G.; Byun, S.; Cho, D.; Kim, I.K.; Kim, Y.H. Alkaliphilic lysine decarboxylases for effective synthesis of cadaverine from L-lysine. Korean J. Chem. Eng., 2016, 33(5), 1530-1533.
[http://dx.doi.org/10.1007/s11814-016-0079-5];
(b) Sagong, H.Y.; Kim, K.J. Lysine decarboxylase with an enhanced affinity for pyridoxal 5-phosphate by disulfide bond-mediated spatial reconstitution. PLoS One, 2017, 12(1), e0170163.
[http://dx.doi.org/10.1371/journal.pone.0170163] [PMID: 28095457]
[41]
(a) Wu, H.; Min, J.; Ikeguchi, Y.; Zeng, H.; Dong, A.; Loppnau, P.; Pegg, A.E.; Plotnikov, A.N. Structure and mechanism of spermidine synthases. Biochemistry, 2007, 46(28), 8331-8339.
[http://dx.doi.org/10.1021/bi602498k] [PMID: 17585781];
(b) Sánchez-Jiménez, F.; Ruiz-Pérez, M.V.; Urdiales, J.L.; Medina, M.A. Pharmacological potential of biogenic amine–polyamine interactions beyond neurotransmission. Br. J. Pharmacol., 2013, 170(1), 4-16.
[http://dx.doi.org/10.1111/bph.12109] [PMID: 23347064]
[42]
Takahashi, T.; Kakehi, J.I. Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot., 2010, 105(1), 1-6.
[http://dx.doi.org/10.1093/aob/mcp259] [PMID: 19828463]
[43]
Carvalho, F.B.; Mello, C.F.; Marisco, P.C.; Tonello, R.; Girardi, B.A.; Ferreira, J.; Oliveira, M.S.; Rubin, M.A. Spermidine decreases Na+,K+-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur. J. Pharmacol., 2012, 684(1-3), 79-86.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.046] [PMID: 22497998]
[44]
Medina, M.Á.; Urdiales, J.L.; Caso, R.C.; Ramírez, F.J.; Jiménez, S.F. Biogenic amines and polyamines: Similar biochemistry for different physiological missions and biomedical applications. Crit. Rev. Biochem. Mol. Biol., 2003, 38(1), 23-59.
[http://dx.doi.org/10.1080/713609209] [PMID: 12641342]
[45]
Hao, Y.J.; Kitashiba, H.; Honda, C.; Nada, K.; Moriguchi, T. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. J. Exp. Bot., 2005, 56(414), 1105-1115.
[http://dx.doi.org/10.1093/jxb/eri102] [PMID: 15723827]
[46]
(a) Demady, D.R.; Jianmongkol, S.; Vuletich, J.L.; Bender, A.T.; Osawa, Y. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol. Pharmacol., 2001, 59(1), 24-29.
[http://dx.doi.org/10.1124/mol.59.1.24] [PMID: 11125020];
(b) Pegg, A.E. Mammalian polyamine metabolism and function. IUBMB Life, 2009, 61(9), 880-894.
[http://dx.doi.org/10.1002/iub.230] [PMID: 19603518]
[47]
Paschalidis, K.A.; Angelakis, R.K.A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol., 2005, 138(1), 142-152.
[http://dx.doi.org/10.1104/pp.104.055483] [PMID: 15849310]
[48]
Welsh, P.A.; Sass-Kuhn, S.; Prakashagowda, C.; McCloskey, D.; Feith, D. Spermine synthase overexpression in vivo does not increase susceptibility to DMBA/TPA skin carcinogenesis or Min-Apc intestinal tumorigenesis. Cancer Biol. Ther., 2012, 13(6), 358-368.
[http://dx.doi.org/10.4161/cbt.19241] [PMID: 22258329]
[49]
Morris, S.M., Jr Arginine: Beyond protein. Am. J. Clin. Nutr., 2006, 83(2), 508S-512S.
[http://dx.doi.org/10.1093/ajcn/83.2.508S] [PMID: 16470022]
[50]
Cohen, T.; Lipowitz, J. Acid-catalyzed amide hydrolysis assisted by a neighboring amide group. J. Am. Chem. Soc., 1964, 86(24), 5611-5616.
[http://dx.doi.org/10.1021/ja01078a041]
[51]
Nagase, K.; Sakaguchi, K. Alkaline hydrolysis of polyacrylamide. J. Polym. Sci. A, 1965, 3(7), 2475-2482.
[http://dx.doi.org/10.1002/pol.1965.100030706]
[52]
Micovic, V.; Mihailovic, M. The reduction of acid amides with lithium aluminum hydride. J. Org. Chem., 1953, 18(9), 1190-1200.
[http://dx.doi.org/10.1021/jo50015a017]
[53]
Hofmann, A.W. On the effect of bromine in alkaline solution on amides. Ber. Dtsch. Chem. Ges., 1881, 14(2), 2725-2736.
[http://dx.doi.org/10.1002/cber.188101402242]
[54]
Gomez, S.; Peters, J.A.; Maschmeyer, T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: Mechanistic aspects and selectivity control. Adv. Synth. Catal., 2002, 344(10), 1037-1057.
[http://dx.doi.org/10.1002/1615-4169(200212)344:10<1037::AID-ADSC1037>3.0.CO;2-3]
[55]
de Bellefon, C.; Fouilloux, P. Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: Chemical, mechanistic, and catalytic aspects. Catal. Rev., Sci. Eng., 1994, 36(3), 459-506.
[http://dx.doi.org/10.1080/01614949408009469]
[56]
Hegedűs, L.; Máthé, T. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase. Appl. Catal. A Gen., 2005, 296(2), 209-215.
[http://dx.doi.org/10.1016/j.apcata.2005.08.024]
[57]
Yoshida, T.; Okano, T.; Otsuka, S. Catalytic hydrogenation of nitriles and dehydrogenation of amines with the rhodium(I) hydrido compounds [RhH(PPri3)3] and [Rh2H2(μ-N2){P(cyclohexyl)3}4]. J. Chem. Soc. Chem. Commun., 1979, 870-871.
[http://dx.doi.org/10.1039/C39790000870]
[58]
Bianchini, C.; Dal Santo, V.; Meli, A.; Oberhauser, W.; Psaro, R.; Vizza, F. Preparation, characterization, and performance of the supported hydrogen-bonded ruthenium catalyst [(sulphos)Ru(NCMe)3](OSO2CF3)/SiO2. Comparisons with analogous homogeneous and aqueous-biphase catalytic systems in the hydrogenation of benzylideneacetone and benzonitrile. Organometallics, 2000, 19(13), 2433-2444.
[http://dx.doi.org/10.1021/om000309r]
[59]
Krimen, L.I.; Cota, D.J. The Ritter Reaction. Organic Reactions; John Wiley & Sons: New York, 2004.
[60]
Ritter, J.J.; Minieri, P.P. A new reaction of nitriles; amides from alkenes and mononitriles. J. Am. Chem. Soc., 1948, 70(12), 4045-4048.
[http://dx.doi.org/10.1021/ja01192a022] [PMID: 18105932]
[61]
Liu, H.; Zhou, Y.; Yan, X.; Chen, C.; Liu, Q.; Xi, C. Copper-mediated amidation of alkenylzirconocenes with acyl azides: Formation of enamides. Org. Lett., 2013, 15(20), 5174-5177.
[http://dx.doi.org/10.1021/ol402212g] [PMID: 24083640]
[62]
Smith, P.A.S. The curtius reaction. Org. React., 1946, 3, 337-449.
[63]
Linke, S.; Tisue, G.T.; Lwowski, W. Curtius and lossen rearrangements. II. Pivaloyl azide. J. Am. Chem. Soc., 1967, 89(24), 6308-6310.
[http://dx.doi.org/10.1021/ja01000a057]
[64]
Shioiri, T.; Ninomiya, K.; Yamada, S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc., 1972, 94(17), 6203-6205.
[http://dx.doi.org/10.1021/ja00772a052] [PMID: 5054412]
[65]
Klein, H.P.; Burton, B.L.; Forkner, M.W.; Alexander, D.C.; Renken, T.L.; Godinich, C.E. Polyether-polyamine curing agents for epoxy resins and polyureas; Huntsman Petrochemical Corporation, 2005.
[66]
Hamid, M.H.S.A.; Slatford, P.A.; Williams, J.M.J. Borrowing hydrogen in the activation of alcohols. Adv. Synth. Catal., 2007, 349(10), 1555-1575.
[http://dx.doi.org/10.1002/adsc.200600638]
[67]
Grigg, R.; Mitchell, T.R.B.; Sutthivaiyakit, S.; Tongpenyai, N. Transition metal-catalysed N-alkylation of amines by alcohols. J. Chem. Soc. Chem. Commun., 1981, (12), 611-612.
[http://dx.doi.org/10.1039/c39810000611]
[68]
Watanabe, Y.; Tsuji, Y.; Ohsugi, Y. The ruthenium catalyzed N-alkylation and N-heterocyclization of aniline using alcohols and aldehydes. Tetrahedron Lett., 1981, 22(28), 2667-2670.
[http://dx.doi.org/10.1016/S0040-4039(01)92965-X]
[69]
Buter, R.; Steenbergen, A.; Geurink, P.J.A.; Scherer, T.; Akzo Nobel, N.V. Aqueous crosslinkable binder composition, coating, its preparation, coated substrate and lacquer or sealing composition. WO Patent 2001090265A1, 2001.
[70]
Seeboth, H. The bucherer reaction and the preparative use of its intermediate products. Angew. Chem. Int. Ed. Engl., 1967, 6(4), 307-317.
[http://dx.doi.org/10.1002/anie.196703071]
[71]
Bódis, J.; Lefferts, L.; Müller, T.E.; Pestman, R.; Lercher, J.A. Activity and selectivity control in reductive amination of butyraldehyde over noble metal catalysts. Catal. Lett., 2005, 104(1-2), 23-28.
[http://dx.doi.org/10.1007/s10562-005-7431-4]
[72]
Osby, J.O.; Martin, M.G.; Ganem, B. An exceptionally mild deprotection of phthalimides. Tetrahedron Lett., 1984, 25(20), 2093-2096.
[http://dx.doi.org/10.1016/S0040-4039(01)81169-2]
[73]
Ragnarsson, U.; Grehn, L. Novel gabriel reagents. Acc. Chem. Res., 1991, 24(10), 285-289.
[http://dx.doi.org/10.1021/ar00010a001]
[74]
Sheehan, J.C.; Bolhofer, W.A. An improved procedure for the condensation of potassium phthalimide with organic halides. J. Am. Chem. Soc., 1950, 72(6), 2786-2788.
[http://dx.doi.org/10.1021/ja01162a527]
[75]
Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun., 2015, 51(46), 9410-9431.
[http://dx.doi.org/10.1039/C5CC01131K] [PMID: 25872865]
[76]
Li, J.; Zhong, L.; Tong, L.; Yu, Y.; Liu, Q.; Zhang, S.; Yin, C.; Qiao, L.; Li, S.; Si, R.; Zhang, J. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater., 2019, 29(43), 1905423.
[http://dx.doi.org/10.1002/adfm.201905423]
[77]
Martin, T.J.; Goodhead, A.K.; Acharya, K.; Head, I.M.; Snape, J.R.; Davenport, R.J. High throughput biodegradation-screening test to prioritize and evaluate chemical biodegradability. Environ. Sci. Technol., 2017, 51(12), 7236-7244.
[http://dx.doi.org/10.1021/acs.est.7b00806] [PMID: 28485927]
[78]
Liu, S.; Lai, C.; Li, B.; Zhang, C.; Zhang, M.; Huang, D.; Qin, L.; Yi, H.; Liu, X.; Huang, F.; Zhou, X.; Chen, L. Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem. Eng. J., 2020, 384, 123304.
[http://dx.doi.org/10.1016/j.cej.2019.123304]
[79]
Cao, S.; Chang, J.; Fang, L.; Wu, L. Metal nanoparticles conned in the nanospace of double shelled hollow silica spheres for highly efficient and selective catalysis. Chem. Mater., 2016, 28(16), 5596-5600.
[http://dx.doi.org/10.1021/acs.chemmater.6b02209]
[80]
Vaidya, M.J.; Kulkarni, S.M.; Chaudhari, R.V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org. Process Res. Dev., 2003, 7(2), 202-208.
[http://dx.doi.org/10.1021/op025589w]
[81]
Chinnappan, A.; Eshkalak, S.K.; Baskar, C.; Khatibzadeh, M.; Kowsari, E.; Ramakrishna, S. Flower-like 3-dimensional hierarchical Co3O4/NiO microspheres for 4-nitrophenol reduction reaction. Nanoscale Adv., 2019, 1(1), 305-313.
[http://dx.doi.org/10.1039/C8NA00029H] [PMID: 36132485]
[82]
Hashimi, A.S.; Nohan, M.A.N.M.; Chin, S.X.; Zakaria, S.; Chia, C.H. Rapid catalytic reduction of 4-nitrophenol and clock reaction of methylene blue using copper nanowires. Nanomaterials, 2019, 9(7), 936.
[http://dx.doi.org/10.3390/nano9070936] [PMID: 31261696]
[83]
Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, 2004.
[84]
Ono, N. The Nitro Group in Organic Synthesis; Wiley: New York, 2001.
[http://dx.doi.org/10.1002/0471224480]
[85]
Travis, A.S. The Chemistry of Anilines; Rappoport, Z., Ed.; Wiley, 2007.
[86]
Romero, A.H. Fused heteroaromatic rings via metal-mediated/catalyzed intramolecular C–H activation: A comprehensive review. Top. Curr. Chem., 2019, 377(4), 21.
[http://dx.doi.org/10.1007/s41061-019-0246-3] [PMID: 31332546]
[87]
Romero, A.H.; Rodríguez, N.; López, S.E.; Oviedo, H. Identification of dehydroxy isoquine and isotebuquine as promising antileishmanial agents. Arch. Pharm., 2019, 352(5), 1800281.
[http://dx.doi.org/10.1002/ardp.201800281] [PMID: 30994941]
[88]
Romero, A.H.; Acosta, M.E.; Gamboa, N.; Charris, J.E.; Salazar, J.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg. Med. Chem., 2015, 23(15), 4755-4762.
[http://dx.doi.org/10.1016/j.bmc.2015.05.040] [PMID: 26081761]
[89]
Valverde, E.A.; Romero, A.H.; Acosta, M.E.; Gamboa, N.; Henriques, G.; Rodrigues, J.R.; Ciangherotti, C.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of new dehydroxy isoquine derivatives against Plasmodium berghei: A promising antimalarial agent. Eur. J. Med. Chem., 2018, 148, 498-506.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.051] [PMID: 29126722]
[90]
Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J. Environ. Chem. Eng., 2021, 9(1), 104401.
[http://dx.doi.org/10.1016/j.jece.2020.104401]
[91]
Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed., 2014, 53(7), 1756-1789.
[http://dx.doi.org/10.1002/anie.201300441] [PMID: 24421264]
[92]
Sun, X.; Li, D.; Ding, Y.; Zhu, W.; Guo, S.; Wang, Z.L.; Sun, S. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc., 2014, 136(15), 5745-5749.
[http://dx.doi.org/10.1021/ja500590n] [PMID: 24650288]
[93]
Lu, W.; Ning, R.; Qin, X.; Zhang, Y.; Chang, G.; Liu, S.; Luo, Y.; Sun, X. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J. Hazard. Mater., 2011, 197, 320-326.
[http://dx.doi.org/10.1016/j.jhazmat.2011.09.092] [PMID: 22019107]
[94]
Chang, G.; Luo, Y.; Lu, W.; Qin, X.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ag nanoparticles decorated polyaniline nanofibers: Synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal. Sci. Technol., 2012, 2(4), 800.
[http://dx.doi.org/10.1039/c2cy00454b]
[95]
Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B, 2015, 162, 372-380.
[http://dx.doi.org/10.1016/j.apcatb.2014.07.009]
[96]
Chishti, A.N.; Guo, F.; Aftab, A.; Ma, Z.; Liu, Y.; Chen, M.; Gautam, J.; Chen, C.; Ni, L.; Diao, G. Synthesis of silver doped Fe3O4/C nanoparticles and its catalytic activities for the degradation and reduction of methylene blue and 4-nitrophenol. Appl. Surf. Sci., 2021, 546, 149070.
[http://dx.doi.org/10.1016/j.apsusc.2021.149070]
[97]
Saira, F.; Firdous, N.; Qureshi, R.; Ihsan, A. Preparation and catalytic evaluation of Au/γ-Al2O3nanoparticles for the conversion of 4-nitrophenol to 4-aminophenol by spectrophotometric method. Turk. J. Chem., 2020, 44(2), 448-460.
