Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nature’s Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization

Author(s): Rani Kumari, Saima Syeda and Anju Shrivastava*

Volume 31, Issue 32, 2024

Published on: 29 February, 2024

Page: [5281 - 5304] Pages: 24

DOI: 10.2174/0109298673282525240222050051

Price: $65

Abstract

Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.

« Previous
[1]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[2]
Eichhorn, M.E.; Kleespies, A.; Angele, M.K.; Jauch, K.W.; Bruns, C.J. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch. Surg., 2007, 392(3), 371-379.
[http://dx.doi.org/10.1007/s00423-007-0150-0] [PMID: 17458577]
[3]
Pepper, M.S. Lymphangiogenesis and tumor metastasis: Myth or reality? Clin. Cancer Res., 2001, 7(3), 462-468.
[PMID: 11297234]
[4]
Cheng, J.; Yang, H-L.; Gu, C-J.; Liu, Y-K.; Shao, J.; Zhu, R.; He, Y-Y.; Zhu, X-Y.; Li, M-Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med., 2018, 43(2), 943-955.
[http://dx.doi.org/10.3892/ijmm.2018.4021]
[5]
Saraswati, S.; Marrow, S.M.W.; Watch, L.A.; Young, P.P. Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat. Commun., 2019, 10(1), 3027.
[http://dx.doi.org/10.1038/s41467-019-10965-9] [PMID: 31289275]
[6]
Sadri, N.; Zhang, P. Hypoxia-inducible factors: mediators of cancer progression; Prognostic and therapeutic targets in soft tissue sarcomas. Cancers, 2013, 5(4), 320-333.
[http://dx.doi.org/10.3390/cancers5020320] [PMID: 24216979]
[7]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[8]
Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[9]
Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[10]
Abuelizz, H.A.; Marzouk, M.; Bakheit, A.H.; Awad, H.M.; Soltan, M.M.; Naglah, A.M.; Al-Salahi, R. Antiproliferative and antiangiogenic properties of new vegfr-2-targeting 2-thioxobenzo [g] quinazoline derivatives (In Vitro). Molecules, 2020, 25(24), 5944.
[http://dx.doi.org/10.3390/molecules25245944] [PMID: 33333992]
[11]
Carbajo-Pescador, S.; Ordoñez, R.; Benet, M.; Jover, R.; García-Palomo, A.; Mauriz, J.L.; González-Gallego, J. Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br. J. Cancer, 2013, 109(1), 83-91.
[http://dx.doi.org/10.1038/bjc.2013.285] [PMID: 23756865]
[12]
Jussila, L.; Alitalo, K. Vascular growth factors and lymphangiogenesis. Physiol. Rev., 2002, 82(3), 673-700.
[http://dx.doi.org/10.1152/physrev.00005.2002] [PMID: 12087132]
[13]
Gao, X.; Hicks, K.C.; Neumann, P.; Patel, T.B. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One, 2017, 12(2), e0171616.
[http://dx.doi.org/10.1371/journal.pone.0171616] [PMID: 28196140]
[14]
Abdollahi, A.; Folkman, J. Evading tumor evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist. Updat., 2010, 13(1-2), 16-28.
[http://dx.doi.org/10.1016/j.drup.2009.12.001] [PMID: 20061178]
[15]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[16]
Claesson-Welsh, L.; Welsh, M.; Ito, N.; Anand-Apte, B.; Soker, S.; Zetter, B.; O’Reilly, M.; Folkman, J. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5579-5583.
[http://dx.doi.org/10.1073/pnas.95.10.5579] [PMID: 9576925]
[17]
Olofsson, S.O.; Asp, L.; Borén, J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipidol., 1999, 10(4), 341-346.
[http://dx.doi.org/10.1097/00041433-199908000-00008] [PMID: 10482137]
[18]
Olofsson, B.; Jeltsch, M.; Eriksson, U.; Alitalo, K. Current biology of VEGF-B and VEGF-C. Curr. Opin. Biotechnol., 1999, 10(6), 528-538.
[http://dx.doi.org/10.1016/S0958-1669(99)00024-5] [PMID: 10600689]
[19]
Wiszniak, S.; Schwarz, Q. Exploring the intracrine functions of VEGF-A. Biomolecules, 2021, 11(1), 128.
[http://dx.doi.org/10.3390/biom11010128] [PMID: 33478167]
[20]
Ng, K.T.P.; Xu, A.; Cheng, Q.; Guo, D.Y.; Lim, Z.X.H.; Sun, C.K.W.; Fung, J.H.S.; Poon, R.T.P.; Fan, S.T.; Lo, C.M.; Man, K. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol. Cancer, 2014, 13(1), 196.
[http://dx.doi.org/10.1186/1476-4598-13-196] [PMID: 25148701]
[21]
Master, Z.; Jones, N.; Tran, J.; Jones, J.; Kerbel, R.S.; Dumont, D.J. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. EMBO J., 2001, 20(21), 5919-5928.
[http://dx.doi.org/10.1093/emboj/20.21.5919] [PMID: 11689432]
[22]
Liao, Y-H.; Chiang, K-H.; Shieh, J-M.; Huang, C-R.; Shen, C-J.; Huang, W-C.; Chen, B-K. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene, 2017, 36(16), 2228-2242.
[http://dx.doi.org/10.1038/onc.2016.371] [PMID: 27797381]
[23]
Yu, X.; Ye, F. Role of angiopoietins in development of cancer and neoplasia associated with viral infection. Cells, 2020, 9(2), 457.
[http://dx.doi.org/10.3390/cells9020457] [PMID: 32085414]
[24]
Pergaris, A.; Danas, E.; Goutas, D.; Sykaras, A.G.; Soranidis, A.; Theocharis, S. The clinical impact of the eph/ephrin system in cancer: Unwinding the thread. Int. J. Mol. Sci., 2021, 22(16), 8412.
[http://dx.doi.org/10.3390/ijms22168412] [PMID: 34445116]
[25]
Hadjimichael, A.C.; Pergaris, A.; Kaspiris, A.; Foukas, A.F.; Kokkali, S.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin system in bone and soft tissue sarcomas’ pathogenesis and therapy: New advancements and a literature review. Int. J. Mol. Sci., 2022, 23(9), 5171.
[http://dx.doi.org/10.3390/ijms23095171] [PMID: 35563562]
[26]
Coffin, J.D.; Homer-Bouthiette, C.; Hurley, M.M. Fibroblast growth factor 2 and its receptors in bone biology and disease. J. Endocr. Soc., 2018, 2(7), 657-671.
[http://dx.doi.org/10.1210/js.2018-00105] [PMID: 29942929]
[27]
Ornitz, D.M.; Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[28]
Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; Chen, H.; Sun, X.; Feng, J.Q.; Qi, H.; Chen, L. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther., 2020, 5(1), 181.
[http://dx.doi.org/10.1038/s41392-020-00222-7] [PMID: 32879300]
[29]
Pan, M.; Schinke, H.; Luxenburger, E.; Kranz, G.; Shakhtour, J.; Libl, D.; Huang, Y.; Gaber, A.; Pavšič, M.; Lenarčič, B.; Kitz, J.; Jakob, M.; Schwenk-Zieger, S.; Canis, M.; Hess, J.; Unger, K.; Baumeister, P.; Gires, O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol., 2018, 16(9), e2006624.
[http://dx.doi.org/10.1371/journal.pbio.2006624] [PMID: 30261040]
[30]
Machado, C.M.L.; Andrade, L.N.S.; Teixeira, V.R.; Costa, F.F.; Melo, C.M.; dos Santos, S.N.; Nonogaki, S.; Liu, F.T.; Bernardes, E.S.; Camargo, A.A.; Chammas, R. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGF β 1-induced macrophages. Cancer Med., 2014, 3(2), 201-214.
[http://dx.doi.org/10.1002/cam4.173] [PMID: 24421272]
[31]
Tzavlaki, K.; Moustakas, A. TGF-β signaling. Biomolecules, 2020, 10(3), 487.
[http://dx.doi.org/10.3390/biom10030487] [PMID: 32210029]
[32]
Tewari, D.; Priya, A.; Bishayee, A.; Bishayee, A. Targeting transforming growth factor-ß signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin. Transl. Med., 2022, 12(4), e795.
[http://dx.doi.org/10.1002/ctm2.795] [PMID: 35384373]
[33]
Peterson, J.E.; Zurakowski, D.; Italiano, J.E., Jr; Michel, L.V.; Fox, L.; Klement, G.L.; Folkman, J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Hematol., 2010, 85(7), 487-493.
[http://dx.doi.org/10.1002/ajh.21732] [PMID: 20575035]
[34]
Farooqi, A.A.; Siddik, Z.H. Platelet-derived growth factor ( PDGF ) signalling in cancer: Rapidly emerging signalling landscape. Cell Biochem. Funct., 2015, 33(5), 257-265.
[http://dx.doi.org/10.1002/cbf.3120] [PMID: 26153649]
[35]
Lin, L.H.; Lin, J.S.; Yang, C.C.; Cheng, H.W.; Chang, K.W.; Liu, C.J. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int. J. Mol. Sci., 2020, 21(7), 2360.
[http://dx.doi.org/10.3390/ijms21072360] [PMID: 32235327]
[36]
Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243.
[http://dx.doi.org/10.1016/j.semcancer.2015.01.001] [PMID: 25600295]
[37]
Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444.
[http://dx.doi.org/10.3389/fimmu.2018.00444] [PMID: 29593717]
[38]
Yamagishi, S.; Amano, S.; Inagaki, Y.; Okamoto, T.; Takeuchi, M.; Inoue, H. Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through anti-oxidative properties. Microvasc. Res., 2003, 65(3), 186-190.
[http://dx.doi.org/10.1016/S0026-2862(03)00005-0] [PMID: 12711260]
[39]
Kaidi, D.; Szeponik, L.; Yrlid, U.; Wettergren, Y.; Bexe Lindskog, E. Impact of thymidine phosphorylase and CD163 expression on prognosis in stage II colorectal cancer. Clin. Transl. Oncol., 2022, 24(9), 1818-1827.
[http://dx.doi.org/10.1007/s12094-022-02839-2] [PMID: 35567733]
[40]
Dong, Y.; Lu, B.; Zhang, X.; Zhang, J.; Lai, L.; Li, D.; Wu, Y.; Song, Y.; Luo, J.; Pang, X.; Yi, Z.; Liu, M. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis, 2010, 31(12), 2097-2104.
[http://dx.doi.org/10.1093/carcin/bgq167] [PMID: 20732905]
[41]
Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/ MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307.
[http://dx.doi.org/10.1111/cas.13156] [PMID: 28064454]
[42]
Czyz, M. HGF/c-MET signaling in melanocytes and melanoma. Int. J. Mol. Sci., 2018, 19(12), 3844.
[http://dx.doi.org/10.3390/ijms19123844] [PMID: 30513872]
[43]
Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol., 2005, 7(2), 122-133.
[http://dx.doi.org/10.1215/S1152851704001061] [PMID: 15831231]
[44]
Chen, W.T.; Ebelt, N.D.; Stracker, T.H.; Xhemalce, B.; Van Den Berg, C.L.; Miller, K.M. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. eLife, 2015, 4, e07270.
[http://dx.doi.org/10.7554/eLife.07270] [PMID: 26030852]
[45]
Kumar, S.; O’Malley, J.; Chaudhary, A.K.; Inigo, J.R.; Yadav, N.; Kumar, R.; Chandra, D. Hsp60 and IL-8 axis promotes apoptosis resistance in cancer. Br. J. Cancer, 2019, 121(11), 934-943.
[http://dx.doi.org/10.1038/s41416-019-0617-0] [PMID: 31673102]
[46]
Montero, S.; Guzmán, C.; Cortés-Funes, H.; Colomer, R. Angiogenin expression and prognosis in primary breast carcinoma. Clin. Cancer Res., 1998, 4(9), 2161-2168.
[PMID: 9748135]
[47]
Urquidi, V. Vascular endothelial growth factor, carbonic anhydrase 9, and angiogenin as urinary biomarkers for bladder cancer detection. Urology, 2012, 79(5), 1185 .
[http://dx.doi.org/10.1016/j.urology.2012.01.016]
[48]
Lee, S.J.; Nathans, D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J. Biol. Chem., 1988, 263(7), 3521-3527.
[http://dx.doi.org/10.1016/S0021-9258(18)69101-X] [PMID: 2963825]
[49]
Toft, D.J.; Rosenberg, S.B.; Bergers, G.; Volpert, O.; Linzer, D.I.H. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13055-13059.
[http://dx.doi.org/10.1073/pnas.231364798] [PMID: 11606769]
[50]
Esteban, F.; Ramos-García, P.; Muñoz, M.; González-Moles, M.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A review of the literature. Int. J. Environ. Res. Public Health, 2021, 19(1), 375.
[http://dx.doi.org/10.3390/ijerph19010375] [PMID: 35010633]
[51]
Pan, R.; Dai, Y.; Gao, X.H.; Lu, D.; Xia, Y.F. Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways. Vascul. Pharmacol., 2011, 54(1-2), 18-28.
[http://dx.doi.org/10.1016/j.vph.2010.11.001] [PMID: 21078410]
[52]
Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52.
[http://dx.doi.org/10.1016/j.canlet.2008.02.044] [PMID: 18406051]
[53]
Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol. Med. Rep., 2019, 20(3), 2339-2346.
[http://dx.doi.org/10.3892/mmr.2019.10466] [PMID: 31322179]
[54]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[55]
Xia, C.; Meng, Q.; Liu, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res., 2007, 67(22), 10823-10830.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0783] [PMID: 18006827]
[56]
Matsumoto, T.; Claesson-Welsh, L. VEGF receptor signal transduction. Sci. STKE, 2001, 2001(112), re21.
[http://dx.doi.org/10.1126/stke.2001.112.re21] [PMID: 11741095]
[57]
van Wetering, S.; van Buul, J.D.; Quik, S.; Mul, F.P.J.; Anthony, E.C.; Klooster, J-P.; Collard, J.G.; Hordijk, P.L. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci., 2002, 115(9), 1837-1846.
[http://dx.doi.org/10.1242/jcs.115.9.1837] [PMID: 11956315]
[58]
Lin, M.T.; Yen, M.L.; Lin, C.Y.; Kuo, M.L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol. Pharmacol., 2003, 64(5), 1029-1036.
[http://dx.doi.org/10.1124/mol.64.5.1029] [PMID: 14573751]
[59]
Moosavi, A.; Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran. Biomed. J., 2016, 20(5), 246-258.
[PMID: 27377127]
[60]
Zoghbi, H.Y.; Beaudet, A.L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol., 2016, 8(2), a019497.
[http://dx.doi.org/10.1101/cshperspect.a019497] [PMID: 26834142]
[61]
Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene, 2007, 26(36), 5229-5237.
[http://dx.doi.org/10.1038/sj.onc.1210329] [PMID: 17325663]
[62]
Maleva Kostovska, I.; Jakimovska, M.; Popovska-Jankovic, K.; Kubelka-Sabit, K.; Karagjozov, M.; Plaseska-Karanfilska, D. TIMP3 promoter methylation represents an epigenetic marker of BRCA1ness breast cancer tumours. Pathol. Oncol. Res., 2018, 24(4), 937-940.
[http://dx.doi.org/10.1007/s12253-018-0398-4] [PMID: 29524167]
[63]
Lindner, D.J.; Wu, Y.; Haney, R.; Jacobs, B.S.; Fruehauf, J.P.; Tuthill, R.; Borden, E.C. Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol., 2013, 32(2), 123-132.
[http://dx.doi.org/10.1016/j.matbio.2012.11.010] [PMID: 23202046]
[64]
Hellebrekers, D.M.; Griffioen, A.W.; van Engeland, M. Dual targeting of epigenetic therapy in cancer. Biochim. Biophys. Acta, 2007, 1775(1), 76-91.
[PMID: 16930846]
[65]
Da, M.X.; Zhang, Y.B.; Yao, J.B.; Duan, Y.X. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth. Braz. J. Med. Biol. Res., 2014, 47(12), 1021-1028.
[http://dx.doi.org/10.1590/1414-431X20144005] [PMID: 25387667]
[66]
Pakneshan, P.; Têtu, B.; Rabbani, S.A. Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin. Cancer Res., 2004, 10(9), 3035-3041.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0545] [PMID: 15131040]
[67]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[68]
Costa, F. Epigenomics in cancer management. Cancer Manag. Res., 2010, 2, 255-265.
[http://dx.doi.org/10.2147/CMAR.S7280] [PMID: 21188117]
[69]
Patnaik, S.; Anupriya Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front. Pharmacol., 2019, 10, 588.
[http://dx.doi.org/10.3389/fphar.2019.00588] [PMID: 31244652]
[70]
Delage, B.; Dashwood, R.H. Dietary manipulation of histone structure and function. Annu. Rev. Nutr., 2008, 28(1), 347-366.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155354] [PMID: 18598138]
[71]
Wang, G.G.; Allis, C.D.; Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med., 2007, 13(9), 373-380.
[http://dx.doi.org/10.1016/j.molmed.2007.07.004] [PMID: 17822959]
[72]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[73]
Cao, L.L.; Song, X.; Pei, L.; Liu, L.; Wang, H.; Jia, M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer. Medicine, 2017, 96(31), e7663.
[http://dx.doi.org/10.1097/MD.0000000000007663] [PMID: 28767587]
[74]
Aspriţoiu, V.M.; Stoica, I.; Bleotu, C.; Diaconu, C.C. Epigenetic regulation of angiogenesis in development and tumors progression: Potential implications for cancer treatment. Front. Cell Dev. Biol., 2021, 9, 689962.
[http://dx.doi.org/10.3389/fcell.2021.689962] [PMID: 34552922]
[75]
Chen, R.J.; Shun, C.T.; Yen, M.L.; Chou, C.H.; Lin, M.C. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget, 2017, 8(37), 62081-62098.
[http://dx.doi.org/10.18632/oncotarget.19060] [PMID: 28977928]
[76]
Nguyen, A.T.; Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev., 2011, 25(13), 1345-1358.
[http://dx.doi.org/10.1101/gad.2057811] [PMID: 21724828]
[77]
Duan, Y.; Wu, X.; Zhao, Q.; Gao, J.; Huo, D.; Liu, X.; Ye, Z.; Dong, X.; Fu, Z.; Shang, Y.; Xuan, C. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget, 2016, 7(43), 69674-69687.
[http://dx.doi.org/10.18632/oncotarget.11939] [PMID: 27626484]
[78]
Zhang, Y.; Liu, J.; Lin, J.; Zhou, L.; Song, Y.; Wei, B.; Luo, X.; Chen, Z.; Chen, Y.; Xiong, J.; Xu, X.; Ding, L.; Ye, Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget, 2016, 7(9), 9859-9875.
[http://dx.doi.org/10.18632/oncotarget.7126] [PMID: 26848522]
[79]
Reynoso-Roldán, A. Vascular endothelial growth factor production is induced by histone deacetylase 1 and suppressed by von Hippel-Lindau protein in HaCaT cells. In: Clin Invest Med; , 2012; pp. E340-E350.
[80]
Kim, J.S.; Kim, H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.H. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis, 2004, 25(11), 2165-2171.
[http://dx.doi.org/10.1093/carcin/bgh217] [PMID: 15231689]
[81]
Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443.
[http://dx.doi.org/10.1038/86507] [PMID: 11283670]
[82]
Li, W.; Quan, Y.Y.; Li, Y.; Lu, L.; Cui, M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag. Res., 2018, 10, 4163-4172.
[http://dx.doi.org/10.2147/CMAR.S174712] [PMID: 30323672]
[83]
Wu, J.; Tang, Y.; Liang, X. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. OncoTargets Ther., 2018, 11, 6901-6909.
[http://dx.doi.org/10.2147/OTT.S172042] [PMID: 30410348]
[84]
Zondor, S.D.; Medina, P.J. Bevacizumab: An angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother., 2004, 38(7-8), 1258-1264.
[http://dx.doi.org/10.1345/aph.1D470] [PMID: 15187215]
[85]
Mahfouz, N.; Tahtouh, R.; Alaaeddine, N.; El Hajj, J.; Sarkis, R.; Hachem, R.; Raad, I.; Hilal, G. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One, 2017, 12(6), e0179202.
[http://dx.doi.org/10.1371/journal.pone.0179202] [PMID: 28594907]
[86]
Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J.P.; Scigalla, P.; Raymond, E. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35.
[http://dx.doi.org/10.1200/JCO.2005.02.2194] [PMID: 16314617]
[87]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[88]
Bodnar, R.J. Anti-angiogenic drugs: Involvement in cutaneous side effects and wound-healing complication. Adv. Wound Care, 2014, 3(10), 635-646.
[http://dx.doi.org/10.1089/wound.2013.0496] [PMID: 25302138]
[89]
Christoforidis, J.; Christoforidis, J.; Ricketts; Pratt; Pierce; Bean; Wells; Zhang; LaPerle The effect of intravitreal anti-VEGF agents on peripheral wound healing in a rabbit model. Clin. Ophthalmol., 2012, 6, 61-69.
[http://dx.doi.org/10.2147/OPTH.S28275] [PMID: 22275809]
[90]
Verheul, H.M.W.; Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer, 2007, 7(6), 475-485.
[http://dx.doi.org/10.1038/nrc2152] [PMID: 17522716]
[91]
Gacche, R.N.; Assaraf, Y.G. Redundant angiogenic signaling and tumor drug resistance. Drug Resist. Updat., 2018, 36, 47-76.
[http://dx.doi.org/10.1016/j.drup.2018.01.002] [PMID: 29499837]
[92]
Wieser, V.; Marth, C. Resistance to chemotherapy and anti-angiogenic therapy in ovarian cancer. Mag. Eur. Med. Oncol., 2019, 12(2), 144-148.
[http://dx.doi.org/10.1007/s12254-019-0478-5]
[93]
Letellier, C.; Sasmal, S.K.; Draghi, C.; Denis, F.; Ghosh, D. A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos Solitons Fractals, 2017, 99, 297-311.
[http://dx.doi.org/10.1016/j.chaos.2017.04.013]
[94]
Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; Phan, S.C.; O’Shaughnessy, J. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol., 2011, 29(10), 1252-1260.
[http://dx.doi.org/10.1200/JCO.2010.28.0982] [PMID: 21383283]
[95]
Aghajanian, C.; Goff, B.; Nycum, L.R.; Wang, Y.V.; Husain, A.; Blank, S.V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2015, 139(1), 10-16.
[http://dx.doi.org/10.1016/j.ygyno.2015.08.004] [PMID: 26271155]
[96]
Hameed, S.; Bhattarai, P.; Dai, Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Sci. China Life Sci., 2018, 61(4), 380-391.
[http://dx.doi.org/10.1007/s11427-017-9256-1] [PMID: 29607461]
[97]
Mukherjee, S.; Patra, C.R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale, 2016, 8(25), 12444-12470.
[http://dx.doi.org/10.1039/C5NR07887C] [PMID: 27067119]
[98]
Bhattarai, P.; Hameed, S.; Dai, Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 2018, 10(12), 5393-5423.
[http://dx.doi.org/10.1039/C7NR09612G] [PMID: 29528075]
[99]
Zhao, Y.; Wang, W.; Guo, S.; Wang, Y.; Miao, L.; Xiong, Y.; Huang, L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun., 2016, 7(1), 11822.
[http://dx.doi.org/10.1038/ncomms11822] [PMID: 27264609]
[100]
Chen, Q.; Osada, K.; Ge, Z.; Uchida, S.; Tockary, T.A.; Dirisala, A.; Matsui, A.; Toh, K.; Takeda, K.M.; Liu, X.; Nomoto, T.; Ishii, T.; Oba, M.; Matsumoto, Y.; Kataoka, K. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials, 2017, 113, 253-265.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.042] [PMID: 27835820]
[101]
Dirisala, A.; Osada, K.; Chen, Q.; Tockary, T.A.; Machitani, K.; Osawa, S.; Liu, X.; Ishii, T.; Miyata, K.; Oba, M.; Uchida, S.; Itaka, K.; Kataoka, K. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials, 2014, 35(20), 5359-5368.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.037] [PMID: 24720877]
[102]
Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: More than meets the eye. Blood, 2008, 112(7), 2628-2635.
[http://dx.doi.org/10.1182/blood-2008-04-150862] [PMID: 18574027]
[103]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[104]
Braet, F.; Wisse, E.; Bomans, P.; Frederik, P.; Geerts, W.; Koster, A.; Soon, L.; Ringer, S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech., 2007, 70(3), 230-242.
[http://dx.doi.org/10.1002/jemt.20408] [PMID: 17279510]
[105]
Davda, J.; Labhasetwar, V. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm., 2002, 233(1-2), 51-59.
[http://dx.doi.org/10.1016/S0378-5173(01)00923-1] [PMID: 11897410]
[106]
Lian, L.; Tang, F.; Yang, J.; Liu, C.; Li, Y. Therapeutic angiogenesis of PLGA-heparin nanoparticle in mouse ischemic limb. J. Nanomater., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/193704]
[107]
Janes, K.A.; Fresneau, M.P.; Marazuela, A.; Fabra, A.; Alonso, M.J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release, 2001, 73(2-3), 255-267.
[http://dx.doi.org/10.1016/S0168-3659(01)00294-2] [PMID: 11516503]
[108]
Yeo, Y.; Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res., 2004, 27(1), 1-12.
[http://dx.doi.org/10.1007/BF02980037] [PMID: 14969330]
[109]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[110]
Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981.
[http://dx.doi.org/10.3390/ijms20204981] [PMID: 31600949]
[111]
Banudevi, S.; Swaminathan, S.; Maheswari, K.U. Pleiotropic role of dietary phytochemicals in cancer: Emerging perspectives for combinational therapy. Nutr. Cancer, 2015, 67(7), 1021-1048.
[http://dx.doi.org/10.1080/01635581.2015.1073762] [PMID: 26359767]
[112]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[113]
Peng, W.; Lin, Z.; Wang, L.; Chang, J.; Gu, F.; Zhu, X. Molecular characteristics of Illicium verum extractives to activate acquired immune response. Saudi J. Biol. Sci., 2016, 23(3), 348-352.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.027] [PMID: 27081359]
[114]
Chattopadhyay, I. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004, 44-53.
[115]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[116]
Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin. Hemorheol. Microcirc., 2006, 34(1-2), 109-115.
[PMID: 16543625]
[117]
Zhang, Z.; Li, C.; Tan, Q.; Xie, C.; Yang, Y.; Zhan, W.; Han, F.; Sharma, H.S.; Sharma, A. Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/ angiopoietin-2/thrombospondin-1 signaling. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 346-350.
[http://dx.doi.org/10.2174/1871527315666160902144513] [PMID: 27592626]
[118]
Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201.
[http://dx.doi.org/10.1002/mnfr.200900277] [PMID: 20087857]
[119]
Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[120]
Mohan, R.; Sivak, J.; Ashton, P.; Russo, L.A.; Pham, B.Q.; Kasahara, N.; Raizman, M.B.; Fini, M.E. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem., 2000, 275(14), 10405-10412.
[http://dx.doi.org/10.1074/jbc.275.14.10405] [PMID: 10744729]
[121]
Jung, Y.D.; Ellis, L.M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int. J. Exp. Pathol., 2001, 82(6), 309-316.
[http://dx.doi.org/10.1046/j.1365-2613.2001.00205.x] [PMID: 11846837]
[122]
Cao, Y.; Cao, R. Angiogenesis inhibited by drinking tea. Nature, 1999, 398(6726), 381.
[http://dx.doi.org/10.1038/18793] [PMID: 10201368]
[123]
Bruns, C.J.; Harbison, M.T.; Davis, D.W.; Portera, C.A.; Tsan, R.; McConkey, D.J.; Evans, D.B.; Abbruzzese, J.L.; Hicklin, D.J.; Radinsky, R. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res., 2000, 6(5), 1936-1948.
[PMID: 10815919]
[124]
Liang, Y.C.; Lin-shiau, S.Y.; Chen, C.F.; Lin, J.K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J. Cell. Biochem., 1997, 67(1), 55-65.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19971001)67:1<55::AID-JCB6>3.0.CO;2-V] [PMID: 9328839]
[125]
Shankar, S.; Ganapathy, S.; Hingorani, S.R.; Srivastava, R.K. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front. Biosci., 2008, 13(13), 440-452.
[http://dx.doi.org/10.2741/2691] [PMID: 17981559]
[126]
Luo, H.Q.; Xu, M.; Zhong, W.T.; Cui, Z.Y.; Liu, F.M.; Zhou, K.Y.; Li, X.Y. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells. J. BUON, 2014, 19(2), 435-439.
[PMID: 24965403]
[127]
Manikandan, P.; Murugan, R.S.; Priyadarsini, R.V.; Vinothini, G.; Nagini, S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci., 2010, 86(25-26), 936-941.
[http://dx.doi.org/10.1016/j.lfs.2010.04.010] [PMID: 20434464]
[128]
Kouhestanian, K.; Baharara, J.; Zafarbalanezhad, S. Anti-angiogenic effect of eugenol on a Wistar rat aortic ring. KAUMS J., 2015, 19(3), 197-203.
[129]
Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25.
[http://dx.doi.org/10.1016/S0304-3835(01)00718-2] [PMID: 11734332]
[130]
Kwon, H.J.; Shim, J.S.; Kim, J.H.; Cho, H.Y.; Yum, Y.N.; Kim, S.H.; Yu, J. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn. J. Cancer Res., 2002, 93(4), 417-425.
[http://dx.doi.org/10.1111/j.1349-7006.2002.tb01273.x] [PMID: 11985792]
[131]
Chintharlapalli, S.; Papineni, S.; Ramaiah, S.K.; Safe, S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res., 2007, 67(6), 2816-2823.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3735] [PMID: 17363604]
[132]
Shin, J.; Lee, H.J.; Jung, D.B.; Jung, J.H.; Lee, H.J.; Lee, E.O.; Lee, S.G.; Shim, B.S.; Choi, S.H.; Ko, S.G.; Ahn, K.S.; Jeong, S.J.; Kim, S.H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One, 2011, 6(6), e21492.
[http://dx.doi.org/10.1371/journal.pone.0021492] [PMID: 21731766]
[133]
Priyadarsini, R.V.; Vinothini, G.; Murugan, R.S.; Manikandan, P.; Nagini, S. The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr. Cancer, 2011, 63(2), 218-226.
[http://dx.doi.org/10.1080/01635581.2011.523503] [PMID: 21294050]
[134]
Pratheeshkumar, P.; Budhraja, A.; Son, Y.O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.C.; Xu, M.; Chen, G.; Luo, J.; Shi, X. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516.
[http://dx.doi.org/10.1371/journal.pone.0047516] [PMID: 23094058]
[135]
Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455.
[http://dx.doi.org/10.1016/j.prp.2021.153455] [PMID: 33962176]
[136]
Uttarawichien, T.; Kamnerdnond, C.; Inwisai, T.; Suwannalert, P.; Sibmooh, N.; Payuhakrit, W. Quercetin Inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sci. Pharm., 2021, 89(2), 23.
[http://dx.doi.org/10.3390/scipharm89020023]
[137]
Yang, F.; Jiang, X.; Song, L.; Wang, H.; Mei, Z.; Xu, Z.; Xing, N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(3), 1602-1610.
[http://dx.doi.org/10.3892/or.2015.4481] [PMID: 26676551]
[138]
Esteghlal, S.; Mokhtari, M.J.; Beyzaei, Z. Quercetin can inhibit angiogenesis via the down regulation of MALAT1 and MIAT LncRNAs in human umbilical vein endothelial cells. Int. J. Prev. Med., 2021, 12, 59.
[PMID: 34447501]
[139]
Kaneshiro, T.; Morioka, T.; Inamine, M.; Kinjo, T.; Arakaki, J.; Chiba, I.; Sunagawa, N.; Suzui, M.; Yoshimi, N. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur. J. Pharmacol., 2006, 553(1-3), 46-53.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.026] [PMID: 17056031]
[140]
Kwak, H.J.; Park, M.J.; Park, C.M.; Moon, S.I.; Yoo, D.H.; Lee, H.C.; Lee, S.H.; Kim, M.S.; Lee, H.W.; Shin, W.S.; Park, I.C.; Rhee, C.H.; Hong, S.I. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer, 2006, 118(11), 2711-2720.
[http://dx.doi.org/10.1002/ijc.21641] [PMID: 16388516]
[141]
Lu, Y.; Zhang, J.; Qian, J. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother. Radiopharm., 2008, 23(2), 222-228.
[http://dx.doi.org/10.1089/cbr.2007.0425] [PMID: 18454691]
[142]
Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012, 7(8), e42146.
[http://dx.doi.org/10.1371/journal.pone.0042146] [PMID: 22876305]
[143]
Fang, J.; Zhou, Q.; Liu, L.Z.; Xia, C.; Hu, X.; Shi, X.; Jiang, B.H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1 and VEGF expression. Carcinogenesis, 2006, 28(4), 858-864.
[http://dx.doi.org/10.1093/carcin/bgl205] [PMID: 17071632]
[144]
Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J., 2005, 19(3), 342-353.
[http://dx.doi.org/10.1096/fj.04-2175com] [PMID: 15746177]
[145]
Fu, J.; Zeng, W.; Chen, M.; Huang, L.; Li, S.; Li, Z.; Pan, Q.; Lv, S.; Yang, X.; Wang, Y.; Yi, M.; Zhang, J.; Lei, X. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem. Biol. Interact., 2022, 361, 109966.
[http://dx.doi.org/10.1016/j.cbi.2022.109966] [PMID: 35513012]
[146]
Anjani, G.; Ayustaningwarno, F.; Eviana, R. Critical review on the immunomodulatory activities of carrot’s β-carotene and other bioactive compounds. J. Funct. Foods, 2022, 99, 105303.
[http://dx.doi.org/10.1016/j.jff.2022.105303]
[147]
Bae, S.; Lim, J.W.; Kim, H. β-carotene inhibits expression of matrix metalloproteinase-10 and invasion in helicobacter pylori-infected gastric epithelial cells. Molecules, 2021, 26(6), 1567.
[http://dx.doi.org/10.3390/molecules26061567] [PMID: 33809289]
[148]
Guruvayoorappan, C.; Kuttan, G. Beta-carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integr. Cancer Ther., 2007, 6(3), 258-270.
[http://dx.doi.org/10.1177/1534735407305978] [PMID: 17761639]
[149]
Farina, H.; Pomies, M.; Alonso, D.; Gomez, D. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol. Rep., 2006, 16(4), 885-891.
[http://dx.doi.org/10.3892/or.16.4.885] [PMID: 16969510]
[150]
El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep., 2022, 27(1), 9-20.
[http://dx.doi.org/10.1080/13510002.2022.2031515] [PMID: 35080474]
[151]
Su, S.J.; Yeh, T.M.; Chuang, W.J.; Ho, C.L.; Chang, K.L.; Cheng, H.L.; Liu, H.S.; Cheng, H.L.; Hsu, P.Y.; Chow, N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol., 2005, 69(2), 307-318.
[http://dx.doi.org/10.1016/j.bcp.2004.09.025] [PMID: 15627483]
[152]
Li, Y.; Sarkar, F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett., 2002, 186(2), 157-164.
[http://dx.doi.org/10.1016/S0304-3835(02)00349-X] [PMID: 12213285]
[153]
Yu, X.; Zhu, J.; Mi, M.; Chen, W.; Pan, Q.; Wei, M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol., 2012, 29(1), 349-357.
[http://dx.doi.org/10.1007/s12032-010-9770-2] [PMID: 21132400]
[154]
Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol., 2005, 11(41), 6512-6517.
[http://dx.doi.org/10.3748/wjg.v11.i41.6512] [PMID: 16425425]
[155]
Kim, J.H.; Lee, B.J.; Kim, J.H.; Yu, Y.S.; Kim, M.Y.; Kim, K.W. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21WAF1 expression. Eur. J. Pharmacol., 2009, 615(1-3), 150-154.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.015] [PMID: 19470386]
[156]
Huang, S.; Zheng, R. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett., 2006, 239(2), 271-280.
[http://dx.doi.org/10.1016/j.canlet.2005.08.025] [PMID: 16239062]
[157]
Mahmoud, M.A.; Okda, T.M.; Omran, G.A.; Abd-Alhaseeb, M.M. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J. Appl. Biomed., 2021, 19(4), 202-209.
[http://dx.doi.org/10.32725/jab.2021.024] [PMID: 34907739]
[158]
Davis, R.; Singh, K.P.; Kurzrock, R.; Shankar, S. Sulforaphane inhibits angiogenesis through activation of FOXO transcription factors. Oncol. Rep., 2009, 22(6), 1473-1478.
[PMID: 19885601]
[159]
Bertl, E.; Bartsch, H.; Gerhäuser, C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol. Cancer Ther., 2006, 5(3), 575-585.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0324] [PMID: 16546971]
[160]
Liu, P.; Atkinson, S.J.; Akbareian, S.E.; Zhou, Z.; Munsterberg, A.; Robinson, S.D.; Bao, Y. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci. Rep., 2017, 7(1), 12651.
[http://dx.doi.org/10.1038/s41598-017-12855-w] [PMID: 28978924]
[161]
Shankar, S.; Ganapathy, S.; Srivastava, R.K. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin. Cancer Res., 2008, 14(21), 6855-6866.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0903] [PMID: 18980980]
[162]
Ali, H.; Dixit, S. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal, 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/376216] [PMID: 24379740]
[163]
Sun, M.; Xu, L.; Peng, Y.; Liu, T.; Zhang, Y.; Zhou, Z. Multiscale analysis of the contents of palmatine in the Nature populations of Phellodendron amurense in Northeast China. J. For. Res., 2016, 27(2), 265-272.
[http://dx.doi.org/10.1007/s11676-015-0200-3]
[164]
Grabarska, A.; Wróblewska-Łuczka, P.; Kukula-Koch, W.; Łuszczki, J.J.; Kalpoutzakis, E.; Adamczuk, G.; Skaltsounis, A.L.; Stepulak, A. Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules, 2021, 26(20), 6253.
[http://dx.doi.org/10.3390/molecules26206253] [PMID: 34684834]
[165]
Kim, Y.M.; Ha, Y.M.; Jin, Y.C.; Shi, L.Y.; Lee, Y.S.; Kim, H.J.; Seo, H.G.; Choi, J.S.; Kim, Y.S.; Kang, S.S.; Lee, J.H.; Chang, K.C. Palmatine from coptidis rhizoma reduces ischemia–reperfusion-mediated acute myocardial injury in the rat. Food Chem. Toxicol., 2009, 47(8), 2097-2102.
[http://dx.doi.org/10.1016/j.fct.2009.05.031] [PMID: 19497345]
[166]
Jia, F.; Zou, G.; Fan, J.; Yuan, Z. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol., 2010, 155(8), 1325-1329.
[http://dx.doi.org/10.1007/s00705-010-0702-4] [PMID: 20496087]
[167]
Zhang, L.; Li, J.; Ma, F.; Yao, S.; Li, N.; Wang, J.; Wang, Y.; Wang, X.; Yao, Q. Synthesis and cytotoxicity evaluation of 13-n-alkyl berberine and palmatine analogues as anticancer agents. Molecules, 2012, 17(10), 11294-11302.
[http://dx.doi.org/10.3390/molecules171011294] [PMID: 23011273]
[168]
Yoo, M.J.; Choi, J.; Jang, Y.; Park, S.Y.; Seol, J.W. Anti-cancer effect of palmatine through inhibition of the PI3K/AKT pathway in canine mammary gland tumor CMT-U27 cells. BMC Vet. Res., 2023, 19(1), 223.
[http://dx.doi.org/10.1186/s12917-023-03782-2] [PMID: 37880653]
[169]
Zhou, Y.; Cao, F.; Luo, F.; Lin, Q. Octacosanol and health benefits: Biological functions and mechanisms of action. Food Biosci., 2022, 47, 101632.
[http://dx.doi.org/10.1016/j.fbio.2022.101632]
[170]
Chu, B.; Qu, Y.; Huang, Y.; Zhang, L.; Chen, X.; Long, C.; He, Y.; Ou, C.; Qian, Z. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Int. J. Pharm., 2016, 500(1-2), 345-359.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.030] [PMID: 26794876]
[171]
Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-κB and its DNA binding activity. Eur. J. Pharmacol., 2008, 588(2-3), 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.027] [PMID: 18513715]
[172]
Li, C.; Zhang, J.; Zu, Y.J.; Nie, S.F.; Cao, J.; Wang, Q.; Nie, S.P.; Deng, Z.Y.; Xie, M.Y.; Wang, S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med., 2015, 13(9), 641-652.
[http://dx.doi.org/10.1016/S1875-5364(15)30061-3] [PMID: 26412423]
[173]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[174]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[175]
de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196.
[http://dx.doi.org/10.3109/08982104.2013.788023] [PMID: 23600473]
[176]
Mullauer, F.B.; van Bloois, L.; Daalhuisen, J.B.; Ten Brink, M.S.; Storm, G.; Medema, J.P.; Schiffelers, R.M.; Kessler, J.H. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs, 2011, 22(3), 223-233.
[http://dx.doi.org/10.1097/CAD.0b013e3283421035] [PMID: 21263311]
[177]
Xu, H.; Gong, Z.; Zhou, S.; Yang, S.; Wang, D.; Chen, X.; Wu, J.; Liu, L.; Zhong, S.; Zhao, J.; Tang, J. Liposomal curcumin targeting endometrial cancer through the NF-κB pathway. Cell. Physiol. Biochem., 2018, 48(2), 569-582.
[http://dx.doi.org/10.1159/000491886] [PMID: 30021217]
[178]
Saengkrit, N.; Saesoo, S.; Srinuanchai, W.; Phunpee, S.; Ruktanonchai, U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf. B Biointerfaces, 2014, 114, 349-356.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.005] [PMID: 24246195]
[179]
Tan, B.J.; Liu, Y.; Chang, K.L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661.
[PMID: 22334787]
[180]
Munyendo, W.L.L.; Zhang, Z.; Abbad, S.; Waddad, A.Y.; Lv, H.; Baraza, L.D.; Zhou, J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: Preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol., 2013, 9(12), 2034-2047.
[http://dx.doi.org/10.1166/jbn.2013.1704] [PMID: 24266259]
[181]
Saxena, V.; Hussain, M.D. Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J. Biomed. Nanotechnol., 2013, 9(7), 1146-1154.
[http://dx.doi.org/10.1166/jbn.2013.1632] [PMID: 23909128]
[182]
Tang, H.; Murphy, C.J.; Zhang, B.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J.; Radosz, M. Curcumin polymers as anticancer conjugates. Biomaterials, 2010, 31(27), 7139-7149.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.007] [PMID: 20591475]
[183]
Nassir, A.M.; Shahzad, N.; Ibrahim, I.A.A.; Ahmad, I.; Md, S.; Ain, M.R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J., 2018, 26(6), 876-885.
[http://dx.doi.org/10.1016/j.jsps.2018.03.009] [PMID: 30202231]
[184]
Yallapu, M.M.; Ebeling, M.C.; Khan, S.; Sundram, V.; Chauhan, N.; Gupta, B.K.; Puumala, S.E.; Jaggi, M.; Chauhan, S.C. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol. Cancer Ther., 2013, 12(8), 1471-1480.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1227] [PMID: 23704793]
[185]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[186]
Chen, C.C.; Hsieh, D.S.; Huang, K.J.; Chan, Y.L.; Hong, P.D.; Yeh, M.K.; Wu, C.J. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474.
[PMID: 24855338]
[187]
Srinivas Raghavan, B.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem., 2015, 50(11), 1966-1976.
[http://dx.doi.org/10.1016/j.procbio.2015.08.003]
[188]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
[189]
Rawat, K.; Syeda, S.; Shrivastava, A. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. Phytomedicine, 2023, 108, 154488.
[http://dx.doi.org/10.1016/j.phymed.2022.154488] [PMID: 36240606]
[190]
Bala, M.; Pratap, K.; Verma, P.K.; Singh, B.; Padwad, Y. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. J. Ethnopharmacol., 2015, 175, 131-137.
[http://dx.doi.org/10.1016/j.jep.2015.08.001] [PMID: 26253577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy