Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy

Author(s): Faride Ranjbari and Farzaneh Fathi*

Volume 24, Issue 10, 2024

Published on: 22 February, 2024

Page: [733 - 744] Pages: 12

DOI: 10.2174/0118715206295598240215112910

Price: $65

Abstract

Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.

Graphical Abstract

[1]
Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.W.; Mozafari, M. Quantum dots: A review from concept to clinic. Biotechnol. J., 2020, 15(12), 2000117.
[http://dx.doi.org/10.1002/biot.202000117] [PMID: 32845071]
[2]
Wan, J.; Zhang, X.; Zhang, K.; Su, Z. Biological nanoscale fluorescent probes: From structure and performance to bi-oimaging. Rev. Anal. Chem., 2020, 39(1), 209-221.
[http://dx.doi.org/10.1515/revac-2020-0119]
[3]
Tandale, P.; Choudhary, N.; Singh, J.; Sharma, A.; Shukla, A.; Sriram, P.; Soni, U.; Singla, N.; Barnwal, R.P.; Singh, G.; Kaur, I.P.; Suttee, A. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem. Biophys. Rep., 2021, 26, 100962.
[http://dx.doi.org/10.1016/j.bbrep.2021.100962] [PMID: 33763604]
[4]
Piao, Z.; Yang, D.; Cui, Z.; He, H.; Mei, S.; Lu, H.; Fu, Z.; Wang, L.; Zhang, W.; Guo, R. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications. Adv. Funct. Mater., 2022, 32(44), 2207662.
[http://dx.doi.org/10.1002/adfm.202207662]
[5]
Correa-Espinoza, S. Synthesis of Ag2S quantum dots and their biomedical applications; Institute of Architecture Design and Art, 2018, 10, pp. 7-25.
[6]
Manna, S.; Huang, H.; Da Silva, S.F.C.; Schimpf, C.; Rota, M.B.; Lehner, B.; Reindl, M.; Trotta, R.; Rastelli, A. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface. Appl. Surf. Sci., 2020, 532, 147360.
[http://dx.doi.org/10.1016/j.apsusc.2020.147360]
[7]
Yaghini, E; Seifalian, AM; MacRobert, AJ Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine, 2009, 4(3), 353-363.
[http://dx.doi.org/10.2217/nnm.09.9]
[8]
Mintz, K.J.; Zhou, Y.; Leblanc, R.M. Recent development of carbon quantum dots regarding their optical properties, photo-luminescence mechanism, and core structure. Nanoscale, 2019, 11(11), 4634-4652.
[http://dx.doi.org/10.1039/C8NR10059D] [PMID: 30834912]
[9]
Wang, D.; Zhu, Y.; Wan, X.; Zhang, X.; Zhang, J. Colloidal semiconductor nanocrystals for biological photodynamic therapy applications: Recent progress and perspectives. Prog. Nat. Sci., 2020, 30(4), 443-455.
[http://dx.doi.org/10.1016/j.pnsc.2020.08.016]
[10]
Samia, A.C.S.; Dayal, S.; Burda, C. Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy. Photochem. Photobiol., 2006, 82(3), 617-625.
[http://dx.doi.org/10.1562/2005-05-11-IR-525] [PMID: 16475871]
[11]
Ranjbari, F.; Hemmati, S.; Rashidi, M.R. Synthesis of 7,12-bis(4-(di(1H-pyrrol-2-yl)methyl)phenyl)benzo[k]fluoranthene from a new dialde-hyde as a novel fluorometric bis-Dipyrromethane derivative. Turk. J. Chem., 2021, 45(1), 42-49.
[http://dx.doi.org/10.3906/kim-2004-72] [PMID: 33679151]
[12]
Filali, S.; Pirot, F.; Miossec, P. Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol., 2020, 38(2), 163-177.
[http://dx.doi.org/10.1016/j.tibtech.2019.07.013] [PMID: 31473014]
[13]
Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum dots for display applications. Angew. Chem. Int. Ed., 2020, 59(50), 22312-22323.
[http://dx.doi.org/10.1002/anie.202004857] [PMID: 32421230]
[14]
Ghosh, D.; Ivanov, S.A.; Tretiak, S. Structural dynamics and electronic properties of semiconductor quantum dots: Computational insights. Chem. Mater., 2021, 33(19), 7848-7857.
[http://dx.doi.org/10.1021/acs.chemmater.1c02514]
[15]
Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications. Adv. Mater., 2019, 31(34), 1804294.
[http://dx.doi.org/10.1002/adma.201804294] [PMID: 30650209]
[16]
Alaghmandfard, A.; Sedighi, O.; Tabatabaei Rezaei, N.; Abedini, A.A.; Khachatourian, A.; Toprak, M.S.; Seifalian, A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C, 2021, 120, 111756.
[http://dx.doi.org/10.1016/j.msec.2020.111756] [PMID: 33545897]
[17]
Fathi, F.; Dadkhah, A.; Namazi, H. Characterisation and surface chemical modification of starch nanoparticles with lactid through ring opening polymerization. Intern. J. Nano., 2014, 7(1), 37-48.
[http://dx.doi.org/10.1504/IJNP.2014.062012]
[18]
Gao, D.; Zhang, Y.; Liu, A.; Zhu, Y.; Chen, S.; Wei, D.; Sun, J.; Guo, Z.; Fan, H. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem. Eng. J., 2020, 388, 124199.
[http://dx.doi.org/10.1016/j.cej.2020.124199]
[19]
Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol., 2021, 61, 102308.
[http://dx.doi.org/10.1016/j.jddst.2020.102308]
[20]
Rao, H.; Liu, W.; Lu, Z.; Wang, Y.; Ge, H.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. Silica-coated carbon dots conjugated to CdTe quantum dots: A ratiometric fluorescent probe for copper(II). Mikrochim. Acta, 2016, 183(2), 581-588.
[http://dx.doi.org/10.1007/s00604-015-1682-6]
[21]
Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci., 2015, 215, 28-45.
[http://dx.doi.org/10.1016/j.cis.2014.11.004] [PMID: 25467038]
[22]
Koneswaran, M.; Narayanaswamy, R. retracted: Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury (II). In: Sensors and Actuators B: Chemical; Elsevier, 2009; 139, pp. (1)91-96.
[23]
Zhang, L.; Xing, H.; Liu, W.; Wang, Z.; Hao, Y.; Wang, H.; Dong, W.; Liu, Y.; Shuang, S.; Dong, C.; Gong, X. 11-mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection. ACS Appl. Nano Mater., 2021, 4(12), 13734-13746.
[http://dx.doi.org/10.1021/acsanm.1c03141]
[24]
Susumu, K.; Mei, B.C.; Mattoussi, H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat. Protoc., 2009, 4(3), 424-436.
[http://dx.doi.org/10.1038/nprot.2008.247] [PMID: 19265801]
[25]
Petruska, M.A.; Bartko, A.P.; Klimov, V.I. An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. J. Am. Chem. Soc., 2004, 126(3), 714-715.
[http://dx.doi.org/10.1021/ja037539s] [PMID: 14733535]
[26]
Wang, X.; Ruedas-Rama, M.J.; Hall, E.A.H. The emerging use of quantum dots in analysis. Anal. Lett., 2007, 40(8), 1497-1520.
[http://dx.doi.org/10.1080/00032710701381044]
[27]
Hu, W.; Xu, M.; Zhang, F.; Xiao, C.; Deng, Z. Dynamic analysis on flexible hub-beam with step-variable cross-section. Mech. Syst. Signal Process., 2022, 180, 109423.
[http://dx.doi.org/10.1016/j.ymssp.2022.109423]
[28]
Hu, W.; Zhang, C.; Deng, Z. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul., 2020, 84, 105199.
[http://dx.doi.org/10.1016/j.cnsns.2020.105199]
[29]
Masri, P. J Electron Mater; Publishing model Hybrid, 1984, 14, p. 205.
[30]
Hu, W.; Ye, J.; Deng, Z. Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vibrat., 2020, 475, 115286.
[http://dx.doi.org/10.1016/j.jsv.2020.115286]
[31]
Gavartin, J.; Stoneham, A. Quantum dots as dynamical systems. Philosophical transactions of the royal society of london series A: Mathematical. Phys. Eng. Sci., 1803, 2003(361), 275-290.
[32]
Hu, W.; Han, Z.; Bridges, T.J.; Qiao, Z. Multi-symplectic simulations of W/M-shape-peaks solitons and cuspons for FORQ equation. Appl. Math. Lett., 2023, 145, 108772.
[http://dx.doi.org/10.1016/j.aml.2023.108772]
[33]
Hu, W.; Xi, X.; Song, Z.; Zhang, C.; Deng, Z. Coupling dynamic behaviors of axially moving cracked cantilevered beam subjected to transverse harmonic load. Mech. Syst. Signal Process., 2023, 204, 110757.
[http://dx.doi.org/10.1016/j.ymssp.2023.110757]
[34]
Huai, Y.; Hu, W.; Song, W.; Zheng, Y.; Deng, Z. Magnetic-field-responsive property of Fe3O4/polyaniline solvent-free nanofluid. Phys. Fluids, 2023, 35(1), 012001.
[http://dx.doi.org/10.1063/5.0130588]
[35]
Hu, W.; Wang, Z.; Zhao, Y.; Deng, Z. Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett., 2020, 103, 106207.
[http://dx.doi.org/10.1016/j.aml.2019.106207]
[36]
Tang, J.; Marcus, R.A. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J. Chem. Phys., 2005, 123(5), 054704.
[http://dx.doi.org/10.1063/1.1993567] [PMID: 16108682]
[37]
Fontes, A.; de Lira, R.B.; Seabra, M.; da Silva, T.G.; de Castro Neto, A.G.; Santos, B.S. Quantum dots in biomedical research; Biomedical Engineering—Technical Applications in Medicine, 2012, pp. 269-290.
[38]
Zhang, L.; Yin, L.; Wang, C.; lun, N.; Qi, Y.; Xiang, D. Origin of visible photoluminescence of ZnO quantum dots: Defect-dependent and size-dependent. J. Phys. Chem. C, 2010, 114(21), 9651-9658.
[http://dx.doi.org/10.1021/jp101324a]
[39]
Lei, D.; Shen, Y.; Feng, Y.; Feng, W. Recent progress in the fields of tuning the band gap of quantum dots. Sci. China Technol. Sci., 2012, 55(4), 903-912.
[http://dx.doi.org/10.1007/s11431-011-4717-1]
[40]
Zaknoon, B.; Bahir, G.; Saguy, C.; Edrei, R.; Hoffman, A.; Rao, R.A.; Muralidhar, R.; Chang, K.M. Study of single silicon quantum dots’ band gap and single-electron charging energies by room temperature scanning tunneling microscopy. Nano Lett., 2008, 8(6), 1689-1694.
[http://dx.doi.org/10.1021/nl080625b] [PMID: 18484776]
[41]
Kagan, C.R.; Murray, C.B.; Nirmal, M.; Bawendi, M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett., 1996, 76(9), 1517-1520.
[http://dx.doi.org/10.1103/PhysRevLett.76.1517] [PMID: 10061743]
[42]
Saha, J.; Datta Roy, A.; Dey, D.; Bhattacharjee, D.; Arshad Hussain, S. Role of quantum dot in designing FRET based sensors. Mater. Today Proc., 2018, 5(1), 2306-2313.
[http://dx.doi.org/10.1016/j.matpr.2017.09.234]
[43]
Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; Vomiero, A.; Gong, X. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci., 2021, 14(1), 396-406.
[http://dx.doi.org/10.1039/D0EE02235G]
[44]
Brkić, S. Optical properties of quantum dots. Eur. Int. J. Sci. Technol., 2016, 5(9), 98-107.
[45]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[46]
Moan, J.; Peng, Q. An outline of the hundred-year history of PDT. Anticancer Res., 2003, 23(5A), 3591-3600.
[PMID: 14666654]
[47]
Ranjbari, F.; Mohammad, M.; Hemmati, S.; Safari, E.; Tjalli, H. Synthesis of novel cationic photosensitizers derived from chlorin for application in photodynamic therapy of cancer. Curr. Radiopharm., 2023, 16(4), 315-325.
[48]
Calzavara-Pinton, P.G.; Venturini, M.; Sala, R. Photodynamic therapy: Update 2006 Part 1: Photochemistry and photobiology. J. Eur. Acad. Dermatol. Venereol., 2007, 21(3), 293-302.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01902.x] [PMID: 17309449]
[49]
Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol., 2008, 26(11), 612-621.
[http://dx.doi.org/10.1016/j.tibtech.2008.07.007] [PMID: 18804298]
[50]
Saczko, J.; Chwiłkowska, A.; Kulbacka, J.; Berdowska, I.; Zieliński, B.; Drag-Zalesińska, M.; Wysocka, T.; Lugowski, M.; Banaś, T. Photooxidative action in cancer and normal cells induced by the use of photofrin in photodynamic therapy. Folia Biol., 2008, 54(1), 24-29.
[PMID: 18226362]
[51]
Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11(7), 3278-3300.
[http://dx.doi.org/10.7150/thno.54227] [PMID: 33537087]
[52]
Tabish, T.A.; Scotton, C.J.; J Ferguson, D.C.; Lin, L.; der Veen, A.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; Zhang, S. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine, 2018, 13(15), 1923-1937.
[http://dx.doi.org/10.2217/nnm-2018-0018] [PMID: 30124363]
[53]
Qiu, H.; Tan, M.; Ohulchanskyy, T.; Lovell, J.; Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials, 2018, 8(5), 344.
[http://dx.doi.org/10.3390/nano8050344] [PMID: 29783654]
[54]
Ren, X.D.; Hao, X.Y.; Li, H.C.; Ke, M.R.; Zheng, B.Y.; Huang, J.D. Progress in the development of nanosensitizers for X-ray induced photodynamic therapy. Drug Discov. Today, 2018, 23(10), 1791-1800.
[http://dx.doi.org/10.1016/j.drudis.2018.05.029] [PMID: 29803933]
[55]
Fan, H.; Yu, X.; Wang, K.; Yin, Y.; Tang, Y.; Tang, Y.; Liang, X. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem., 2019, 182, 111620.
[http://dx.doi.org/10.1016/j.ejmech.2019.111620] [PMID: 31470307]
[56]
Yang, K.; Li, F.; Che, W.; Hu, X.; Liu, C.; Tian, F. Increment of the FRET efficiency between carbon dots and photosensitizers for enhanced photodynamic therapy. RSC Advances, 2016, 6(103), 101447-101451.
[http://dx.doi.org/10.1039/C6RA20412K]
[57]
Madani, S.Y.; Shabani, F.; Dwek, M.V.; Seifalian, A.M. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int. J. Nanomed., 2013, 8, 941-950.
[PMID: 23487255]
[58]
Brown, J.M. Exploiting the hypoxic cancer cell: Mechanisms and therapeutic strategies. Mol. Med. Today, 2000, 6(4), 157-162.
[http://dx.doi.org/10.1016/S1357-4310(00)01677-4] [PMID: 10740254]
[59]
Asano, M.; Tanaka, S.; Sakaguchi, M.; Matsumura, H.; Yamaguchi, T.; Fujita, Y.; Tabuse, K. Normothermic microwave irradiation induces death of HL-60 cells through heat-independent apoptosis. Sci. Rep., 2017, 7(1), 11406.
[http://dx.doi.org/10.1038/s41598-017-11784-y] [PMID: 28900243]
[60]
Suleman, M.; Riaz, S.; Jalil, R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J. Therm. Anal. Calorim., 2021, 146(3), 1193-1219.
[http://dx.doi.org/10.1007/s10973-020-10080-8]
[61]
Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R.F. Photothermal therapy. J. Control. Release, 2020, 325, 52-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.032] [PMID: 32619742]
[62]
Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 2016, 6(6), 762-772.
[http://dx.doi.org/10.7150/thno.14988] [PMID: 27162548]
[63]
Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev., 2018, 47(7), 2280-2297.
[http://dx.doi.org/10.1039/C7CS00522A] [PMID: 29528360]
[64]
Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How can it be used? Oman Med. J., 2016, 31(2), 89-97.
[http://dx.doi.org/10.5001/omj.2016.19] [PMID: 27168918]
[65]
Xu, Y.; Chen, H.; Fang, Y.; Wu, J. Hydrogel combined with phototherapy in wound healing. Adv. Healthc. Mater., 2022, 11(16), 2200494.
[http://dx.doi.org/10.1002/adhm.202200494] [PMID: 35751637]
[66]
Fathi, F.; Jalili, R.; Amjadi, M.; Rashidi, M.R. SPR signals enhancement by gold nanorods for cell surface marker detection. Bioimpacts, 2018, 9(2), 71-78.
[http://dx.doi.org/10.15171/bi.2019.10] [PMID: 31334038]
[67]
Gellci, K.; Mehrmohammadi, M. Photothermal therapy.Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014, pp. 1-5.
[68]
Asadi, S.; Bianchi, L.; De Landro, M.; Korganbayev, S.; Schena, E.; Saccomandi, P. Laser‐induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. J. Biophotonics, 2021, 14(2), e202000161.
[http://dx.doi.org/10.1002/jbio.202000161] [PMID: 32761778]
[69]
Wang, H.; Chang, J.; Shi, M.; Pan, W.; Li, N.; Tang, B. A dual targeted organic photothermal agent for enhanced photothermal therapy. Angew. Chem. Int. Ed., 2019, 58(4), 1057-1061.
[http://dx.doi.org/10.1002/anie.201811273] [PMID: 30397990]
[70]
Montaseri, H.; Kruger, C.A.; Abrahamse, H. Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. Oncotarget, 2020, 11(22), 2120-2136.
[http://dx.doi.org/10.18632/oncotarget.27596] [PMID: 32547709]
[71]
Tsai, M.F.; Chang, S.H.G.; Cheng, F.Y.; Shanmugam, V.; Cheng, Y.S.; Su, C.H.; Yeh, C.S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano, 2013, 7(6), 5330-5342.
[http://dx.doi.org/10.1021/nn401187c] [PMID: 23651267]
[72]
Sabino, C.P.; Deana, A.M.; Yoshimura, T.M.; da Silva, D.F.T.; França, C.M.; Hamblin, M.R.; Ribeiro, M.S. The optical properties of mouse skin in the visible and near infrared spectral regions. J. Photochem. Photobiol. B, 2016, 160, 72-78.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.047] [PMID: 27101274]
[73]
Xiao, J.; Cong, H.; Wang, S.; Yu, B.; Shen, Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater. Sci., 2021, 9(7), 2384-2412.
[http://dx.doi.org/10.1039/D0BM02013C] [PMID: 33576752]
[74]
Plotino, G.; Grande, N.M.; Mercade, M. Photodynamic therapy in endodontics. Int. Endod. J., 2019, 52(6), 760-774.
[http://dx.doi.org/10.1111/iej.13057] [PMID: 30548497]
[75]
Pang, E.; Zhao, S.; Wang, B.; Niu, G.; Song, X.; Lan, M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coord. Chem. Rev., 2022, 472, 214780.
[http://dx.doi.org/10.1016/j.ccr.2022.214780]
[76]
Edge, R.; Truscott, T. Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants, 2018, 7(1), 5.
[http://dx.doi.org/10.3390/antiox7010005] [PMID: 29301252]
[77]
Liang, D.; Zhang, Y.; Wu, Z.; Chen, Y.J.; Yang, X.; Sun, M.; Ni, R.; Bian, J.; Huang, D. A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sens. Actuators B Chem., 2018, 266, 645-654.
[http://dx.doi.org/10.1016/j.snb.2018.03.024]
[78]
Tanrıverdi Eçik, E.; Bulut, O.; Kazan, H.H.; Şenkuytu, E.; Çoşut, B. Design of novel photosensitizers and controlled singlet oxygen generation for photodynamic therapy. New J. Chem., 2021, 45(35), 16298-16305.
[http://dx.doi.org/10.1039/D1NJ02656A]
[79]
Younis, M.R.; He, G.; Qu, J.; Lin, J.; Huang, P.; Xia, X.H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci., 2021, 8(21), 2102587.
[http://dx.doi.org/10.1002/advs.202102587] [PMID: 34561971]
[80]
Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), 371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[81]
Chan, M.H.; Chen, C.W.; Lee, I.J.; Chan, Y.C.; Tu, D.; Hsiao, M.; Chen, C.H.; Chen, X.; Liu, R.S. Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots. Inorg. Chem., 2016, 55(20), 10267-10277.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01522] [PMID: 27667449]
[82]
Kinsella, T.J.; Colussi, V.C.; Oleinick, N.L.; Sibata, C.H. Photodynamic therapy in oncology. Expert Opin. Pharmacother., 2001, 2(6), 917-927.
[http://dx.doi.org/10.1517/14656566.2.6.917] [PMID: 11585008]
[83]
Kim, M.M.; Darafsheh, A. Light sources and dosimetry techniques for photodynamic therapy. Photochem. Photobiol., 2020, 96(2), 280-294.
[http://dx.doi.org/10.1111/php.13219] [PMID: 32003006]
[84]
Chu, X.; Li, K.; Guo, H.; Zheng, H.; Shuda, S.; Wang, X.; Zhang, J.; Chen, W.; Zhang, Y. Exploration of graphitic-C3N4 quantum dots for microwave-induced photodynamic therapy. ACS Biomater. Sci. Eng., 2017, 3(8), 1836-1844.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00110] [PMID: 33429665]
[85]
Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7(9), 5251-5261.
[http://dx.doi.org/10.1039/C6RA25976F]
[86]
Ahirwar, S.; Mallick, S.; Bahadur, D. Photodynamic therapy using graphene quantum dot derivatives. J. Solid State Chem., 2020, 282, 121107.
[http://dx.doi.org/10.1016/j.jssc.2019.121107]
[87]
Sheng, J.; Zhang, L.; Deng, L.; Han, Y.; Wang, L.; He, H.; Liu, YN. Fabrication of dopamine enveloped WO3−x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chem. Eng. J., 2020, 383, 123071.
[http://dx.doi.org/10.1016/j.cej.2019.123071]
[88]
Cardoso Dos Santos, M.; Algar, W.R.; Medintz, I.L.; Hilde-brandt, N. Quantum dots for Förster resonance energy transfer (FRET). Trends Analyt. Chem., 2020, 125, 115819.
[http://dx.doi.org/10.1016/j.trac.2020.115819]
[89]
Mateen, F.; Ali, M.; Lee, S.Y.; Jeong, S.H.; Ko, M.J.; Hong, S.K. Tandem structured luminescent solar concentrator based on inorganic carbon quantum dots and organic dyes. Sol. Energy, 2019, 190, 488-494.
[http://dx.doi.org/10.1016/j.solener.2019.08.045]
[90]
Xu, H.; Huang, X.; Zhang, W.; Chen, G.; Zhu, W.; Zhong, X. Quantum dots acting as energy acceptors with organic dyes as donors in solution. Chem. Phys. Chem, 2010, 11(14), 3167-3171.
[http://dx.doi.org/10.1002/cphc.201000287] [PMID: 20872922]
[91]
Ranjbary, F.; Fathi, F.; Pakchin, P.S.; Maleki, S. Astaxanthin binding affinity to DNA: Studied by fluorescence, surface plasmon resonance and molecular docking methods. J. Fluoresc., 2023, 1-10.
[http://dx.doi.org/10.1007/s10895-023-03310-3] [PMID: 37358756]
[92]
Díaz, S.A.; Lasarte Aragonés, G.; Buckhout-White, S.; Qiu, X.; Oh, E.; Susumu, K.; Melinger, J.S.; Huston, A.L.; Hilde-brandt, N.; Medintz, I.L. Bridging lanthanide to quantum dot energy transfer with a short-lifetime organic dye. J. Phys. Chem. Lett., 2017, 8(10), 2182-2188.
[http://dx.doi.org/10.1021/acs.jpclett.7b00584] [PMID: 28467088]
[93]
Kuznetsova, V.; Tkach, A.; Cherevkov, S.; Sokolova, A.; Gromova, Y.; Osipova, V.; Baranov, M.; Ugolkov, V.; Fedorov, A.; Baranov, A. Spectral-time multiplexing in FRET complexes of AgInS2/ZnS quantum dot and organic dyes. Nanomaterials, 2020, 10(8), 1569.
[http://dx.doi.org/10.3390/nano10081569] [PMID: 32785050]
[94]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[95]
Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828.
[http://dx.doi.org/10.1021/acs.chemrev.8b00211] [PMID: 30295467]
[96]
Zhang, C.; Chen, W.; Zhang, T.; Jiang, X.; Hu, Y. Hybrid nanoparticle composites applied to photodynamic therapy: Strategies and applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4726-4737.
[http://dx.doi.org/10.1039/D0TB00093K] [PMID: 32104868]
[97]
Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg., 2018, 8(4), 433-443.
[http://dx.doi.org/10.21037/qims.2018.05.04] [PMID: 29928608]
[98]
Du, C.; Liang, Y.; Ma, Q.; Sun, Q.; Qi, J.; Cao, J.; Han, S.; Liang, M.; Song, B.; Sun, Y. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J. Nanobiotechnology, 2019, 17(1), 113.
[http://dx.doi.org/10.1186/s12951-019-0547-2] [PMID: 31699100]
[99]
Cao, H.; Yang, Y.; Qi, Y.; Li, Y.; Sun, B.; Li, Y.; Cui, W.; Li, J.; Li, J. Intraparticle FRET for enhanced efficiency of two‐photon activated photodynamic therapy. Adv. Healthc. Mater., 2018, 7(12), 1701357.
[http://dx.doi.org/10.1002/adhm.201701357] [PMID: 29688635]
[100]
Li, K.; Hong, E.; Wang, B.; Wang, Z.; Zhang, L.; Hu, R.; Wang, B. Advances in the application of upconversion nano-particles for detecting and treating cancers. Photodiagn. Photodyn. Ther., 2019, 25, 177-192.
[http://dx.doi.org/10.1016/j.pdpdt.2018.12.007] [PMID: 30579991]
[101]
Rotomskis, R.; Valanciunaite, J.; Skripka, A.; Steponkiene, S.; Spogis, G.; Bagdonas, S.; Streckyte, G. Complexes of functionalized quantum dots and chlorin e6 in photodynamic therapy. Lith. J. Phys., 2013, 53(1), 57-68.
[http://dx.doi.org/10.3952/physics.v53i1.2607]
[102]
Feng, Y.; Liu, L.; Hu, S.; Liu, Y.; Ren, Y.; Zhang, X. Förster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS2/ZnS quantum dots-5-aminolevulinic acid conjugates. RSC Advances, 2016, 6(60), 55568-55576.
[http://dx.doi.org/10.1039/C6RA06937A]
[103]
Wang, J.; Li, Y.; Mao, R.; Wang, Y.; Yan, X.; Liu, J. Persistent luminescent nanoparticles as energy mediators for enhanced photodynamic therapy with fractionated irradiation. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(29), 5793-5805.
[http://dx.doi.org/10.1039/C7TB00950J] [PMID: 32264213]
[104]
Martynenko, I.V.; Kuznetsova, V.A.; Orlova, А.O.; Kanaev, P.A.; Maslov, V.G.; Loudon, A.; Zaharov, V.; Parfenov, P.; Gun’ko, Y.K.; Baranov, A.V.; Fedorov, A.V. Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology, 2015, 26(5), 055102.
[http://dx.doi.org/10.1088/0957-4484/26/5/055102] [PMID: 25586592]
[105]
Singh, S.; Jha, P.; Singh, V.; Sinha, K.; Hussain, S.; Singh, M.K.; Das, P. A quantum dot–MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr. Biol., 2016, 8(10), 1040-1048.
[http://dx.doi.org/10.1039/C6IB00092D] [PMID: 27723851]
[106]
Amin, F.; Fathi, F.; Reiner, Ž.; Banach, M.; Sahebkar, A. The role of statins in lung cancer. Arch. Med. Sci., 2021, 18(1), 141-152.
[http://dx.doi.org/10.5114/aoms/123225] [PMID: 35154535]
[107]
Wang, S.; Cole, I.S.; Li, Q. The toxicity of graphene quantum dots. RSC Advances, 2016, 6(92), 89867-89878.
[http://dx.doi.org/10.1039/C6RA16516H] [PMID: 28496970]
[108]
Yan, J.; Hou, S.; Yu, Y.; Qiao, Y.; Xiao, T.; Mei, Y.; Zhang, Z.; Wang, B.; Huang, C.C.; Lin, C.H.; Suo, G. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf. B Biointerfaces, 2018, 171, 241-249.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.034] [PMID: 30036791]
[109]
Fathi, F.; Chaghamirzaei, P.; Allahveisi, S.; Ahmadi-Kandjani, S.; Rashidi, M.R. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125842.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125842]
[110]
Allocca, M.; Mattera, L.; Bauduin, A.; Miedziak, B.; Moros, M.; De Trizio, L.; Tino, A.; Reiss, P.; Ambrosone, A.; Tortiglione, C. An integrated multilevel analysis profiling biosafety and toxicity induced by indium-and cadmium-based quantum dots in vivo. Environ. Sci. Technol., 2019, 53(7), 3938-3947.
[http://dx.doi.org/10.1021/acs.est.9b00373] [PMID: 30821457]
[111]
Wang, Z.; Tang, M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. Environ. Res., 2021, 194, 110593.
[http://dx.doi.org/10.1016/j.envres.2020.110593] [PMID: 33352186]
[112]
Chen, T.; Li, L.; Xu, G.; Wang, X.; Wang, J.; Chen, Y.; Jiang, W.; Yang, Z.; Lin, G. Cytotoxicity of InP/ZnS quantum dots with different surface functional groups toward two lung-derived cell lines. Front. Pharmacol., 2018, 9, 763.
[http://dx.doi.org/10.3389/fphar.2018.00763] [PMID: 30057549]
[113]
Liu, J.; Shi, X.; Zhang, R.; Zhang, M.; He, J.; Chen, J.; Wang, Z.; Wang, Q. CoFe2O4-quantum dots for synergistic photothermal/photodynamic therapy of non-small-cell lung cancer via triggering apoptosis by regulating PI3K/AKT pathway. Nanoscale Res. Lett., 2021, 16(1), 120.
[http://dx.doi.org/10.1186/s11671-021-03580-5] [PMID: 33387075]
[114]
Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q.; Liu, L.; Kaskel, S.; Zhu, Y. Metal–organic framework/graphene quan-tum dot nanoparticles used for synergistic chemo-and photothermal therapy. ACS Omega, 2017, 2(3), 1249-1258.
[http://dx.doi.org/10.1021/acsomega.6b00385] [PMID: 30023630]
[115]
Li, S.; Zhou, S.; Li, Y.; Li, X.; Zhu, J.; Fan, L.; Yang, S. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(27), 22332-22341.
[http://dx.doi.org/10.1021/acsami.7b07267] [PMID: 28643511]
[116]
Zhang, M.; Wang, W.; Zhou, N.; Yuan, P.; Su, Y.; Shao, M.; Chi, C.; Pan, F. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 2017, 118, 752-764.
[http://dx.doi.org/10.1016/j.carbon.2017.03.085]
[117]
Das, R.K.; Panda, S.; Bhol, C.S.; Bhutia, S.K.; Mohapatra, S. N-doped carbon quantum dot (NCQD)-Deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer. Langmuir, 2019, 35(47), 15320-15329.
[http://dx.doi.org/10.1021/acs.langmuir.9b03001] [PMID: 31682135]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy