Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Revisiting the Mitochondrial Function and Communication in Neurodegenerative Diseases

Author(s): Nitu L. Wankhede, Mayur B. Kale*, Mohit D. Umare, Sanket Lokhande, Aman B. Upaganlawar, Pranay Wal, Brijesh G. Taksande, Milind J. Umekar, Prasanna Shama Khandige, Bhupendra Singh, Vandana Sadananda, Seema Ramniwas and Tapan Behl*

Volume 30, Issue 12, 2024

Published on: 12 March, 2024

Page: [902 - 911] Pages: 10

DOI: 10.2174/0113816128286655240304070740

Price: $65

Abstract

Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD).

[1]
Rey F, Ottolenghi S, Giallongo T, et al. Mitochondrial metabolism as target of the neuroprotective role of erythropoietin in Parkinson’s disease. Antioxidants 2021; 10(1): 121.
[http://dx.doi.org/10.3390/antiox10010121] [PMID: 33467745]
[2]
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2007; 292(2): C670-86.
[http://dx.doi.org/10.1152/ajpcell.00213.2006] [PMID: 17020935]
[3]
Brown TA, Tkachuk AN, Shtengel G, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011; 31(24): 4994-5010.
[http://dx.doi.org/10.1128/MCB.05694-11] [PMID: 22006021]
[4]
Chang DTW, Honick AS, Reynolds IJ. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 2006; 26(26): 7035-45.
[http://dx.doi.org/10.1523/JNEUROSCI.1012-06.2006] [PMID: 16807333]
[5]
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[6]
Pickrell AM, Fukui H, Wang X, Pinto M, Moraes CT. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci 2011; 31(27): 9895-904.
[http://dx.doi.org/10.1523/JNEUROSCI.6223-10.2011] [PMID: 21734281]
[7]
Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292(2): C641-57.
[http://dx.doi.org/10.1152/ajpcell.00222.2006] [PMID: 17092996]
[8]
Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22(12): 1577-90.
[http://dx.doi.org/10.1101/gad.1658508] [PMID: 18559474]
[9]
Benzi G, Pastoris O, Marzatico F, Villa RF, Dagani F, Curti D. The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging 1992; 13(3): 361-8.
[http://dx.doi.org/10.1016/0197-4580(92)90109-B] [PMID: 1320745]
[10]
Tiwari P, Wankhede N, Badole S, et al. Mitochondrial dysfunction in ageing: Involvement of oxidative stress and role of melatonin. Bull Environ Pharmacol Life Sci 2021; 156-72.
[11]
Upaganlawar AB, Wankhede NL, Kale MB, et al. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143: 112146.
[http://dx.doi.org/10.1016/j.biopha.2021.112146] [PMID: 34507113]
[12]
Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3): 560-9.
[http://dx.doi.org/10.1016/j.cell.2015.10.001] [PMID: 26496603]
[13]
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[14]
Audano M, Pedretti S, Ligorio S, et al. “The loss of golden touch”: Mitochondria-organelle interactions, metabolism, and cancer. Cells 2020; 9(11): 2519.
[http://dx.doi.org/10.3390/cells9112519] [PMID: 33233365]
[15]
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9(1): 27.
[http://dx.doi.org/10.1186/s13578-019-0289-8] [PMID: 30931098]
[16]
Soto-Heredero G, Baixauli F, Mittelbrunn M. Interorganelle communication between mitochondria and the endolysosomal system. Front Cell Dev Biol 2017; 5: 95.
[http://dx.doi.org/10.3389/fcell.2017.00095] [PMID: 29164114]
[17]
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol 2017; 8: 296.
[http://dx.doi.org/10.3389/fendo.2017.00296] [PMID: 29163365]
[18]
Pack SC, Kim HR, Lim SW, et al. Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer. Int J Colorectal Dis 2013; 28(1): 139-47.
[http://dx.doi.org/10.1007/s00384-012-1566-8] [PMID: 22990173]
[19]
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18(10): 1208-46.
[http://dx.doi.org/10.1089/ars.2011.4498] [PMID: 22978553]
[20]
Badole SP, Wankhede NL, Tiwari PL, et al. The importance of mitochondrial function in neurons: Focus on therapeutic targets in neurodegeneration. Adv Biores 2021; 12(1): 234-44.
[http://dx.doi.org/10.15515/abr.0976-4585.12.1.234244]
[21]
Marde VS, Tiwari PL, Wankhede NL, et al. Neurodegenerative disorders associated with genes of mitochondria. Future J Pharm Sci 2021; 7(1): 66.
[http://dx.doi.org/10.1186/s43094-021-00215-5]
[22]
Banarase TA, Sammeta SS, Wankhede NL, et al. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15(2): 239-55.
[http://dx.doi.org/10.1007/s12551-023-01057-6] [PMID: 37124925]
[23]
Wankhede NL, Kale MB, Bawankule AK, et al. Overview on the polyphenol avenanthramide in oats (Avena sativa Linn.) as regulators of PI3K signaling in the management of neurodegenerative diseases. Nutrients 2023; 15(17): 3751.
[http://dx.doi.org/10.3390/nu15173751] [PMID: 37686782]
[24]
Waypa GB, Smith KA, Schumacker PT. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol Aspects Med 2016; 47-48: 76-89.
[http://dx.doi.org/10.1016/j.mam.2016.01.002] [PMID: 26776678]
[25]
Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 2015; 56(1): 1-7.
[http://dx.doi.org/10.3164/jcbn.14-42] [PMID: 25834301]
[26]
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry 2005; 70(2): 200-14.
[http://dx.doi.org/10.1007/s10541-005-0102-7] [PMID: 15807660]
[27]
Sheng B, Wang X, Su B, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2012; 120(3): 419-29.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07581.x] [PMID: 22077634]
[28]
Golpich M, Rahmani B, Mohamed Ibrahim N, et al. Preconditioning as a potential strategy for the prevention of Parkinson’s disease. Mol Neurobiol 2015; 51(1): 313-30.
[http://dx.doi.org/10.1007/s12035-014-8689-6] [PMID: 24696268]
[29]
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008; 454(7203): 463-9.
[http://dx.doi.org/10.1038/nature07206] [PMID: 18650917]
[30]
Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 2014; 15(1): 9.
[http://dx.doi.org/10.1186/1471-2202-15-9] [PMID: 24410996]
[31]
Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53(11): 2043-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.014] [PMID: 23000245]
[32]
Okamoto K, Kondo-Okamoto N. Mitochondria and autophagy: Critical interplay between the two homeostats. Biochim Biophys Acta, Gen Subj 2012; 1820(5): 595-600.
[http://dx.doi.org/10.1016/j.bbagen.2011.08.001] [PMID: 21846491]
[33]
Rosenstock J, Tuchman M, LaMoreaux L, Sharma U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: A double-blind, placebo-controlled trial. Pain 2004; 110(3): 628-38.
[http://dx.doi.org/10.1016/j.pain.2004.05.001] [PMID: 15288403]
[34]
Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 2015; 4: 6-13.
[http://dx.doi.org/10.1016/j.redox.2014.11.006] [PMID: 25479550]
[35]
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2019; 218: 165-84.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[36]
Mangrulkar SV, Wankhede NL, Kale MB, et al. Mitochondrial dysfunction as a signaling target for therapeutic intervention in major neurodegenerative disease. Neurotox Res 2023; 41(6): 708-29.
[http://dx.doi.org/10.1007/s12640-023-00647-2] [PMID: 37162686]
[37]
Shaik A, Schiavi A, Ventura N. Mitochondrial autophagy promotes healthy aging. Cell Cycle 2016; 15(14): 1805-6.
[http://dx.doi.org/10.1080/15384101.2016.1181876] [PMID: 27115480]
[38]
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019; 47: 151-73.
[http://dx.doi.org/10.1016/j.mito.2018.11.002] [PMID: 30408594]
[39]
Itoh K, Nakamura K, Iijima M, Sesaki H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 2013; 23(2): 64-71.
[http://dx.doi.org/10.1016/j.tcb.2012.10.006] [PMID: 23159640]
[40]
Jiao L, Du X, Li Y, Jiao Q, Jiang H. Role of mitophagy in neurodegenerative diseases and potential tagarts for therapy. Mol Biol Rep 2022; 49(11): 10749-60.
[http://dx.doi.org/10.1007/s11033-022-07738-x] [PMID: 35794507]
[41]
Fernández-Vizarra E, Enriquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet 2008; 54(1): 13-22.
[http://dx.doi.org/10.1007/s00294-008-0194-x] [PMID: 18481068]
[42]
Pickrell AM, Fukui H, Moraes CT. The role of cytochrome c oxidase deficiency in ROS and amyloid plaque formation. J Bioenerg Biomembr 2009; 41(5): 453-6.
[http://dx.doi.org/10.1007/s10863-009-9245-3] [PMID: 19795195]
[43]
Chang X, Zhang W, Zhao Z, et al. Regulation of mitochondrial quality control by natural drugs in the treatment of cardiovascular diseases: Potential and advantages. Front Cell Dev Biol 2020; 8: 616139.
[http://dx.doi.org/10.3389/fcell.2020.616139] [PMID: 33425924]
[44]
Chandurkar P, Dhokne M, Wankhede N, et al. Modulation of mitochondrial function in elderly brain: Involvement of autophagy and apoptosis. INNOSC Theranostics Pharmacol Sci 2023; 4(2): 33-45.
[http://dx.doi.org/10.36922/itps.v4i2.205]
[45]
Umare MD, Wankhede NL, Bajaj KK, et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Fr 2022; 80(4): 409-25.
[http://dx.doi.org/10.1016/j.pharma.2021.11.004] [PMID: 34896378]
[46]
Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 2007; 39(2-3): 443-55.
[http://dx.doi.org/10.1080/03602530701468516] [PMID: 17786631]
[47]
Vringer E, Tait SWG. Mitochondria and inflammation: Cell death heats up. Front Cell Dev Biol 2019; 7(7): 100.
[http://dx.doi.org/10.3389/fcell.2019.00100] [PMID: 31316979]
[48]
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 2020; 8: 467.
[http://dx.doi.org/10.3389/fcell.2020.00467] [PMID: 32671064]
[49]
Wilkins MR, Sanchez JC, Williams KL, Hochstrasser DF. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 1996; 17(5): 830-8.
[http://dx.doi.org/10.1002/elps.1150170504] [PMID: 8783009]
[50]
Schrader M, Godinho LF, Costello JL, Islinger M. The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 2015; 3(56): 56.
[http://dx.doi.org/10.3389/fcell.2015.00056] [PMID: 26442263]
[51]
Simmen T, Tagaya M. Organelle communication at membrane contact sites (MCS): From curiosity to center stage in cell biology and biomedical research. Adv Exp Med Biol 2017; 997: 1-12.
[http://dx.doi.org/10.1007/978-981-10-4567-7_1] [PMID: 28815518]
[52]
Soledad RB, Charles S, Samarjit D. The secret messages between mitochondria and nucleus in muscle cell biology. Arch Biochem Biophys 2019; 666: 52-62.
[http://dx.doi.org/10.1016/j.abb.2019.03.019] [PMID: 30935885]
[53]
Sammeta SS, Banarase TA, Rahangdale SR, et al. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023; 72: 59-71.
[http://dx.doi.org/10.1016/j.mito.2023.07.005] [PMID: 37495165]
[54]
Kumar V, Maity S. ER stress-sensor proteins and er-mitochondrial crosstalk-signaling beyond (ER) stress response. Biomolecules 2021; 11(2): 173.
[http://dx.doi.org/10.3390/biom11020173] [PMID: 33525374]
[55]
Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55: 26-36.
[http://dx.doi.org/10.1016/j.mcn.2012.07.011] [PMID: 22922446]
[56]
Wilson EL, Metzakopian E. ER-mitochondria contact sites in neurodegeneration: Genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ 2021; 28(6): 1804-21.
[http://dx.doi.org/10.1038/s41418-020-00705-8] [PMID: 33335290]
[57]
Wakana Y, Takai S, Nakajima K, et al. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol Biol Cell 2008; 19(5): 1825-36.
[http://dx.doi.org/10.1091/mbc.e07-08-0781] [PMID: 18287538]
[58]
Nguyen M, Breckenridge DG, Ducret A, Shore GC. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol 2000; 20(18): 6731-40.
[http://dx.doi.org/10.1128/MCB.20.18.6731-6740.2000] [PMID: 10958671]
[59]
Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 2011; 30(3): 556-68.
[http://dx.doi.org/10.1038/emboj.2010.346] [PMID: 21183955]
[60]
Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C, Fernandez-Checa JC. Lysosomal and mitochondrial liaisons in niemann-pick disease. Front Physiol 2017; 8: 982.
[http://dx.doi.org/10.3389/fphys.2017.00982] [PMID: 29249985]
[61]
Upaganlawar A, Kale MB, Bajaj K, et al. Exercise and nutraceuticals: Eminent approach for diabetic neuropathy. Curr Mol Pharmacol 2021; 15(1): 108-28.
[http://dx.doi.org/10.2174/1874467214666210629123010] [PMID: 34191703]
[62]
Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci USA 2002; 99(4): 1876-81.
[http://dx.doi.org/10.1073/pnas.261709098] [PMID: 11854488]
[63]
Saveri P, De Luca M, Nisi V, et al. Charcot-marie-tooth type 2B: A new phenotype associated with a novel RAB7A mutation and inhibited EGFR degradation. Cells 2020; 9(4): 1028.
[http://dx.doi.org/10.3390/cells9041028] [PMID: 32326241]
[64]
Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18(R2): R169-76.
[http://dx.doi.org/10.1093/hmg/ddp326] [PMID: 19808793]
[65]
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018; 19(2): 63-80.
[http://dx.doi.org/10.1038/nrn.2017.170] [PMID: 29348666]
[66]
Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012; 12(1): 77-85.
[http://dx.doi.org/10.1016/j.mito.2011.07.004] [PMID: 21798374]
[67]
Rowan MJ, Klyubin I, Wang Q, Anwyl R. Mechanisms of the inhibitory effects of amyloid β-protein on synaptic plasticity. Exp Gerontol 2004; 39(11-12): 1661-7.
[http://dx.doi.org/10.1016/j.exger.2004.06.020] [PMID: 15582282]
[68]
Picard M, Ritchie D, Wright KJ, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010; 9(6): 1032-46.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00628.x] [PMID: 20849523]
[69]
Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65(5): 2146-56.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65052146.x] [PMID: 7595501]
[70]
Javaid SF, Giebel C, Khan MAB, Hashim MJ. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res 2021; 10: 425.
[http://dx.doi.org/10.12688/f1000research.50786.1]
[71]
Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637: 34-55.
[http://dx.doi.org/10.1016/j.brainres.2016.02.016] [PMID: 26883165]
[72]
Caspersen C, Wang N, Yao J, et al. Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005; 19(14): 2040-1.
[http://dx.doi.org/10.1096/fj.05-3735fje] [PMID: 16210396]
[73]
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26(35): 9057-68.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[74]
Findeis MA. The role of amyloid β peptide 42 in Alzheimer’s disease. Pharmacol Ther 2007; 116(2): 266-86.
[http://dx.doi.org/10.1016/j.pharmthera.2007.06.006] [PMID: 17716740]
[75]
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener 2020; 15(1): 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[76]
John OO, Amarachi IS, Chinazom AP, et al. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res - Mod Chin Med 2022; 2: 100030.
[http://dx.doi.org/10.1016/j.prmcm.2021.100030]
[77]
Wang W, Esbensen Y, Kunke D, et al. Mitochondrial DNA damage level determines neural stem cell differentiation fate. J Neurosci 2011; 31(26): 9746-51.
[http://dx.doi.org/10.1523/JNEUROSCI.0852-11.2011] [PMID: 21715639]
[78]
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta Mol Cell Res 2011; 1813(7): 1269-78.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[79]
Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta, Gen Subj 2015; 1850(4): 794-801.
[http://dx.doi.org/10.1016/j.bbagen.2014.11.021] [PMID: 25484314]
[80]
Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans 2016; 44(6): 1725-35.
[http://dx.doi.org/10.1042/BST20160129] [PMID: 27913683]
[81]
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta Mol Cell Res 2009; 1793(10): 1540-70.
[http://dx.doi.org/10.1016/j.bbamcr.2009.06.001] [PMID: 19559056]
[82]
Mancuso M, Coppedè F, Murri L, Siciliano G. Mitochondrial cascade hypothesis of Alzheimer’s disease: Myth or reality? Antioxid Redox Signal 2007; 9(10): 1631-46.
[http://dx.doi.org/10.1089/ars.2007.1761] [PMID: 17887917]
[83]
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 1-18.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[84]
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[85]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[86]
A. Massaad C. Neuronal and vascular oxidative stress in alzheimers disease. Curr Neuropharmacol 2011; 9(4): 662-73.
[http://dx.doi.org/10.2174/157015911798376244] [PMID: 22654724]
[87]
Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health 2021; 9: 776847.
[http://dx.doi.org/10.3389/fpubh.2021.776847] [PMID: 34950630]
[88]
Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s disease. F1000Res 2020; 9 F1000 Faculty Rev-862.
[http://dx.doi.org/10.12688/f1000research.25634.1]
[89]
Katzenschlager R. Parkinson’s disease: Recent advances. J Neurol 2014; 261(5): 1031-6.
[http://dx.doi.org/10.1007/s00415-014-7308-9] [PMID: 24687891]
[90]
Wankhede NL, Kale MB, Upaganlawar AB, et al. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147: 112647.
[http://dx.doi.org/10.1016/j.biopha.2022.112647] [PMID: 35149361]
[91]
Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129(2): 154-69.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[92]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[93]
Bekris LM, Mata IF, Zabetian CP. The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 2010; 23(4): 228-42.
[http://dx.doi.org/10.1177/0891988710383572] [PMID: 20938043]
[94]
Upaganlawar A, Upasani C, Kale MB. Medicinal potential of fenugreek in neuropathy and neuroinflammation associated disorders. Fenugreek 2022; pp. 211-29.
[http://dx.doi.org/10.1201/9781003082767-19]
[95]
Ruiz A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 (Mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2+ signaling. Front Mol Neurosci 2018; 17: 11-3.
[http://dx.doi.org/10.3389/fnmol.2018.00003]
[96]
Liu F, Patterson TA, Sadovova N, et al. Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicol Sci 2013; 131(2): 548-57.
[http://dx.doi.org/10.1093/toxsci/kfs296] [PMID: 23065140]
[97]
Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22(1): 123-44.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.123] [PMID: 10202534]
[98]
Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 1999; 19(4): 351-69.
[http://dx.doi.org/10.1097/00004647-199904000-00001] [PMID: 10197505]
[99]
Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719-23.
[http://dx.doi.org/10.1002/ana.410260606] [PMID: 2557792]
[100]
Blin O, Desnuelle C, Rascol O, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci 1994; 125(1): 95-101.
[http://dx.doi.org/10.1016/0022-510X(94)90248-8] [PMID: 7964895]
[101]
Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 2015; 24(2): 103-16.
[http://dx.doi.org/10.5607/en.2015.24.2.103] [PMID: 26113789]
[102]
Paulsen JS, Magnotta VA, Mikos AE, et al. Brain structure in preclinical Huntington’s disease. Biol Psychiatry 2006; 59(1): 57-63.
[http://dx.doi.org/10.1016/j.biopsych.2005.06.003] [PMID: 16112655]
[103]
Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data. Lancet Neurol 2009; 8(9): 791-801.
[http://dx.doi.org/10.1016/S1474-4422(09)70170-X] [PMID: 19646924]
[104]
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 2017; 7(7): a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[105]
Reddy PH, Williams M, Charles V, et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 1998; 20(2): 198-202.
[http://dx.doi.org/10.1038/2510] [PMID: 9771716]
[106]
Panov AV, Gutekunst CA, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5(8): 731-6.
[http://dx.doi.org/10.1038/nn884] [PMID: 12089530]
[107]
Nguyen GD, Gokhan S, Molero AE, Mehler MF. Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One 2013; 8(5): e64368.
[http://dx.doi.org/10.1371/journal.pone.0064368] [PMID: 23691206]
[108]
Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007; 30(1): 575-621.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.113042] [PMID: 17417937]
[109]
Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J Neurochem 2014; 129(3): 539-47.
[http://dx.doi.org/10.1111/jnc.12647] [PMID: 24383989]
[110]
Xiao G, Fan Q, Wang X, Zhou B. Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci USA 2013; 110(37): 14995-5000.
[http://dx.doi.org/10.1073/pnas.1308535110] [PMID: 23980182]
[111]
Jiang W, Wei W, Gaertig MA, Li S, Li XJ. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One 2015; 10(7): e0134142-.
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[112]
Bonelli R, Wenning G. Pharmacological management of Huntington’s disease: An evidence-based review. Curr Pharm Des 2006; 12(21): 2701-20.
[http://dx.doi.org/10.2174/138161206777698693] [PMID: 16842168]
[113]
Bossy-Wetzel E, Petrilli A, Knott AB. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 2008; 31(12): 609-16.
[http://dx.doi.org/10.1016/j.tins.2008.09.004] [PMID: 18951640]
[114]
Marcora E, Kennedy MB. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum Mol Genet 2010; 19(22): 4373-84.
[http://dx.doi.org/10.1093/hmg/ddq358] [PMID: 20739295]
[115]
Votyakova TV, Reynolds IJ. ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001; 79(2): 266-77.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00548.x] [PMID: 11677254]
[116]
Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 2008; 14(10): 1097-105.
[http://dx.doi.org/10.1038/nm.1868] [PMID: 18806802]
[117]
DiFiglia M, Sapp E, Chase K, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14(5): 1075-81.
[http://dx.doi.org/10.1016/0896-6273(95)90346-1] [PMID: 7748555]
[118]
Kim M, Roh JK, Yoon BW, et al. Huntingtin is degraded to small fragments by calpain after ischemic injury. Exp Neurol 2003; 183(1): 109-15.
[http://dx.doi.org/10.1016/S0014-4886(03)00132-8] [PMID: 12957494]
[119]
Kegel KB, Meloni AR, Yi Y, et al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 2002; 277(9): 7466-76.
[http://dx.doi.org/10.1074/jbc.M103946200] [PMID: 11739372]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy