Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Altitude effect on Propofol Pharmacokinetics in Rats

Author(s): Lijun Li, Xuejun Wang*, Sheng Wang, Li Wen and Haopeng Zhang

Volume 25, Issue 1, 2024

Published on: 11 March, 2024

Page: [81 - 90] Pages: 10

DOI: 10.2174/0113892002285571240220131547

open access plus

Abstract

Background: Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric- hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high- -altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.

Methods: Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography- mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.

Results: We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration, and average residence time extension increased.

Conclusion: The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.

« Previous
Graphical Abstract

[1]
Jürgens, G.; Christensen, H.R.; Brøsen, K.; Sonne, J.; Loft, S.; Olsen, N.V. Acute hypoxia and cytochrome P450–mediated hepatic drug metabolism in humans. Clin. Pharmacol. Ther., 2002, 71(4), 214-220.
[http://dx.doi.org/10.1067/mcp.2002.121789] [PMID: 11956503]
[2]
Fajersztajn, L.; Veras, M.M. Hypoxia: From placental development to fetal programming. Birth Defects Res., 2017, 109(17), 1377-1385.
[http://dx.doi.org/10.1002/bdr2.1142] [PMID: 29105382]
[3]
Zhu, J.; Yang, J.; Nian, Y.; Liu, G.; Duan, Y.; Bai, X.; Wang, Q.; Zhou, Y.; Wang, X.; Qu, N.; Li, X. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia. Front. Pharmacol., 2021, 12, 692349.
[http://dx.doi.org/10.3389/fphar.2021.692349] [PMID: 34220516]
[4]
Sahinovic, M.M.; Struys, M.M.R.F.; Absalom, A.R. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin. Pharmacokinet., 2018, 57(12), 1539-1558.
[http://dx.doi.org/10.1007/s40262-018-0672-3] [PMID: 30019172]
[5]
Duan, Y.; Bai, X.; Yang, J.; Zhou, Y.; Gu, W.; Liu, G.; Wang, Q.; Zhu, J.; La, L.; Li, X. Exposure to high-altitude environment is associated with drug transporters change: microRNA-873-5p-mediated alteration of function and expression levels of drug transporters under hypoxia. Drug Metab. Dispos., 2022, 50(2), 174-186.
[http://dx.doi.org/10.1124/dmd.121.000681] [PMID: 34844996]
[6]
Duan, Y.; Zhu, J.; Yang, J.; Gu, W.; Bai, X.; Liu, G.; Xiangyang, L. A decade’s review of miRNA: A center of transcriptional regulation of drugmetabolizing enzymes and transporters under hypoxia. Curr. Drug Metab., 2021, 22(9), 709-725.
[http://dx.doi.org/10.2174/1389200222666210514011313] [PMID: 33992050]
[7]
Duan, Y.; Zhu, J.; Yang, J.; Liu, G.; Bai, X.; Qu, N.; Wang, X.; Li, X. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR. Front. Pharmacol., 2020, 11, 574176.
[http://dx.doi.org/10.3389/fphar.2020.574176] [PMID: 33041817]
[8]
Zhou, X.; Nian, Y.; Qiao, Y.; Yang, M.; Xin, Y.; Li, X. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude. Curr. Drug Metab., 2018, 19(11), 960-969.
[http://dx.doi.org/10.2174/1389200219666180529112913] [PMID: 29807512]
[9]
Zhang, L.N.; Li, Z.J.; Tong, L.; Guo, C.; Niu, J.Y.; Hou, W.G.; Dong, H.L. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth. Analg., 2012, 115(4), 789-796.
[http://dx.doi.org/10.1213/ANE.0b013e3182645ea3] [PMID: 22798527]
[10]
Chen, Y.; Bao, W.; Liang, X.; Zhang, J. Propofol anesthesia alters spatial and topologic organization of rat brain metabolism. Anesthesiology, 2019, 131(4), 850-865.
[http://dx.doi.org/10.1097/ALN.0000000000002876] [PMID: 31343459]
[11]
Dopp, J.M.; Moran, J.J.; Abel, N.J.; Wiegert, N.A.; Cowgill, J.B.; Olson, E.B.; Sims, J.J. Influence of intermittent hypoxia on myocardial and hepatic P-glycoprotein expression in a rodent model. Pharmacotherapy, 2009, 29(4), 365-372.
[http://dx.doi.org/10.1592/phco.29.4.365] [PMID: 19323616]
[12]
Valencia-Cervantes, J.; Huerta-Yepez, S.; Aquino-Jarquín, G.; Rodríguez-Enríquez, S.; Martínez-Fong, D.; Arias-Montaño, J.A.; Dávila-Borja, V.M. Hypoxia increases chemoresistance in human medulloblastoma DAOY cells via hypoxia-inducible factor 1α-mediated downregulation of the CYP2B6, CYP3A4 and CYP3A5 enzymes and inhibition of cell proliferation. Oncol. Rep., 2019, 41(1), 178-190.
[http://dx.doi.org/10.3892/or.2018.6790] [PMID: 30320358]
[13]
Zhao, A.; Li, W.; Wang, R. The influences and mechanisms of high-altitude hypoxia exposure on drug metabolism. Curr. Drug Metab., 2023, 24(3), 152-161.
[http://dx.doi.org/10.2174/1389200224666221228115526] [PMID: 36579391]
[14]
Liu, C.; Shi, F.; Fu, B.; Luo, T.; Zhang, L.; Zhang, Y.; Zhang, Y.; Yu, S.; Yu, T. GABA A receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int. J. Neurosci., 2022, 132(8), 802-814.
[http://dx.doi.org/10.1080/00207454.2020.1840375] [PMID: 33174773]
[15]
Guo, J.; Xu, K.; Yin, J.; Zhang, H.; Yin, J.; Li, Y. Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats. J. Chem. Neuroanat., 2022, 121, 102083.
[http://dx.doi.org/10.1016/j.jchemneu.2022.102083]
[16]
Gola, S.; Gupta, A.; Keshri, G.K.; Nath, M.; Velpandian, T. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J. Pharm. Biomed. Anal., 2016, 121, 114-122.
[http://dx.doi.org/10.1016/j.jpba.2016.01.018] [PMID: 26799979]
[17]
Zhang, J.; Zhang, M.; Zhang, J.; Wang, R. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats. Eur. J. Pharm. Sci., 2020, 153, 105490.
[http://dx.doi.org/10.1016/j.ejps.2020.105490] [PMID: 32721527]
[18]
Yamamoto, K.; Tsubokawa, T.; Yagi, T.; Ishizuka, S.; Ohmura, S.; Kobayashi, T. The influence of hypoxia and hyperoxia on the kinetics of propofol emulsion. Cancer J. Anaesth., 1999, 46(12), 1150-1155.
[http://dx.doi.org/10.1007/BF03015525] [PMID: 10608210]
[19]
Fritz, H.G.; Holzmayr, M.; Walter, B.; Moeritz, K.U.; Lupp, A.; Bauer, R. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth. Analg., 2005, 100(4), 996-1002.
[http://dx.doi.org/10.1213/01.ANE.0000146517.17910.54] [PMID: 15781513]
[20]
Court, M.H.; Duan, S.X.; Hesse, L.M.; Venkatakrishnan, K.; Greenblatt, D.J. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology, 2001, 94(1), 110-119.
[http://dx.doi.org/10.1097/00000542-200101000-00021] [PMID: 11135730]
[21]
Pavlovic, D.; Budic, I.; Jevtovic Stoimenov, T.; Stokanovic, D.; Marjanovic, V.; Stevic, M.; Slavkovic, M.; Simic, D. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on propofol pharmacokinetics in children. Pharm. Genom. Pers. Med., 2020, 13, 13-27.
[http://dx.doi.org/10.2147/PGPM.S231329] [PMID: 32021384]
[22]
Rui, J.; Zhang, X.; Chen, W.; Ye, H.; Li, J.; Zheng, H.; Chi, X.; Xu, J. Propofol pharmacokinetics in China: A multicentric study. Indian J. Pharmacol., 2012, 44(3), 393-397.
[http://dx.doi.org/10.4103/0253-7613.96346] [PMID: 22701254]
[23]
Gill, K.L.; Gertz, M.; Houston, J.B.; Galetin, A. Application of a physiologically based pharmacokinetic model to assess propofol hepatic and renal glucuronidation in isolation: Utility of in vitro and in vivo data. Drug Metab. Dispos., 2013, 41(4), 744-753.
[http://dx.doi.org/10.1124/dmd.112.050294] [PMID: 23303442]
[24]
Bai, X.; Liu, G.; Yang, J.; Zhu, J.; Li, X. Gut microbiota as the potential mechanism to mediate drug metabolism under high-altitude hypoxia. Curr. Drug Metab., 2022, 23(1), 8-20.
[http://dx.doi.org/10.2174/1389200223666220128141038] [PMID: 35088664]
[25]
Bel Aiba, R.S.; Dimova, E.Y.; Görlach, A.; Kietzmann, T. The role of hypoxia inducible factor-1 in cell metabolism – A possible target in cancer therapy. Expert Opin. Ther. Targets, 2006, 10(4), 583-599.
[http://dx.doi.org/10.1517/14728222.10.4.583] [PMID: 16848694]
[26]
Jiang, W.; Wu, Y.; Jiang, W. MicroRNA-18a decreases choroidal endothelial cell proliferation and migration by inhibiting HIF1A expression. Med. Sci. Monit., 2015, 21, 1642-1647.
[http://dx.doi.org/10.12659/MSM.893068] [PMID: 26044722]
[27]
Rabbitts, J.A.; Groenewald, C.B.; Dietz, N.M.; Morales, C.; Räsänen, J. Perioperative opioid requirements are decreased in hypoxic children living at altitude. Paediatr. Anaesth., 2010, 20(12), 1078-1083.
[http://dx.doi.org/10.1111/j.1460-9592.2010.03453.x] [PMID: 21199116]
[28]
Fradette, C.; Batonga, J.; Teng, S.; Piquette-Miller, M.; du Souich, P. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab. Dispos., 2007, 35(5), 765-771.
[http://dx.doi.org/10.1124/dmd.106.013508] [PMID: 17303624]

© 2025 Bentham Science Publishers | Privacy Policy