[http://dx.doi.org/10.3906/kim-1910-21] [PMID: 33488169]
[98]
Zhang, F.; Yang, P.; Postolek, M.K. Au catalyst decorated silica spheres: Synthesis and high-performance in 4-nitrophenol reduction. J. Nanosci. Nanotechnol., 2016, 16(6), 5966-5974.
[http://dx.doi.org/10.1166/jnn.2016.10858] [PMID: 27427658]
[99]
Chen, G.; Wang, Y.; Wei, Y.; Zhao, W.; Gao, D.; Yang, H.; Li, C. Successive interfacial reactiondirected synthesis of CeO2@Au@CeO2-MnO2 environmental catalyst with sandwich hollow structure. ACS Appl. Mater. Interfaces, 2018, 10(14), 11595-11603.
[http://dx.doi.org/10.1021/acsami.7b18371] [PMID: 29557642]
[100]
Knifton, J.F. Homogeneous catalyzed reduction of nitro compounds. IV. Selective and sequential hydrogenation of nitroaromatics. J. Org. Chem., 1976, 41(7), 1200-1206.
[http://dx.doi.org/10.1021/jo00869a025]
[101]
Gowda, D.C.; Gowda, P.A.S.; Baba, A.R.; Gowda, S. Nickel-catalyzed formic acid reductions. A selective method for the reduction of nitro compounds. Synth. Commun., 2000, 30(16), 2889-2895.
[http://dx.doi.org/10.1080/00397910008087439]
[102]
Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed., 2007, 46(38), 7266-7269.
[http://dx.doi.org/10.1002/anie.200700823] [PMID: 17579907]
[103]
Saha, A.; Ranu, B. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem., 2008, 73(17), 6867-6870.
[http://dx.doi.org/10.1021/jo800863m] [PMID: 18656983]
[104]
Zheng, Y.; Ma, K.; Wang, H.; Sun, X.; Jiang, J.; Wang, C.; Li, R.; Ma, J. A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture. Catal. Lett., 2008, 124(3-4), 268-276.
[http://dx.doi.org/10.1007/s10562-008-9452-2]
[105]
Pozun, Z.D.; Rodenbusch, S.E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K.J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C, 2013, 117(15), 7598-7604.
[http://dx.doi.org/10.1021/jp312588u] [PMID: 23616909]
[106]
Pehlivan, L.; Métay, E.; Laval, S.; Dayoub, W.; Demonchaux, P.; Mignani, G.; Lemaire, M. Iron-catalyzed selective reduction of nitro compounds to amines. Tetrahedron Lett., 2010, 51(15), 1939-1941.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.067]
[107]
Gkizis, P.L.; Stratakis, M.; Lykakis, I.N. Catalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines. Catal. Commun., 2013, 36, 48-51.
[http://dx.doi.org/10.1016/j.catcom.2013.02.024]
[108]
Ajmal, M.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N. Highly versatile p(MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Advances, 2014, 4(103), 59562-59570.
[http://dx.doi.org/10.1039/C4RA11667D]
[109]
Hasan, Z.; Cho, D.W.; Chon, C.M.; Yoon, K.; Song, H. Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chem. Eng. J., 2016, 298, 183-190.
[http://dx.doi.org/10.1016/j.cej.2016.04.029]
[110]
Guo, P.; Tang, L.; Tang, J.; Zeng, G.; Huang, B.; Dong, H.; Zhang, Y.; Zhou, Y.; Deng, Y.; Ma, L.; Tan, S. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J. Colloid Interface Sci., 2016, 469, 78-85.
[http://dx.doi.org/10.1016/j.jcis.2016.01.063] [PMID: 26871277]
[111]
Aditya, T.; Jana, J.; Singh, N.K.; Pal, A.; Pal, T. Remarkable facet selective reduction of 4-nitrophenol by morphologically tailored (111) faceted Cu2O nanocatalyst. ACS Omega, 2017, 2(5), 1968-1984.
[http://dx.doi.org/10.1021/acsomega.6b00447] [PMID: 31457555]
[112]
Yang, S.T.; Shen, P.; Liao, B.S.; Liu, Y.H.; Peng, S.M.; Liu, S.T. Catalytic reduction of nitroarenes by dipalladium complexes: Synergistic effect. Organometallics, 2017, 36(16), 3110-3116.
[http://dx.doi.org/10.1021/acs.organomet.7b00460]
[113]
Gabriel, C.M.; Parmentier, M.; Riegert, C.; Lanz, M.; Handa, S.; Lipshutz, B.H.; Gallou, F. Sustainable and scalable Fe/ppm Pd nanoparticle nitro group reductions in water at room temperature. Org. Process Res. Dev., 2017, 21(2), 247-252.
[http://dx.doi.org/10.1021/acs.oprd.6b00410]
[114]
Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M. Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes. Chin. J. Catal., 2018, 39(1), 109-117.
[http://dx.doi.org/10.1016/S1872-2067(17)62915-2]
[115]
Liao, C.; Liu, B.; Chi, Q.; Zhang, Z. Nitrogen-doped carbon materials for the metal-free reduction of nitro compounds. ACS Appl. Mater. Interfaces, 2018, 10(51), 44421-44429.
[http://dx.doi.org/10.1021/acsami.8b15300] [PMID: 30520291]
[116]
Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev., 2019, 119(4), 2611-2680.
[http://dx.doi.org/10.1021/acs.chemrev.8b00547] [PMID: 30516963]
[117]
Fang, L.; Xu, L.; Liu, C.; Li, J.; Huang, L.Z. Enhanced reactivity and mechanisms of copper nanoparticles modified green rust for p-nitrophenol reduction. Environ. Int., 2019, 129, 299-307.
[http://dx.doi.org/10.1016/j.envint.2019.05.044] [PMID: 31150972]
[118]
Nie, S.; Yang, S.; Zhang, P. Solvent-free synthesis of mesoporous platinum-aluminum oxide via mechanochemistry: Toward selective hydrogenation of nitrobenzene to aniline. Chem. Eng. Sci., 2020, 220, 115619.
[http://dx.doi.org/10.1016/j.ces.2020.115619]
[119]
Zhang, Y.; Zhou, J. Synergistic catalysis by a hybrid nanostructure Pt catalyst for high-efficiency selective hydrogenation of nitroarenes. J. Catal., 2021, 395, 445-456.
[http://dx.doi.org/10.1016/j.jcat.2021.01.025]
[120]
Chatterjee, S.; Bhattacharya, S.K. Size-dependent catalytic activity of PVA-stabilized palladium nanoparticles in p-nitrophenol reduction: Using a thermoresponsive nanoreactor. ACS Omega, 2021, 6(32), 20746-20757.
[http://dx.doi.org/10.1021/acsomega.1c00896] [PMID: 34423183]
[121]
Grieco, G.; Blacque, O. Microwave‐assisted reduction of aromatic nitro compounds with novel oxo‐rhenium complexes. Appl. Organomet. Chem., 2022, 36(1), e6452.
[http://dx.doi.org/10.1002/aoc.6452]
[122]
Suthar, M.; Srivastava, A.K.; Sharma, C.; Joshi, R.K.; Roy, P.K. Nano-sized Ce-substituted hexagonal Co2–Y ferrite; A valuable catalyst for heterogeneous reduction of toxic nitro-organic pollutants. Ceram. Int., 2022, 48(24), 37370-37382.
[http://dx.doi.org/10.1016/j.ceramint.2022.08.333]
[123]
Dardir, F.M.; Gabr, R.M.; Selim, M.M.; Ahmed, E.A.; Soliman, M.F.; Abukhadra, M.R. Green synthesis of P-aminophenol using natural aragonite as a support from nano-nickel catalyst by reduction of p-nitrophenol. Int. J. Environ. Anal. Chem., 2022, 1-17.
[http://dx.doi.org/10.1080/03067319.2022.2106430]
[124]
Fadhli, ; Erika, D.; Mardiana, S.; Rasrendra, C. B.; Khalil, M.; Kadja, G.T.M. Nanocastingnanoporous nickel oxides from mesoporous silicas and their comparative catalytic applications for the reduction of p-nitrophenol. Chem. Phys. Lett., 2022, 803, 139809.
[http://dx.doi.org/10.1016/j.cplett.2022.139809]
[125]
Bhowmik, T.; Sadhukhan, M.; Kempasiddaiah, M.; Barman, S. Highly dispersed palladium nanoparticles supported on graphitic carbon nitride for selective hydrogenation of nitro compounds and Ullmann coupling reaction. Appl. Organomet. Chem., 2022, 36(4), e6613.
[http://dx.doi.org/10.1002/aoc.6613]
[126]
Saeed, S.R.; Ajmal, M.; Bibi, I.; Shah, S.S.; Siddiq, M. Synthesis and characterization of SiO2-NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol. J. Taibah Univ. Sci., 2022, 16(1), 472-479.
[http://dx.doi.org/10.1080/16583655.2022.2073541]
[127]
Thombal, P.R.; Rao, K.M.; Zo, S.; Narayanan, K.B.; Thombal, R.S.; Han, S.S. Efficient metal-free catalytic reduction of nitro to amine over carbon sheets doped with nitrogen. Catal. Lett., 2022, 152(2), 538-546.
[http://dx.doi.org/10.1007/s10562-021-03651-3]
[128]
Dinér, P.; Proietti, G.; Prathap, K.J.; Ye, X.; Olsson, R.T. Nickel boride catalyzed reductions of nitro compounds and azides: Nanocellulose-supported catalysts in tandem reactions. Synthesis, 2022, 54(1), 133-146.
[http://dx.doi.org/10.1055/a-1579-2190]
[129]
Jacob, B.; Mohan, M.; Dhanyaprabha, K.C.; Thomas, H. NiCo2O4 nanoparticles anchored on reduced graphene oxide with enhanced catalytic activity towards the reduction of p-nitrophenol in water. Colloids Surf. A Physicochem. Eng. Asp., 2022, 643, 128717.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128717]
[130]
Jang, M.; Lim, T.; Park, B.Y.; Han, M.S. Metal-free, rapid, and highly chemoselective reduction of aromatic nitro compounds at room temperature. J. Org. Chem., 2022, 87(2), 910-919.
[http://dx.doi.org/10.1021/acs.joc.1c01431] [PMID: 34983185]
[131]
R, M.; Uc, J.R.J.; Pinheiro, D.; Devi KR, S. The catalytic reduction of 4-nitrophenol using MoS2/ZnO nanocomposite. Appl. Surf. Sci., 2022, 10, 100265-100274.
[http://dx.doi.org/10.1016/j.apsadv.2022.100265]
[132]
Kansal, S.; Singh, P.; Biswas, S.; Chowdhury, A.; Mandal, D.; Priya, S.; Singh, T.; Chandra, A. Superior-catalytic performance of Ni–Co layered double hydroxide nanosheets for the reduction of p-nitrophenol. Int. J. Hydrogen Energy, 2023, 48(56), 21372-21382.
[http://dx.doi.org/10.1016/j.ijhydene.2022.04.213]
[133]
Aswathy, C.A.; Nagaraaj, P.; Kalanidhi, K. Bio-based cellulose supported copper oxide nanoparticles for the reduction of nitro-aromatic compounds. Inorg. Chim. Acta, 2023, 545, 121243.
[http://dx.doi.org/10.1016/j.ica.2022.121243]
[134]
Henríquez, R.R.; Vega, C.T.; Fuentes, G.S.; Lodeiro, L.; Lühr, S.; Herrera, V.M. Selective reduction of nitroarenes using Ru/C and CaH2. Org. Biomol. Chem., 2022, 21(1), 187-194.
[http://dx.doi.org/10.1039/D2OB01807A] [PMID: 36484425]
[135]
Moghaddam, F.M.; Siahpoosh, A.; Eslami, M. Designing a new ligand based on pyridine for immobilization of gold nanoparticles on reduced magnetic graphene oxide: A new catalyst for the reduction of nitro compounds. J. Indian Chem. Soc., 2023, 20(2), 381-387.
[http://dx.doi.org/10.1007/s13738-022-02673-x]
[136]
Yudha S, S.; Banon, C.; Falahudin, A.; Reagen, M.A.; Kaus, N.H.M.; Salaeh, S. Fabrication of silver-silica composite using the carbo-thermal degradation of oil palm leaves for the reduction of p-nitrophenol. Int. J. Technol., 2023, 14(2), 290-299.
[http://dx.doi.org/10.14716/ijtech.v14i2.5608]
[137]
Shi, G.; Du, Y.; Gao, Y.; Jia, H.; Hong, H.; Han, L.; Zhu, N. Reduction of nitro group by sulfide and its applications in amine synthesis. Youji Huaxue, 2023, 43(2), 491-502.
[http://dx.doi.org/10.6023/cjoc202207029]
[138]
Wang, B.; Bourgonje, C.R.; Scaiano, J.C. Fiber-glass supported catalysis: Real-time, high-resolution visualization of active palladium catalytic centers during the reduction of nitro compounds. Catal. Sci. Technol., 2023, 13(4), 1021-1031.
[http://dx.doi.org/10.1039/D2CY01857H]
[139]
Chakrabortty, S.; Alqahtani, F.O.; Parveen, N.; Khan, G.A.; Behera, M.; Tripathy, S.K. Synthesis, characterization and application of BR@Ag nanocomposite material for high degree reduction of p-nitro phenol under a suitable condition. Biotechnol. Genet. Eng. Rev., 2023, 10, 2648725-2216071.
[140]
Kumar, S.; Maurya, S.K. Heterogeneous V2O5/TiO2-mediated photocatalytic reduction of nitro compounds to the corresponding amines under visible light. J. Org. Chem., 2023, 88(13), 8690-8702.
[http://dx.doi.org/10.1021/acs.joc.3c00569] [PMID: 37367717]
[141]
Gondwal, M.; Sharma, N.; Pant, J.G.; Gautam, P.S.B.; Singh, S.; Tumba, K.; Bahadur, I. Bioactivity and catalytic reduction of aryl nitro‐compounds by biosynthesized silver nanoparticles using Skimmiaanquetilia. ChemistrySelect, 2023, 8(2), e202203782.
[http://dx.doi.org/10.1002/slct.202203782]
[142]
Bo, L.; Zhang, Y.; Quan, X.; Zhao, B. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. J. Hazard. Mater., 2008, 153(3), 1201-1206.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.082] [PMID: 18006223]
[143]
Pan, W.; Zhang, G.; Zheng, T.; Wang, P. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irridation. RSC Advances, 2015, 5, 2043-27051.
[144]
Bhosale, M.A.; Chenna, D.R.; Ahire, J.P.; Bhanage, B.M. Morphological study of microwave-assisted facile synthesis of gold nanoflowers/nanoparticles in aqueous medium and their catalytic application for reduction of p-nitrophenol to p-aminophenol. RSC Advances, 2015, 5(65), 52817-52823.
[http://dx.doi.org/10.1039/C5RA05731K]
[145]
Hu, L.; Wang, P.; Liu, G.; Zheng, Q.; Zhang, G. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation. Chemosphere, 2020, 240, 124977.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124977] [PMID: 31726600]
[146]
Zhao, C.; Xue, L.; Zhou, Y.; Zhang, Y.; Huang, K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J. Hazard. Mater., 2021, 409, 124473.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124473] [PMID: 33191026]
[147]
Mckze, R.H.; Grapostolou, B.G. Electrolytic reduction of nitro compounds in concentrated aqueous salt solutions Trans. Electrochem. Soc., 1935, 68, 329.
[148]
Udupa, H.V.K.; Rao, M.V. The electrolytic reduction of p-nitrophenol to p-aminophenol. Electrochim. Acta, 1967, 12(3), 353-361.
[http://dx.doi.org/10.1016/0013-4686(67)80013-6]
[149]
Stutts, K.J.; Scortichini, C.L.; Repucci, C.M. Electrochemical reduction of nitroaromatics to anilines in basic media: effects of positional isomerism and cathode composition. J. Org. Chem., 1989, 54(15), 3740-3744.
[http://dx.doi.org/10.1021/jo00276a044]
[150]
Shi, Q.; Diao, G. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes. Electrochim. Acta, 2011, 58, 399-405.
[http://dx.doi.org/10.1016/j.electacta.2011.09.064]
[151]
Serrà, A.; Artal, R.; Pozo, M.; Amorós, G.J.; Gómez, E. Simple environmentally-friendly reduction of 4-nitrophenol. Catalysts, 2020, 10(4), 458.
[http://dx.doi.org/10.3390/catal10040458]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy