Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Sorption Efficacy of Weathered Basalt Rock for Metal Ions of Nuclear Importance

Author(s): Harshala Parab*, Rahul Sirvi, Shrutika Kadam, Pranesh Sengupta, Sangita D. Kumar and Uttam K. Bhui

Volume 20, Issue 5, 2024

Published on: 08 March, 2024

Page: [355 - 365] Pages: 11

DOI: 10.2174/0115734110295747240305061230

Price: $65

Abstract

Background: A safe and long-term isolation of radionuclides is crucial for efficient waste management in the nuclear fuel cycle. Clay minerals of geological origin are considered candidate barrier materials for the sequestration of nuclear waste for geological disposal applications.

Objective: The present study encompasses a systematic characterization of weathered basalt rock and the influence of its constituent clay minerals (formed mainly due to the weathering process) in the uptake of metal ions of nuclear importance, such as cesium (Cs+) and strontium (Sr2+).

Methods: The structural profile of the weathered basalt has been investigated using different analytical techniques, including polarizing microscope, XRD, FTIR and EDXRF. The sorption behaviour of the rock sample for Cs+ and Sr2+ has been investigated in a comprehensive batch mode by varying the experimental conditions. The analytical findings for structure and batch sorption performance of the material have been further correlated to understand the influence of different parameters on the uptake of metal ions and the underlying mechanism.

Results: Structural analyses confirmed the presence of clay minerals viz., kaolinite, illite and montmorillonite in the sample. A comprehensive sorption performance assessment carried out in batch mode at different experimental conditions revealed that the uptake of both the metal ions was rapid and dependent on initial metal ion concentration and solution pH. The uptake of Cs+ ions was found to be higher as compared to the Sr2+ ions. EDXRF analysis confirmed the loading of Cs+ and Sr2+ on the weathered basalt. Experimental batch sorption data presented a better agreement with the theoretical Freundlich isotherm pertaining to the heterogeneous nature of the sorbent.

Conclusion: The studies highlight that the clay minerals formed by structural alteration of basalt rock upon intense weathering could be very useful in fixing the nuclear fission waste components such as Cs+ and Sr2+.

« Previous
Graphical Abstract

[1]
Rehm, T.E. Advanced nuclear energy: The safest and most renewable clean energy. Curr. Opin. Chem. Eng., 2023, 39, 100878.
[http://dx.doi.org/10.1016/j.coche.2022.100878]
[2]
Brook, B.W.; Alonso, A.; Meneley, D.A.; Misak, J.; Blees, T.; van Erp, J.B. Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Mat. Techno., 2014, 1-2, 8-16.
[http://dx.doi.org/10.1016/j.susmat.2014.11.001]
[3]
Fernández-Arias, P.; Vergara, D.; Antón-Sancho, Á. Global review of international nuclear waste management. Energies, 2023, 16(17), 6215.
[http://dx.doi.org/10.3390/en16176215]
[4]
Ojovan, M.I.; Steinmetz, H.J. Approaches to disposal of nuclear waste. Energies, 2022, 15(20), 7804.
[http://dx.doi.org/10.3390/en15207804]
[5]
Ewing, R.C.; Whittleston, R.A.; Yardley, B.W.D. Geological disposal of nuclear waste: A primer. Elements, 2016, 12(4), 233-237.
[http://dx.doi.org/10.2113/gselements.12.4.233]
[6]
Parab, H.; Mahadik, P.; Sengupta, P.; Vishwanadh, B.; Kumar, S.D. A comparative study on native and gamma irradiated bentonite for cesium ion uptake. Prog. Nucl. Energy, 2020, 127, 103419.
[http://dx.doi.org/10.1016/j.pnucene.2020.103419]
[7]
Morozov, I.; Zakusin, S.; Kozlov, P.; Zakusina, O.; Roshchin, M.; Chernov, M.; Boldyrev, K.; Zaitseva, T.; Tyupina, E.; Krupskaya, V. Bentonite–concrete interactions in engineered barrier systems during the isolation of radioactive waste based on the results of short-term laboratory experiments. Appl. Sci., 2022, 12(6), 3074.
[http://dx.doi.org/10.3390/app12063074]
[8]
Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci., 2016, 123, 239-258.
[http://dx.doi.org/10.1016/j.clay.2015.12.024]
[9]
Ugwu, I. M.; Igbokwe, O. A. Sorption of heavy metals on clay minerals and oxides: A review. Advan. Sor. Proc. Appl., 2019, 1-23.
[10]
Ismadji, S.; Soetaredjo, F.E.; Ayucitra, A. Clay materials for environmental remediation; Springer International Publishing: Berlin, Germany, 2015, pp. 1-124.
[http://dx.doi.org/10.1007/978-3-319-16712-1]
[11]
Parab, H.; Sirvi, R.; Sen, D.; Bhui, U.K.; Kumar, S.D.; Sengupta, P. Insight to the cesium entrapment by natural shale: implications to geological disposal of nuclear waste. Geosystem Engineering, 2024, 27(1), 1-13.
[http://dx.doi.org/10.1080/12269328.2023.2292991]
[12]
Mitra, K.; Mitra, S.; Gupta, S.; Bhattacharya, S.; Chauhan, P.; Jain, N. Modelling basalt weathering at elevated CO2 concentrations: implications for terminal to post-magmatic rifting in the Deccan Traps, Kachchh, India. Spec. Publ. Geol. Soc. Lond., 2018, 463(1), 227-241.
[http://dx.doi.org/10.1144/SP463.8]
[13]
Velde, B.B.; Meunier, A. The origin of clay minerals in soils and weathered rocks; Springer Science and Business Media, 2008.
[http://dx.doi.org/10.1007/978-3-540-75634-7]
[14]
Caner, L.; Radtke, L.M.; Vignol-Lelarge, M.L.; Inda, A.V.; Bortoluzzi, E.C.; Mexias, A.S. Basalt and rhyo-dacite weathering and soil clay formation under subtropical climate in southern Brazil. Geoderma, 2014, 235-236, 100-112.
[http://dx.doi.org/10.1016/j.geoderma.2014.06.024]
[15]
Liu, Z.; Wang, H.; Hantoro, W.S.; Sathiamurthy, E.; Colin, C.; Zhao, Y.; Li, J. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem. Geol., 2012, 291, 1-12.
[http://dx.doi.org/10.1016/j.chemgeo.2011.11.015]
[16]
Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite. Chem. Geol., 1982, 35(3-4), 205-225.
[http://dx.doi.org/10.1016/0009-2541(82)90002-X]
[17]
Miura, T.; Sasaki, A.; Endo, M. Evaluation of ion-exchange characteristics of cesium in natural Japanese rocks. Technologies, 2018, 6(3), 78.
[http://dx.doi.org/10.3390/technologies6030078]
[18]
Joussein, E.; Kruyts, N.; Righi, D.; Petit, S.; Delvaux, B. Specific retention of radiocesium in volcanic ash soils devoid of micaceous clay minerals. Soil Sci. Soc. Am. J., 2004, 68(1), 313-319.
[http://dx.doi.org/10.2136/sssaj2004.3130]
[19]
Tsai, S.C.; Juang, K.W.; Jan, Y.L. Sorption of cesium on rocks using heterogeneity-based isotherm models. J. Radioanal. Nucl. Chem., 2005, 266(1), 101-105.
[http://dx.doi.org/10.1007/s10967-005-0876-5]
[20]
Martynov, K.V.; Kulemin, V.V.; Kulyukhin, S.A. Study of the behavior of cesium and strontium in co-melting basalt and silica gel containing cesium or strontium nitrates for the development of a potential material for radioactive waste immobilization. Prog. Nucl. Energy, 2023, 164, 104855.
[http://dx.doi.org/10.1016/j.pnucene.2023.104855]
[21]
Barney, G.S. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations. In: Rockwell International Corp; Richland, W.A., Ed.; Rockwell Hanford Operations, 1981.
[http://dx.doi.org/10.2172/6468248]
[22]
Chatterjee, A.; Raymahashay, B.C. Spheroidal weathering of Deccan Basalt: A three-mineral model. Q. J. Eng. Geol., 1998, 31(3), 175-179.
[http://dx.doi.org/10.1144/GSL.QJEG.1998.031.P3.02]
[23]
Singh, N.B. Clays and clay minerals in the constructionindustry. Minerals, 2022, 12(3), 301.
[http://dx.doi.org/10.3390/min12030301]
[24]
Belghazdis, M.; Hachem, E.K. Clay and clay minerals: A detailed review. Intern. J. Rec. Techno. Appl. Sci., 2022, 4(2), 54-75.
[http://dx.doi.org/10.36079/lamintang.ijortas-0402.367]
[25]
Parab, H.; Devi, P.S.R.; Shenoy, N.; Kumar, S.D.; Bhardwaj, Y.K.; Reddy, A.V.R. Gamma irradiation stability studies of coir pith: A lignocellulosic biosorbent for strontium. J. Radioanal. Nucl. Chem., 2016, 308(1), 323-328.
[http://dx.doi.org/10.1007/s10967-015-4569-4]
[26]
Ramanjaneyulu, P.S.; Kumar, A.N.; Sayi, Y.S.; Ramakumar, K.L.; Nayak, S.K.; Chattopadhyay, S. A new ion selective electrode for cesium (I) based on calix[4]arene-crown-6 compounds. J. Hazard. Mater., 2012, 205-206, 81-88.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.017] [PMID: 22260754]
[27]
Parab, H.; Chauhan, K.; Ramkumar, J. In-situ synthesised polyaniline-halloysite nanoclay composite sorbent for effective decontamination of nitrate from aqueous streams. Int. J. Environ. Anal. Chem., 2022, 102(18), 7274-7289.
[http://dx.doi.org/10.1080/03067319.2020.1828390]
[28]
Dalvi, A.A.; Kumar, S.D.; Reddy, A.V.R. A site-specific study on the measurement of sorption coefficients for radionuclides. Int. J. Environ. Sci. Technol., 2014, 11(3), 617-622.
[http://dx.doi.org/10.1007/s13762-013-0254-8]
[29]
Murray, H.H. Occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Appl. Clay Min., 2007, 33(39), 85-108.
[30]
Nayak, P.S.; Singh, B.K. Instrumental characterization of clay by XRF, XRD and FTIR. Bull. Mater. Sci., 2007, 30(3), 235-238.
[http://dx.doi.org/10.1007/s12034-007-0042-5]
[31]
Gupt, C.B.; Bordoloi, S.; Sekharan, S.; Sarmah, A.K. Adsorption characteristics of Barmer bentonite for hazardous waste containment application. J. Hazard. Mater., 2020, 396, 122594.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122594] [PMID: 32302887]
[32]
Russell, J.; Fraser, A. Infrared methods. In: Clay Mineralogy: Spectroscopic and chemical determinative methods; Springer, 1994; pp. 11-67.
[http://dx.doi.org/10.1007/978-94-011-0727-3_2]
[33]
Kaufhold, S.; Hein, M.; Dohrmann, R.; Ufer, K. Quantification of the mineralogical composition of clays using FTIR spectroscopy. Vib. Spectrosc., 2012, 59, 29-39.
[http://dx.doi.org/10.1016/j.vibspec.2011.12.012]
[34]
Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazù, S. Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials, 2020, 13(5), 1100.
[http://dx.doi.org/10.3390/ma13051100] [PMID: 32121630]
[35]
Xue, W.; He, H.; Zhu, J.; Yuan, P. FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(3-4), 1030-1036.
[http://dx.doi.org/10.1016/j.saa.2006.09.024] [PMID: 17289428]
[36]
Amarasinghe, P.M.; Katti, K.S.; Katti, D.R. Nature of organic fluid–montmorillonite interactions: An FTIR spectroscopic study. J. Colloid Interface Sci., 2009, 337(1), 97-105.
[http://dx.doi.org/10.1016/j.jcis.2009.05.011] [PMID: 19539947]
[37]
Pironon, J.; Pelletier, M.; De Donato, P.; Mosser-Ruck, R. Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cations. Clay Miner., 2003, 38(2), 201-211.
[http://dx.doi.org/10.1180/0009855033820089]
[38]
Jiang, T.; Li, G.; Qiu, G.; Fan, X.; Huang, Z. Thermal activation and alkali dissolution of silicon from illite. Appl. Clay Sci., 2008, 40(1-4), 81-89.
[http://dx.doi.org/10.1016/j.clay.2007.08.002]
[39]
Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing features and identification criteria for k-dioctahedral 1m micas (illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data. Minerals, 2020, 10(2), 153.
[http://dx.doi.org/10.3390/min10020153]
[40]
Schuttlefield, J.D.; Cox, D.; Grassian, V.H. An investigation of water uptake on clays minerals using ATR‐FTIR spectroscopy coupled with quartz crystal microbalance measurements. J. Geophys. Res., 2007, 112(D21), 2007JD008973.
[http://dx.doi.org/10.1029/2007JD008973]
[41]
Drits, V.A.; Zviagina, B.B.; Sakharov, B.A.; Dorzhieva, O.V.; Savichev, A.T. New insight into the relationships between structural and FTIR spectroscopic features of kaolinites. Clays Clay Miner., 2021, 69(3), 366-388.
[http://dx.doi.org/10.1007/s42860-021-00133-w]
[42]
Cuadros, J.; Dudek, T. FTIR investigation of the evolution of the octahedral sheet of kaolinite-smectite with progressive kaolinization. Clays Clay Miner., 2006, 54(1), 1-11.
[http://dx.doi.org/10.1346/CCMN.2006.0540101]
[43]
Bandopadhyay, A.K. Determination of quartz content for Indian coals using an FTIR technique. Int. J. Coal Geol., 2010, 81(1), 73-78.
[http://dx.doi.org/10.1016/j.coal.2009.10.018]
[44]
Jozanikohan, G.; Abarghooei, M.N. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Pet. Explor. Prod. Technol., 2022, 12(8), 2093-2106.
[http://dx.doi.org/10.1007/s13202-021-01449-y]
[45]
Ramasamy, V.; Murugesan, S.; Mullainathan, S. Characterization of minerals and relative distribution of quartz in Cauvery river sediments from Tamilnadu, India-A FTIR study. Bull. Pure Appl. Sci. F, 2004, 23, 1-2.
[46]
Anda, M.; Shamshuddin, J.; Fauziah, C.I. Improving chemical properties of a highly weathered soil using finely ground basalt rocks. Catena, 2015, 124, 147-161.
[http://dx.doi.org/10.1016/j.catena.2014.09.012]
[47]
Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol., 2009, 84(1), 13-28.
[http://dx.doi.org/10.1002/jctb.1999]
[48]
Kapoor, A.; Viraraghavan, T. Fungal biosorption - an alternative treatment option for heavy metal bearing wastewaters: A review. Bioresour. Technol., 1995, 53(3), 195-206.
[49]
Parab, H.; Sudersanan, M. Engineering a lignocellulosic biosorbent: Coir pith for removal of cesium from aqueous solutions: Equilibrium and kinetic studies. Water Res., 2010, 44(3), 854-860.
[http://dx.doi.org/10.1016/j.watres.2009.09.038] [PMID: 19819515]
[50]
Fuller, A.J.; Shaw, S.; Ward, M.B.; Haigh, S.J.; Mosselmans, J.F.W.; Peacock, C.L.; Stackhouse, S.; Dent, A.J.; Trivedi, D.; Burke, I.T. Caesium incorporation and retention in illite interlayers. Appl. Clay Sci., 2015, 108, 128-134.
[http://dx.doi.org/10.1016/j.clay.2015.02.008]
[51]
Park, S.M.; Alessi, D.S.; Baek, K. Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. J. Hazard. Mater., 2019, 369, 569-576.
[http://dx.doi.org/10.1016/j.jhazmat.2019.02.061] [PMID: 30818121]
[52]
Poinssot, C.; Baeyens, B.; Bradbury, M.H. Experimental and modelling studies of caesium sorption on illite. Geochim. Cosmochim. Acta, 1999, 63(19-20), 3217-3227.
[http://dx.doi.org/10.1016/S0016-7037(99)00246-X]
[53]
Bostick, B.C.; Vairavamurthy, M.A.; Karthikeyan, K.G.; Chorover, J. Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environ. Sci. Technol., 2002, 36(12), 2670-2676.
[http://dx.doi.org/10.1021/es0156892] [PMID: 12099463]
[54]
Kim, Y.; James Kirkpatrick, R.; Cygan, R.T. 133Cs NMR study of cesium on the surfaces of kaolinite and illite. Geochim. Cosmochim. Acta, 1996, 60(21), 4059-4074.
[http://dx.doi.org/10.1016/S0016-7037(96)00257-8]
[55]
Lammers, L.N.; Bourg, I.C.; Okumura, M.; Kolluri, K.; Sposito, G.; Machida, M. Molecular dynamics simulations of cesium] adsorption on illite nanoparticles. J. Colloid Interface Sci., 2017, 490, 608-620.
[http://dx.doi.org/10.1016/j.jcis.2016.11.084] [PMID: 27930922]
[56]
He, Y.; Chen, Y.; Ye, W.; Zhang, X. Effects of contact time, pH, and temperature on Eu(III) sorption onto MX-80 bentonite. Chem. Phys., 2020, 534, 110742.
[http://dx.doi.org/10.1016/j.chemphys.2020.110742]
[57]
Liu, H.J.; Xie, S.B.; Xia, L.S.; Tang, Q.; Kang, X.; Huang, F. Study on adsorptive property of bentonite for cesium. Environ. Earth Sci., 2016, 75(2), 148.
[http://dx.doi.org/10.1007/s12665-015-4941-2]
[58]
Abdel-Karim, A.A.M.; Zaki, A.A.; Elwan, W.; El-Naggar, M.R.; Gouda, M.M. Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl. Clay Sci., 2016, 132-133, 391-401.
[http://dx.doi.org/10.1016/j.clay.2016.07.005]
[59]
Liu, H.; Xie, S.; Zhang, X.; Liu, Y.; Zeng, T. Poly (β-cyclodextrin)/bentonite composite: synthesis mechanism and adsorption property for cesium in water. J. Radioanal. Nucl. Chem., 2018, 318(3), 2117-2127.
[http://dx.doi.org/10.1007/s10967-018-6246-x]
[60]
Ozsoy, O.; Bekbolet, M. Surface interactions of Cs+ and Co2+ with bentonite. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3020-3029.
[http://dx.doi.org/10.1007/s11356-015-4103-9] [PMID: 25613799]
[61]
Yang, S.; Han, C.; Wang, X.; Nagatsu, M. Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J. Hazard. Mater., 2014, 274, 46-52.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.001] [PMID: 24762700]
[62]
Galamboš, M.; Paučová, V.; Kufčáková, J.; Rosskopfová, O.; Rajec, P.; Adamcová, R. Cesium sorption on bentonites and montmorillonite K10. J. Radioanal. Nucl. Chem., 2010, 284(1), 55-64.
[http://dx.doi.org/10.1007/s10967-010-0480-1]
[63]
Yıldız, B.; Erten, H.N.; Kış, M. The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. J. Radioanal. Nucl. Chem., 2011, 288(2), 475-483.
[http://dx.doi.org/10.1007/s10967-011-0990-5]
[64]
Deepthi Rani, R.; Sasidhar, P. Geochemical and thermodynamic aspects of sorption of strontium on kaolinite dominated clay samples at Kalpakkam. Environ. Earth Sci., 2012, 65(4), 1265-1274.
[http://dx.doi.org/10.1007/s12665-011-1374-4]
[65]
Carroll, S.A.; Roberts, S.K.; Criscenti, L.J.; O’Day, P.A. Surface complexation model for strontium sorption to amorphous silica and goethite. Geochem. Trans., 2008, 9(1), 2.
[http://dx.doi.org/10.1186/1467-4866-9-2] [PMID: 18205927]
[66]
Axe, L.; Anderson, P.R. Sr diffusion and reaction within Fe oxides: Evaluation of the rate-limiting mechanism for sorption. J. Colloid Interface Sci., 1995, 175(1), 157-165.
[http://dx.doi.org/10.1006/jcis.1995.1441]
[67]
Khan, S.A.; Riaz-ur-Rehman; Khan, M.A. Sorption of strontium on bentonite. Waste Manag., 1995, 15(8), 641-650.
[http://dx.doi.org/10.1016/0956-053X(96)00049-9]
[68]
Tsai, S.C.; Juang, K.W. Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. J. Radioanal. Nucl. Chem., 2000, 243(3), 741-746.
[http://dx.doi.org/10.1023/A:1010694910170]
[69]
Smičiklas, I.D.; Milonjić, S.K.; Pfendt, P.; Raičević, S. The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Separ. Purif. Tech., 2000, 18(3), 185-194.
[http://dx.doi.org/10.1016/S1383-5866(99)00066-0]
[70]
Marešová, J.; Pipíška, M.; Rozložník, M.; Horník, M.; Remenárová, L.; Augustín, J. Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 2011, 266(1-3), 134-141.
[http://dx.doi.org/10.1016/j.desal.2010.08.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy