Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cholesteryl Ester Transfer Protein (CETP) Variations in Relation to Lipid Profiles and Cardiovascular Diseases: An Update

Author(s): Siarhei Dabravolski*, Nikolay A. Orekhov, Alexandra Melnichenko, Vasily N. Sukhorukov, Mikhail A. Popov and Alexander Orekhov

Volume 30, Issue 10, 2024

Published on: 29 February, 2024

Page: [742 - 756] Pages: 15

DOI: 10.2174/0113816128284695240219093612

Price: $65

Abstract

Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.

[1]
Haa YC, Barter PJ. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B 1982; 71(2): 265-9.
[http://dx.doi.org/10.1016/0305-0491(82)90252-8] [PMID: 7060347]
[2]
Yu Y, Song G. Lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein in lipid metabolism and cardiovascular diseases. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Springer 2020.
[3]
Alva V, Lupas AN. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861(8): 913-23.
[http://dx.doi.org/10.1016/j.bbalip.2016.01.016] [PMID: 26825693]
[4]
Qiu X, Mistry A, Ammirati MJ, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol 2007; 14(2): 106-13.
[http://dx.doi.org/10.1038/nsmb1197] [PMID: 17237796]
[5]
Koivuniemi A, Vuorela T, Kovanen PT, Vattulainen I, Hyvönen MT. Lipid exchange mechanism of the cholesteryl ester transfer protein clarified by atomistic and coarse-grained simulations. PLoS Comput Biol 2012; 8(1): e1002299.
[http://dx.doi.org/10.1371/journal.pcbi.1002299]
[6]
Zhang L, Yan F, Zhang S, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol 2012; 8(4): 342-9.
[http://dx.doi.org/10.1038/nchembio.796] [PMID: 22344176]
[7]
Chirasani VR, Revanasiddappa PD, Senapati S. Structural plasticity of cholesteryl ester transfer protein assists the lipid transfer activity. J Biol Chem 2016; 291(37): 19462-73.
[http://dx.doi.org/10.1074/jbc.M116.744623] [PMID: 27445332]
[8]
Lauer ME, Graff-Meyer A, Rufer AC, et al. Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP. J Struct Biol 2016; 194(2): 191-8.
[http://dx.doi.org/10.1016/j.jsb.2016.02.016] [PMID: 26876146]
[9]
Brown ML, Inazu A, Hesler CB, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989; 342(6248): 448-51.
[http://dx.doi.org/10.1038/342448a0] [PMID: 2586614]
[10]
Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323(18): 1234-8.
[http://dx.doi.org/10.1056/NEJM199011013231803] [PMID: 2215607]
[11]
Yamashita S, Ruscica M, Macchi C, Corsini A, Matsuzawa Y, Sirtori CR. Cholesteryl ester transfer protein: An enigmatic pharmacology - Antagonists and agonists. Atherosclerosis 2018; 278: 286-98.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.09.035] [PMID: 30347344]
[12]
Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510: 733-40.
[http://dx.doi.org/10.1016/j.cca.2020.09.012] [PMID: 32941836]
[13]
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25(4): 155-66.
[http://dx.doi.org/10.1007/s11883-023-01087-1] [PMID: 36881278]
[14]
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Vaccination against atherosclerosis: Is it real? Int J Mol Sci 2022; 23(5): 2417.
[http://dx.doi.org/10.3390/ijms23052417] [PMID: 35269559]
[15]
Nicholls SJ, Nelson AJ. CETP inhibitors: Should we continue to pursue this pathway? Curr Atheroscler Rep 2022; 24(12): 915-23.
[http://dx.doi.org/10.1007/s11883-022-01070-2] [PMID: 36409446]
[16]
Di Bartolo BA, Duong M, Nicholls SJ. Clinical trials with cholesteryl ester transfer protein inhibitors. Curr Opin Lipidol 2016; 27(6): 545-9.
[http://dx.doi.org/10.1097/MOL.0000000000000352] [PMID: 27676199]
[17]
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59(5): 772-83.
[http://dx.doi.org/10.1194/jlr.R082735] [PMID: 29487091]
[18]
Winkler TW, Grassmann F, Brandl C, et al. Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med Genomics 2020; 13(1): 120.
[http://dx.doi.org/10.1186/s12920-020-00760-7] [PMID: 32843070]
[19]
Burgess S, Davey Smith G. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration. Ophthalmology 2017; 124(8): 1165-74.
[http://dx.doi.org/10.1016/j.ophtha.2017.03.042] [PMID: 28456421]
[20]
Millwood IY, Bennett DA, Holmes MV, et al. Association of CETP gene variants with risk for vascular and nonvascular diseases among chinese adults. JAMA Cardiol 2018; 3(1): 34-43.
[http://dx.doi.org/10.1001/jamacardio.2017.4177] [PMID: 29141072]
[21]
Randomized Study of Obicetrapib as an Adjunct to Statin Therapy (ROSE). NCT04753606, 2021.
[22]
Randomized Study of Obicetrapib in Combination with Ezetimibe (OCEAN). NCT04770389, 2021.
[23]
Clinical trials for TA-8995. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=TA-8995
[24]
Bu X, Niu D, Wu J, Yuan Y, Song J, Wang J. Elevated levels of preβ1-high-density lipoprotein are associated with cholesterol ester transfer protein, the presence and severity of coronary artery disease. Lipids Health Dis 2017; 16(1): 4.
[http://dx.doi.org/10.1186/s12944-016-0394-1] [PMID: 28073362]
[25]
Martinelli AEM, Maranhão RC, Carvalho PO, et al. Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure. Lipids Health Dis 2018; 17(1): 242.
[http://dx.doi.org/10.1186/s12944-018-0888-0] [PMID: 30342531]
[26]
Xiao J, Ji J, Zhang N, et al. Association of genetically predicted lipid traits and lipid-modifying targets with heart failure. Eur J Prev Cardiol 2023; 30(4): 358-66.
[http://dx.doi.org/10.1093/eurjpc/zwac290] [PMID: 36520639]
[27]
Bekhet OH, Zeljkovic A, Vekic J, et al. Hypertension, lipoprotein subclasses and lipid transfer proteins in obese children and adolescents. Scand J Clin Lab Invest 2016; 76(6): 472-8.
[http://dx.doi.org/10.1080/00365513.2016.1201849] [PMID: 27379467]
[28]
Girona J, Ibarretxe D, Plana N, et al. Circulating PCSK9 levels and CETP plasma activity are independently associated in patients with metabolic diseases. Cardiovasc Diabetol 2016; 15(1): 107.
[http://dx.doi.org/10.1186/s12933-016-0428-z] [PMID: 27488210]
[29]
Sun J, Cai R, Huang R, et al. Cholesteryl ester transfer protein intimately involved in dyslipidemia-related susceptibility to cognitive deficits in type 2 diabetic patients. JAD 2016; 54(1): 175-84.
[30]
Griffiths K, Pazderska A, Ahmed M, et al. Type 2 diabetes in young females results in increased serum amyloid a and changes to features of high density lipoproteins in both HDL2 and HDL3. J Diabetes Res 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/1314864] [PMID: 28596970]
[31]
Ueland T, Roland MCP, Michelsen AE, et al. Elevated cholesteryl ester transfer protein activity early in pregnancy predicts prediabetes 5 years later. J Clin Endocrinol Metab 2020; 105(3): 854-65.
[http://dx.doi.org/10.1210/clinem/dgz119] [PMID: 31665383]
[32]
Bortnick AE, Buzkova P, Otvos JD, et al. High-density lipoprotein and long-term incidence and progression of aortic valve calcification: The multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42(10): 1272-82.
[http://dx.doi.org/10.1161/ATVBAHA.122.318004] [PMID: 35979837]
[33]
Nelson AJ, Sniderman AD, Ditmarsch M, et al. Cholesteryl ester transfer protein inhibition reduces major adverse cardiovascular events by lowering apolipoprotein B levels. Int J Mol Sci 2022; 23(16): 9417.
[http://dx.doi.org/10.3390/ijms23169417] [PMID: 36012684]
[34]
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: Mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98(4): 1160-83.
[http://dx.doi.org/10.1111/brv.12948] [PMID: 36880422]
[35]
Banerjee S, De A. Pathophysiology and inhibition of cholesteryl ester transfer protein for prevention of cardiovascular diseases: An update. Drug Discov Today 2021; 26(7): 1759-64.
[http://dx.doi.org/10.1016/j.drudis.2021.03.016] [PMID: 33781947]
[36]
Kjeldsen EW, Thomassen JQ, Frikke-Schmidt R. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease - Insights from randomized clinical trials and human genetics. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867(1): 159063.
[http://dx.doi.org/10.1016/j.bbalip.2021.159063] [PMID: 34637926]
[37]
Shimada A, Kimura H, Oida K, et al. Serum CETP status is independently associated with reduction rates in LDL-C in pitavastatin-treated diabetic patients and possible involvement of LXR in its association. Lipids Health Dis 2016; 15(1): 57.
[http://dx.doi.org/10.1186/s12944-016-0223-6] [PMID: 26984517]
[38]
Deng S, Liu J, Niu C. HDL and Cholesterol Ester Transfer Protein (CETP). HDL Metabolism and Diseases. Springer 2022.
[39]
Werumeus Buning J, Dimova LG, Perton FG, Tietge UJF, van Beek AP, Dullaart RPF. Downregulation of cholesteryl ester transfer protein by glucocorticoids: A randomised study on HDL. Eur J Clin Invest 2017; 47(7): 494-503.
[http://dx.doi.org/10.1111/eci.12770] [PMID: 28542805]
[40]
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: Fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94(2): 161-75.
[http://dx.doi.org/10.1016/j.ajhg.2013.10.024] [PMID: 24507773]
[41]
van den Boogert MAW, Crunelle CL, Ali L, et al. Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations. J Inherit Metab Dis 2020; 43(3): 611-7.
[http://dx.doi.org/10.1002/jimd.12200] [PMID: 31800099]
[42]
Lee KH, Jeong ES, Jang G, et al. Unripe Rubus coreanus miquel extract containing ellagic acid regulates AMPK, SREBP-2, HMGCR, and INSIG-1 signaling and cholesterol metabolism in vitro and in vivo. Nutrients 2020; 12(3): 610.
[http://dx.doi.org/10.3390/nu12030610] [PMID: 32110925]
[43]
Javandoost A, Afshari A, Nikbakht-Jam I, et al. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA Atheroscler 2017; 13(5): 245-52.
[PMID: 29371871]
[44]
Javandoost A, Afshari A, Saberi-Karimian M, et al. The effects of curcumin and a modified curcumin formulation on serum cholesteryl ester transfer protein concentrations in patients with metabolic syndrome: A randomized, placebo-controlled clinical trial. Avicenna J Phytomed 2018; 8(4): 330-7.
[PMID: 30377591]
[45]
Wilkens TL, Tranæs K, Eriksen JN, Dragsted LO. Moderate alcohol consumption and lipoprotein subfractions: A systematic review of intervention and observational studies. Nutr Rev 2022; 80(5): 1311-39.
[http://dx.doi.org/10.1093/nutrit/nuab102] [PMID: 34957513]
[46]
Casquero AC, Berti JA, Teixeira LLS, de Oliveira HCF. Chronic exercise reduces CETP and mesterolone treatment counteracts exercise benefits on plasma lipoproteins profile: Studies in transgenic mice. Lipids 2017; 52(12): 981-90.
[http://dx.doi.org/10.1007/s11745-017-4299-1] [PMID: 29058169]
[47]
Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 1993; 364(6432): 73-5.
[http://dx.doi.org/10.1038/364073a0] [PMID: 8316302]
[48]
Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 1999; 19(4): 1105-10.
[http://dx.doi.org/10.1161/01.ATV.19.4.1105] [PMID: 10195942]
[49]
Föger B, Chase M, Amar MJ, et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 1999; 274(52): 36912-20.
[http://dx.doi.org/10.1074/jbc.274.52.36912] [PMID: 10601244]
[50]
Liang YQ, Isono M, Okamura T, Takeuchi F, Kato N. Alterations of lipid metabolism, blood pressure and fatty liver in spontaneously hypertensive rats transgenic for human cholesteryl ester transfer protein. Hypertens Res 2020; 43(7): 655-66.
[http://dx.doi.org/10.1038/s41440-020-0401-9] [PMID: 31974485]
[51]
Bocan TMA, Bak Mueller S, Mazur MJ, Uhlendorf PD, Quenby Brown E, Kieft KA. The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis 1993; 102(1): 9-22.
[http://dx.doi.org/10.1016/0021-9150(93)90080-E] [PMID: 8257456]
[52]
Collins HL, Drazul-Schrader D, Sulpizio AC, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE-/- transgenic mice expressing CETP. Atherosclerosis 2016; 244: 29-37.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.108] [PMID: 26584136]
[53]
Pinto PR, da Silva KS, Iborra RT, et al. Exercise training favorably modulates gene and protein expression that regulate arterial cholesterol content in CETP transgenic mice. Front Physiol 2018; 9: 502.
[http://dx.doi.org/10.3389/fphys.2018.00502] [PMID: 29867549]
[54]
Raposo HF, Forsythe P, Chausse B, et al. Novel role of cholesteryl ester transfer protein (CETP): Attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity. Metabolism 2021; 114: 154429.
[http://dx.doi.org/10.1016/j.metabol.2020.154429] [PMID: 33166579]
[55]
Raposo HF, Vanzela EC, Berti JA, Oliveira HCF. Cholesteryl Ester Transfer Protein (CETP) expression does not affect glucose homeostasis and insulin secretion: Studies in human CETP transgenic mice. Lipids Health Dis 2016; 15(1): 9.
[http://dx.doi.org/10.1186/s12944-016-0179-6] [PMID: 26758205]
[56]
Palmisano BT, Yu S, Neuman JC, Zhu L, Luu T, Stafford JM. Low-density lipoprotein receptor is required for cholesteryl ester transfer protein to regulate triglyceride metabolism in both male and female mice. Physiol Rep 2021; 9(4): e14732.
[http://dx.doi.org/10.14814/phy2.14732] [PMID: 33625789]
[57]
Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57(8): 1541-51.
[http://dx.doi.org/10.1194/jlr.M069013] [PMID: 27354419]
[58]
Cappel DA, Palmisano BT, Emfinger CH, Martinez MN, McGuinness OP, Stafford JM. Cholesteryl ester transfer protein protects against insulin resistance in obese female mice. Mol Metab 2013; 2(4): 457-67.
[http://dx.doi.org/10.1016/j.molmet.2013.08.007] [PMID: 24327961]
[59]
Zhu L, An J, Chinnarasu S, et al. Expressing the human cholesteryl ester transfer protein minigene improves diet-induced fatty liver and insulin resistance in female mice. Front Physiol 2022; 12: 799096.
[http://dx.doi.org/10.3389/fphys.2021.799096] [PMID: 35082691]
[60]
Liu N, Si Y, Zhang Y, Guo S, Qin S. Human cholesteryl ester transport protein transgene promotes macrophage reverse cholesterol transport in C57BL/6 mice and phospholipid transfer protein gene knockout mice. J Physiol Biochem 2021; 77(4): 683-94.
[http://dx.doi.org/10.1007/s13105-021-00834-9] [PMID: 34403126]
[61]
Dong Z, Wu T, Qin W, et al. Serum amyloid A directly accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Mol Med 2011; 17(11-12): 1357-64.
[http://dx.doi.org/10.2119/molmed.2011.00186] [PMID: 21953420]
[62]
Ji A, Trumbauer AC, Noffsinger VP, et al. Serum amyloid A augments the atherogenic effects of cholesteryl ester transfer protein. J Lipid Res 2023; 64(5): 100365.
[http://dx.doi.org/10.1016/j.jlr.2023.100365] [PMID: 37004910]
[63]
Gao S, Wang X, Cheng D, et al. Overexpression of cholesteryl ester transfer protein increases macrophage-derived foam cell accumulation in atherosclerotic lesions of transgenic rabbits. Mediators Inflamm 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/3824276] [PMID: 29317793]
[64]
Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 2017; 37(6): 1068-75.
[http://dx.doi.org/10.1161/ATVBAHA.117.309114] [PMID: 28428219]
[65]
Chen T, Sun M, Wang JQ, Cui JJ, Liu ZH, Yu B. A novel swine model for evaluation of dyslipidemia and atherosclerosis induced by human CETP overexpression. Lipids Health Dis 2017; 16(1): 169.
[http://dx.doi.org/10.1186/s12944-017-0563-x] [PMID: 28893253]
[66]
Wanschel ACBA, Guizoni DM, Lorza-Gil E, et al. The presence of Cholesteryl Ester Transfer Protein (CETP) in endothelial cells generates vascular oxidative stress and endothelial dysfunction. Biomolecules 2021; 11(1): 69.
[http://dx.doi.org/10.3390/biom11010069] [PMID: 33430172]
[67]
Dorighello GG, Assis LHP, Rentz T, et al. Novel role of CETP in macrophages: Reduction of mitochondrial oxidants production and modulation of cell immune-metabolic profile. Antioxidants 2022; 11(9): 1734.
[http://dx.doi.org/10.3390/antiox11091734] [PMID: 36139808]
[68]
Maruyama T, Sakai N, Ishigami M, et al. Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. Atherosclerosis 2003; 166(1): 177-85.
[http://dx.doi.org/10.1016/S0021-9150(02)00327-1] [PMID: 12482565]
[69]
Yamashita S, Matsuzawa Y, Okazaki M, et al. Small polydisperse low density lipoproteins in familial hyperalphalipoproteinemia with complete deficiency of cholesteryl ester transfer activity. Atherosclerosis 1988; 70(1-2): 7-12.
[http://dx.doi.org/10.1016/0021-9150(88)90094-9] [PMID: 3355618]
[70]
Hitchcock E, Patankar JV, Tyson C, Hrynchak M, Hayden MR, Gibson WT. A novel microdeletion affecting the CETP gene raises HDL-associated cholesterol levels. Clin Genet 2016; 89(4): 495-500.
[http://dx.doi.org/10.1111/cge.12633] [PMID: 26126777]
[71]
Cota BC, Suhett LG, Leite NN, Pereira PF, Ribeiro SAV, Franceschini SCC. Cardiometabolic risk and health behaviours in adolescents with normal-weight obesity: A systematic review. Public Health Nutr 2021; 24(5): 870-81.
[http://dx.doi.org/10.1017/S1368980020004863] [PMID: 33256881]
[72]
Mokha JS, Srinivasan SR, DasMahapatra P, et al. Utility of waist- to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr 2010; 10(1): 73.
[http://dx.doi.org/10.1186/1471-2431-10-73] [PMID: 20937123]
[73]
Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008; 299(23): 2777-88.
[http://dx.doi.org/10.1001/jama.299.23.2777] [PMID: 18560005]
[74]
Ridker PM, Paré G, Parker AN, Zee RYL, Miletich JP, Chasman DI. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet 2009; 2(1): 26-33.
[http://dx.doi.org/10.1161/CIRCGENETICS.108.817304] [PMID: 20031564]
[75]
Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: Mendelian randomization meta-analysis. Circ Cardiovasc Genet 2015; 8(1): 114-21.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000748] [PMID: 25561046]
[76]
Nomura A, Won HH, Khera AV, et al. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res 2017; 121(1): 81-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311145] [PMID: 28506971]
[77]
Johannsen TH, Frikke-Schmidt R, Schou J, Nordestgaard BG, Tybjærg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol 2012; 60(20): 2041-8.
[http://dx.doi.org/10.1016/j.jacc.2012.07.045] [PMID: 23083790]
[78]
Hong YM. Associations of cholesteryl ester transfer protein taqib polymorphism with the composite ischemic cardiovascular disease risk and HDL-C concentrations: A meta-analysis. IJERPH 2016; 13(9): 882.
[http://dx.doi.org/10.3390/ijerph13090882] [PMID: 27608031]
[79]
Freeman DJ, Griffin BA, Holmes AP, et al. Regulation of plasma HDL cholesterol and subfraction distribution by genetic and environmental factors. Associations between the TaqI B RFLP in the CETP gene and smoking and obesity. Arterioscler Thromb 1994; 14(3): 336-44.
[http://dx.doi.org/10.1161/01.ATV.14.3.336] [PMID: 7907227]
[80]
Drayna D, Lawn R. Multiple RFLPs at the human Cholesteryl Ester Transfer Protein (CETP) locus. Nucleic Acids Res 1987; 15(11): 4698-8.
[http://dx.doi.org/10.1093/nar/15.11.4698] [PMID: 2884631]
[81]
Freeman DJ, Packard CJ, Shepherd J, Gaffney D. Polymorphisms in the gene coding for cholesteryl ester transfer protein are related to plasma high-density lipoprotein cholesterol and transfer protein activity. Clin Sci 1990; 79(6): 575-81.
[http://dx.doi.org/10.1042/cs0790575] [PMID: 1980239]
[82]
Kondo I, Berg K, Drayna D, Lawn R. DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin Genet 1989; 35(1): 49-56.
[http://dx.doi.org/10.1111/j.1399-0004.1989.tb02904.x] [PMID: 2564326]
[83]
Cai G, Shi G, Huang Z. Gender specific effect of CETP rs708272 polymorphism on lipid and atherogenic index of plasma levels but not on the risk of coronary artery disease. Medicine 2018; 97(49): e13514.
[http://dx.doi.org/10.1097/MD.0000000000013514] [PMID: 30544452]
[84]
Raina JK, Sharma M, Panjaliya RK, Dogra V, Bakaya A, Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with Coronary Artery Disease (CAD). BMC Cardiovasc Disord 2020; 20(1): 340.
[http://dx.doi.org/10.1186/s12872-020-01618-7] [PMID: 32682401]
[85]
Shahid SU, Shabana , Cooper JA, et al. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis 2017; 258: 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.01.024] [PMID: 28167353]
[86]
Kaman D, İlhan N, İlhan N, Akbulut M. TaqIB and severity of coronary artery disease in the Turkish population: A pilot study. Biomol Biomed 2015; 15(1): 9-13.
[http://dx.doi.org/10.17305/bjbms.2015.157] [PMID: 25725138]
[87]
Vargas-Alarcon G, Perez-Mendez O, Herrera-Maya G, et al. CETP and LCAT gene polymorphisms are associated with high- density lipoprotein subclasses and acute coronary syndrome. Lipids 2018; 53(2): 157-66.
[http://dx.doi.org/10.1002/lipd.12017] [PMID: 29570220]
[88]
Amer NN, Shaaban GM. Association of serum cholesterol ester transfer protein levels with Taq IB polymorphism in acute coronary syndrome. Lab Med 2019; lmz043.
[http://dx.doi.org/10.1093/labmed/lmz043] [PMID: 31504738]
[89]
Abdel Maksoud SM, El-Garf WT, Ali OS, Shaaban GM, Amer NN. Association of cholesterol ester transfer protein Taq IB polymorphism with acute coronary syndrome in egyptian national patients. Lab Med 2017; 48(2): 154-65.
[http://dx.doi.org/10.1093/labmed/lmw071] [PMID: 28387842]
[90]
Semaev S, Shakhtshneider E, Orlov P, et al. Association of RS708272 (CETP gene variant) with lipid profile parameters and the risk of myocardial infarction in the white population of western siberia. Biomolecules 2019; 9(11): 739.
[http://dx.doi.org/10.3390/biom9110739] [PMID: 31739638]
[91]
Kanca D, Gormus U, Tokat B, et al. Additive antiatherogenic effects of CETP rs708272 on serum LDL subfraction levels in patients with CHD under statin therapy. Biochem Genet 2017; 55(2): 168-82.
[http://dx.doi.org/10.1007/s10528-016-9782-5] [PMID: 27900488]
[92]
Wanmasae S, Sirintronsopon W, Porntadavity S, Jeenduang N. The effect of APOE, CETP, and PCSK9 polymorphisms on simvastatin response in Thai hypercholesterolemic patients. Cardiovasc Ther 2017; 35(6): e12302.
[http://dx.doi.org/10.1111/1755-5922.12302] [PMID: 28851085]
[93]
Shamsudin AF, Bakar NS. Gender differences in the association between cholesteryl esters transfer protein polymorphism (rs708272) and plasma lipid levels in hyperlipidaemic participants at hospital universiti sains Malaysia. Malays J Med Sci 2023; 30(2): 96-110.
[http://dx.doi.org/10.21315/mjms2023.30.2.9] [PMID: 37102051]
[94]
Campos-Perez W, Perez-Robles M, Torres-Castillo N, et al. Physical inactivity and excessive sucrose consumption are associated with higher serum lipids in subjects with Taq1B CETP polymorphism. J Hum Nutr Diet 2020; 33(3): 299-307.
[http://dx.doi.org/10.1111/jhn.12747] [PMID: 32163222]
[95]
Perez-Robles M, Campos-Perez W, Torres-Vanegas J, Rodriguez-Reyes SC, Rivera-Valdés JJ, Martínez-Lopez E. Abdominal obesity, excessive adiposity, and the Taq1B CETP variant are positively associated with serum lipid levels in mexican women. Lifestyle Genomics 2023; 16(1): 83-9.
[http://dx.doi.org/10.1159/000529053] [PMID: 36652934]
[96]
Maroufi NF, Farzaneh K, Alibabrdel M, et al. Taq1B polymorphism of Cholesteryl Ester Transfer Protein (CETP) and its effects on the serum lipid levels in metabolic syndrome patients. Biochem Genet 2016; 54(6): 894-902.
[http://dx.doi.org/10.1007/s10528-016-9766-5] [PMID: 27496123]
[97]
Nagrani R, Foraita R, Gianfagna F, et al. Common genetic variation in obesity, lipid transfer genes and risk of Metabolic Syndrome: Results from IDEFICS/I. Family study and meta-analysis. Sci Rep 2020; 10(1): 7189.
[http://dx.doi.org/10.1038/s41598-020-64031-2] [PMID: 32346024]
[98]
Kalantar Z, Eshraghian MR, Sotoudeh G, et al. Differences in the interaction between CETP Taq1B polymorphism and dietary fat intake on lipid profile of normolipedemic and dyslipidemic patients with type 2 diabetes mellitus. Clin Nutr 2018; 37(1): 270-5.
[http://dx.doi.org/10.1016/j.clnu.2016.12.024] [PMID: 28065481]
[99]
Ramezani-Jolfaie N, Aghaei S, Farashahi Yazd E, et al. The combined effects of cholesteryl ester transfer protein (CETP) TaqIB gene polymorphism and canola, sesame and sesame-canola oils consumption on metabolic response in patients with diabetes and healthy people. J Cardiovasc Thorac Res 2020; 12(3): 185-94.
[http://dx.doi.org/10.34172/jcvtr.2020.32] [PMID: 33123324]
[100]
Abaj F, Esmaeily Z, Naeini Z, Alvandi E, Rafiee M, Koohdani F. Dietary acid load and its interaction with CETP TaqB1 polymorphisms on lipid profile among patients with Type 2 diabetes mellitus. BMC Endocr Disord 2023; 23(1): 138.
[http://dx.doi.org/10.1186/s12902-023-01391-6] [PMID: 37407953]
[101]
Agapakis D, Savopoulos C, Kypreos KE, et al. Association of the CETP Taq1B and LIPG Thr111Ile polymorphisms with glycated hemoglobin and blood lipids in newly diagnosed hyperlipidemic patients. Can J Diabetes 2016; 40(6): 515-20.
[http://dx.doi.org/10.1016/j.jcjd.2016.01.002] [PMID: 27590083]
[102]
Kayıkcıoglu M. Polymorphisms of lipid metabolism enzyme-coding genes in patients with diabetic dyslipidemia. Anatol J Cardiol 2017; 17(4): 313-21.
[103]
Samedy LA, Ryan GJ, Superko RH, Momary KM. CETP genotype and concentrations of HDL and lipoprotein subclasses in African-American men. Future Cardiol 2019; 15(3): 187-95.
[http://dx.doi.org/10.2217/fca-2018-0058] [PMID: 31148465]
[104]
El-Lebedy D. Interaction between endothelial nitric oxide synthase rs1799983, cholesteryl ester-transfer protein rs708272 and angiopoietin-like protein 8 rs2278426 gene variants highly elevates the risk of type 2 diabetes mellitus and cardiovascular disease. Cardiovasc Diabetol 2018; 17(1): 97.
[http://dx.doi.org/10.1186/s12933-018-0742-8] [PMID: 29973202]
[105]
Abaj F, Rafiee M, Koohdani F. Interaction between CETP polymorphism and dietary insulin index and load in relation to cardiovascular risk factors in diabetic adults. Sci Rep 2021; 11(1): 15906.
[http://dx.doi.org/10.1038/s41598-021-95359-y] [PMID: 34354158]
[106]
Cheema SK, Agarwal-Mawal A, Murray CM, Tucker S. Lack of stimulation of cholesteryl ester transfer protein by cholesterol in the presence of a high-fat diet. J Lipid Res 2005; 46(11): 2356-66.
[http://dx.doi.org/10.1194/jlr.M500051-JLR200] [PMID: 16106052]
[107]
Fusegawa Y, Kelley KL, Sawyer JK, Shah RN, Rudel LL. Influence of dietary fatty acid composition on the relationship between CETP activity and plasma lipoproteins in monkeys. J Lipid Res 2001; 42(11): 1849-57.
[http://dx.doi.org/10.1016/S0022-2275(20)31511-X] [PMID: 11714854]
[108]
Karimpour F, Mohammadzadeh G, Kheirollah A, Ghaffari MA, Saki A. Association of I405V polymorphism of colesteryl ester transfer protein gene with coronary artery disease in men with type 2 diabetes. ARYA Atheroscler 2016; 12(2): 68-75.
[PMID: 27429626]
[109]
Goodarzynejad H, Boroumand M, Behmanesh M, Ziaee S, Jalali A. Cholesteryl ester transfer protein gene polymorphism (I405V) and premature coronary artery disease in an Iranian population. Biomol Biomed 2016; 16(2): 114-20.
[110]
Bustami J, Sukiasyan A, Kupcinskas J, et al. Cholesteryl ester transfer protein (CETP) I405V polymorphism and cardiovascular disease in Eastern European Caucasians - A cross-sectional study. BMC Geriatr 2016; 16(1): 144.
[http://dx.doi.org/10.1186/s12877-016-0318-y] [PMID: 27439317]
[111]
Buraczynska K, Rejdak K, Buraczynska M. Cholesteryl ester transfer protein gene polymorphism (I405V) and risk of ischemic stroke. J Stroke Cerebrovasc Dis 2018; 27(10): 2887-91.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.020] [PMID: 30078763]
[112]
Hannon BA, Edwards CG, Thompson SV, et al. Genetic variants in lipid metabolism pathways interact with diet to influence blood lipid concentrations in adults with overweight and obesity. Lifestyle Genomics 2020; 13(6): 155-63.
[http://dx.doi.org/10.1159/000507021] [PMID: 33105144]
[113]
Hosseini-Esfahani F, Esfandiar Z, Mirmiran P, Daneshpour MS, Ghanbarian A, Azizi F. The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles. Eur J Clin Nutr 2019; 73(9): 1291-8.
[http://dx.doi.org/10.1038/s41430-019-0397-x] [PMID: 30705383]
[114]
Esfandiar Z, Hosseini-Esfahani F, Daneshpour MS, Zand H, Mirmiran P, Azizi F. Cholesteryl ester transfer protein gene variations and macronutrient intakes interaction in relation to metabolic syndrome: Tehran lipid and glucose study. Iran J Basic Med Sci 2018; 21(6): 586-92.
[http://dx.doi.org/10.22038/ijbms.2018.26768.6555] [PMID: 29942448]
[115]
Moors J, Krishnan M, Sumpter N, et al. A Polynesian-specific missense CETP variant alters the lipid profile. Human Genet Genom Adv 2023; 4(3): 100204.
[http://dx.doi.org/10.1016/j.xhgg.2023.100204] [PMID: 37250494]
[116]
Devi A, Singh R, Dawar R, Tyagi S. Association of Cholesteryl Ester Transfer Protein (CETP) gene-629C/A polymorphism with angiographically proven atherosclerosis. Indian J Clin Biochem 2017; 32(2): 235-8.
[http://dx.doi.org/10.1007/s12291-016-0585-6] [PMID: 28428701]
[117]
Lin S, Dai R, Lin R. A meta-analytic evaluation of cholesteryl ester transfer protein (CETP) C-629A polymorphism in association with coronary heart disease risk and lipid changes. Oncotarget 2017; 8(2): 2153-63.
[http://dx.doi.org/10.18632/oncotarget.12898] [PMID: 27791990]
[118]
Colima-Fausto AG, Sánchez-Corona J, Ramírez-López G, García-Zapien AG, Magaña-Torres MT. Association of the -629C>A (rs1800775) CETP polymorphism with the development of essential hypertension in Mexican population. Genet Test Mol Biomarkers 2020; 24(7): 451-6.
[http://dx.doi.org/10.1089/gtmb.2020.0012] [PMID: 32551884]
[119]
Lee HS, Kim Y, Park T. New common and rare variants influencing metabolic syndrome and its individual components in a Korean population. Sci Rep 2018; 8(1): 5701.
[http://dx.doi.org/10.1038/s41598-018-23074-2] [PMID: 29632305]
[120]
Li W, Liu X, Huang C, Liu L, Tan X, Wang X. The loss-of-function mutation of CETP affects HDLc levels but not ApoA1 in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2021; 31(2): 602-7.
[http://dx.doi.org/10.1016/j.numecd.2020.10.019] [PMID: 33358712]
[121]
Ganesan M, Nizamuddin S, Katkam SK, et al. A mutation in CETP is associated with coronary artery disease in South Indians. PLoS ONE 2016; 11(10): e0164151.
[122]
Arikan GD, İsbir S, Yilmaz SG, İsbir T. Characteristics of coronary artery disease patients who have a polymorphism in the cholesterol ester transfer protein (CETP) gene. In Vivo 2019; 33(3): 787-92.
[http://dx.doi.org/10.21873/invivo.11540] [PMID: 31028198]
[123]
Kurnaz Gömleksi̇ ZÖ. Investigation of metabolic effects of CETP gene rs289714 variation in coronary artery patients: A case-control study. Turk Kardiyol Dern Ars 2020; 48(7): 673-82.
[124]
Sull JW, Kim S, Jee SH. Effects of obesity and family history of diabetes on the association of CETP rs6499861 with HDL-C level in Korean populations. J Lipid Atheroscler 2019; 8(2): 252-7.
[http://dx.doi.org/10.12997/jla.2019.8.2.252] [PMID: 32821715]
[125]
de Luis D, Izaola O, Primo D, et al. Association of a cholesteryl ester transfer protein variant (rs1800777) with fat mass, HDL cholesterol levels, and metabolic syndrome. Endocrinol, Diab Nutr 2018; 65(7): 387-93.
[http://dx.doi.org/10.1016/j.endien.2018.07.002] [PMID: 29705571]
[126]
Christie S, Robiou-du-Pont S, Anand SS, et al. Genetic contribution to lipid levels in early life based on 158 loci validated in adults: The FAMILY study. Sci Rep 2017; 7(1): 68.
[http://dx.doi.org/10.1038/s41598-017-00102-1] [PMID: 28250428]
[127]
McCaffery JM, Ordovas JM, Huggins GS, et al. Weight gain prevention buffers the impact of CETP rs3764261 on high density lipoprotein cholesterol in young adulthood: The Study of Novel Approaches to Weight Gain Prevention (SNAP). Nutr Metab Cardiovasc Dis 2018; 28(8): 816-21.
[http://dx.doi.org/10.1016/j.numecd.2018.02.018] [PMID: 29699816]
[128]
Naseri P, Khodakarim S, Guity K, Daneshpour MS. Familial aggregation and linkage analysis with covariates for metabolic syndrome risk factors. Gene 2018; 659: 118-22.
[http://dx.doi.org/10.1016/j.gene.2018.03.033] [PMID: 29548861]
[129]
Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016; 39(8): 1448-57.
[http://dx.doi.org/10.2337/dc16-0513] [PMID: 27457635]
[130]
Rudkowska I, Ouellette C, Dewailly E, et al. Omega-3 fatty acids, polymorphisms and lipid related cardiovascular disease risk factors in the Inuit population. Nutr Metab 2013; 10(1): 26.
[http://dx.doi.org/10.1186/1743-7075-10-26] [PMID: 23497168]
[131]
Rudkowska I, Dewailly E, Hegele RA, et al. Gene–diet interactions on plasma lipid levels in the Inuit population. Br J Nutr 2013; 109(5): 953-61.
[http://dx.doi.org/10.1017/S0007114512002231] [PMID: 23021345]
[132]
Raposo HF, Patrício PR, Simões MC, Oliveira HCF. Fibrates and fish oil, but not corn oil, up-regulate the expression of the cholesteryl ester transfer protein (CETP) gene. J Nutr Biochem 2014; 25(6): 669-74.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.008] [PMID: 24746832]
[133]
Walia GK, Gupta V, Aggarwal A, et al. Association of common genetic variants with lipid traits in the Indian population. PLoS One 2014; 9(7): e0101688.
[http://dx.doi.org/10.1371/journal.pone.0101688]
[134]
Zhu L, Luu T, Emfinger CH, et al. CETP inhibition improves HDL function but leads to fatty liver and insulin resistance in CETP-expressing transgenic mice on a high-fat diet. Diabetes 2018; 67(12): 2494-506.
[http://dx.doi.org/10.2337/db18-0474] [PMID: 30213825]
[135]
Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, et al. Beneficial effect of CETP gene polymorphism in combination with a Mediterranean diet influencing lipid metabolism in metabolic syndrome patients: CORDIOPREV study. Clin Nutr 2018; 37(1): 229-34.
[http://dx.doi.org/10.1016/j.clnu.2016.12.011] [PMID: 28057378]
[136]
Qi Q, Durst R, Schwarzfuchs D, et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res 2015; 56(3): 713-21.
[http://dx.doi.org/10.1194/jlr.P055715] [PMID: 25548261]
[137]
Srisawasdi P, Rodcharoen P, Vanavanan S, et al. Association of CETP gene variants with atherogenic dyslipidemia among thai patients treated with statin. Pharm Genomics Pers Med 2021; 14: 1-13.
[http://dx.doi.org/10.2147/PGPM.S278671] [PMID: 33447072]
[138]
Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009; 41(1): 35-46.
[http://dx.doi.org/10.1038/ng.271] [PMID: 19060910]
[139]
Kurano M, Tsukamoto K, Kamitsuji S, et al. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J Hum Genet 2016; 61(5): 427-33.
[http://dx.doi.org/10.1038/jhg.2015.170] [PMID: 26763881]
[140]
Deek R, Nasser J, Ghanem A, et al. Genome-wide association analysis of HDL-C in a Lebanese cohort. PLoS One 2019; 14(6): e0218443.
[http://dx.doi.org/10.1371/journal.pone.0218443]
[141]
Zhou L, He M, Mo Z, et al. A genome wide association study identifies common variants associated with lipid levels in the Chinese population. Plos One 2013; 8(12): e0082420.
[http://dx.doi.org/10.1371/journal.pone.0082420]
[142]
Lettre G, Palmer CD, Young T, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: The NHLBI CARe project. PLoS Genet 2011; 7(2): e1001300.
[143]
Bandesh K, Prasad G, Giri AK, et al. Genome-wide association study of blood lipids in Indians confirms universality of established variants. J Hum Genet 2019; 64(6): 573-87.
[http://dx.doi.org/10.1038/s10038-019-0591-7] [PMID: 30911093]
[144]
Adeyemo A, Bentley AR, Meilleur KG, et al. Transferability and fine mapping of genome-wide associated loci for lipids in African Americans. BMC Med Genet 2012; 13(1): 88.
[http://dx.doi.org/10.1186/1471-2350-13-88] [PMID: 22994408]
[145]
Wu Y, Marvelle AF, Li J, et al. Genetic association with lipids in Filipinos: waist circumference modifies an APOA5 effect on triglyceride levels. J Lipid Res 2013; 54(11): 3198-205.
[http://dx.doi.org/10.1194/jlr.P042077] [PMID: 24023260]
[146]
Hsu TW, Tantoh DM, Lee KJ, et al. Genetic and non-genetic factor-adjusted association between coffee drinking and high-density lipoprotein cholesterol in taiwanese adults: Stratification by sex. Nutrients 2019; 11(5): 1102.
[http://dx.doi.org/10.3390/nu11051102] [PMID: 31108953]
[147]
Walker CG, Loos RJF, Olson AD, et al. Genetic predisposition influences plasma lipids of participants on habitual diet, but not the response to reductions in dietary intake of saturated fatty acids. Atherosclerosis 2011; 215(2): 421-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.12.039] [PMID: 21292264]
[148]
Tai ES, Ordovas JM, Corella D, et al. The TaqIB and -629C>A polymorphisms at the cholesteryl ester transfer protein locus: Associations with lipid levels in a multiethnic population. The 1998 Singapore National Health Survey. Clin Genet 2003; 63(1): 19-30.
[http://dx.doi.org/10.1034/j.1399-0004.2003.630104.x] [PMID: 12519368]
[149]
Rudkowska I, Guénard F, Julien P, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res 2014; 55(7): 1245-53.
[http://dx.doi.org/10.1194/jlr.M045898] [PMID: 24847101]
[150]
Galan-Chilet I, Guallar E, Martin-Escudero JC, et al. Do genes modify the association of selenium and lipid levels? Antioxid Redox Signal 2015; 22(15): 1352-62.
[http://dx.doi.org/10.1089/ars.2015.6248] [PMID: 25606668]
[151]
Prasad G, Bandesh K, Giri A, et al. Genome-wide association study of metabolic syndrome reveals primary genetic variants at CETP locus in Indians. Biomolecules 2019; 9(8): 321.
[http://dx.doi.org/10.3390/biom9080321] [PMID: 31366177]
[152]
Hou H, Ma R, Guo H, et al. Association between six CETP polymorphisms and metabolic syndrome in uyghur adults from Xinjiang, China. Int J Environ Res Public Health 2017; 14(6): 653.
[http://dx.doi.org/10.3390/ijerph14060653] [PMID: 28629169]
[153]
Piko P, Jenei T, Kosa Z, et al. Association of CETP gene polymorphisms and haplotypes with cardiovascular risk. Int J Mol Sci 2023; 24(12): 10281.
[http://dx.doi.org/10.3390/ijms241210281] [PMID: 37373432]
[154]
Vargas-Alarcón G, Pérez-Méndez O, Posadas-Sánchez R, et al. Los polimorfismos rs4783961 y rs708272 del gen CETP son asociados con la enfermedad arterial coronaria y no con la restenosis tras el implante de un stent coronario. ACM 2021; 92(3): 7351.
[http://dx.doi.org/10.24875/ACM.21000039]
[155]
Rayat S, Ramezanidoraki N, Kazemi N, et al. Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovasc Disord 2022; 22(1): 298.
[http://dx.doi.org/10.1186/s12872-022-02695-6] [PMID: 35768776]
[156]
Iwanicka J, Iwanicki T, Niemiec P, et al. Relationship between CETP gene polymorphisms with coronary artery disease in Polish population. Mol Biol Rep 2018; 45(6): 1929-35.
[http://dx.doi.org/10.1007/s11033-018-4342-1] [PMID: 30178218]
[157]
Nordestgaard LT, Christoffersen M, Lauridsen BK, et al. Long-term benefits and harms associated with genetic cholesteryl ester transfer protein deficiency in the general population. JAMA Cardiol 2022; 7(1): 55-64.
[http://dx.doi.org/10.1001/jamacardio.2021.3728] [PMID: 34613338]
[158]
Colombo G, Bianconi V, Bonomi A, et al. The association between HDL-C and subclinical atherosclerosis depends on CETP plasma concentration: Insights from the Improve study. Biomedicines 2021; 9(3): 286.
[http://dx.doi.org/10.3390/biomedicines9030286] [PMID: 33799675]
[159]
Niu S, Tao X, Li J, et al. Association of the CETP gene TaqIB and D442G polymorphisms with essential hypertension in the Chinese Mongolian population. Turk J Med Sci 2017; 47(2): 599-606.
[http://dx.doi.org/10.3906/sag-1510-92] [PMID: 28425253]
[160]
Li-Gao R, Mook-Kanamori DO, Cannegieter SC, Willems van Dijk K, Rosendaal FR, van Hylckama Vlieg A. The association of genetic variants in the cholesteryl ester transfer protein gene with hemostatic factors and a first venous thrombosis. J Thromb Haemost 2019; 17(9): 1535-43.
[http://dx.doi.org/10.1111/jth.14528] [PMID: 31148376]
[161]
Deguchi H, Banerjee Y, Elias DJ, Griffin JH. Elevated CETP lipid transfer activity is associated with the risk of venous thromboembolism. J Atheroscler Thromb 2016; 23(10): 1159-67.
[http://dx.doi.org/10.5551/jat.32201] [PMID: 27169917]
[162]
Huang YC, Chen SY, Liu SP, et al. Cholesteryl ester transfer protein genetic variants associated with risk for type 2 diabetes and diabetic kidney disease in taiwanese population. Genes 2019; 10(10): 782.
[http://dx.doi.org/10.3390/genes10100782] [PMID: 31597401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy