Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Effect of Calebin-A on Critical Genes Related to NAFLD: A Protein-Protein Interaction Network and Molecular Docking Study

Author(s): Ali Mahmoudi, Mohammad Mahdi Hajihasani, Muhammed Majeed, Tannaz Jamialahmadi and Amirhossein Sahebkar*

Volume 25, Issue 2, 2024

Published on: 22 February, 2024

Page: [120 - 139] Pages: 20

DOI: 10.2174/0113892029280454240214072212

Price: $65

Abstract

Background: Calebin-A is a minor phytoconstituent of turmeric known for its activity against inflammation, oxidative stress, cancerous, and metabolic disorders like Non-alcoholic fatty liver disease(NAFLD). Based on bioinformatic tools. Subsequently, the details of the interaction of critical proteins with Calebin-A were investigated using the molecular docking technique.

Methods: We first probed the intersection of genes/ proteins between NAFLD and Calebin-A through online databases. Besides, we performed an enrichment analysis using the ClueGO plugin to investigate signaling pathways and gene ontology. Next, we evaluate the possible interaction of Calebin-A with significant hub proteins involved in NAFLD through a molecular docking study.

Results: We identified 87 intersection genes Calebin-A targets associated with NAFLD. PPI network analysis introduced 10 hub genes (TP53, TNF, STAT3, HSP90AA1, PTGS2, HDAC6, ABCB1, CCT2, NR1I2, and GUSB). In KEGG enrichment, most were associated with Sphingolipid, vascular endothelial growth factor A (VEGFA), C-type lectin receptor, and mitogen-activated protein kinase (MAPK) signaling pathways. The biological processes described in 87 intersection genes are mostly concerned with regulating the apoptotic process, cytokine production, and intracellular signal transduction. Molecular docking results also directed that Calebin-A had a high affinity to bind hub proteins linked to NAFLD.

Conclusion: Here, we showed that Calebin-A, through its effect on several critical genes/ proteins and pathways, might repress the progression of NAFLD.

Graphical Abstract

[1]
Li, B; Zhang, C; Zhan, YT Nonalcoholic fatty liver disease cirrhosis: A review of its epidemiology, risk factors, clinical presentation, diagnosis, management, and prognosis. Can J Gastroenterol Hepatol, Jul 2;2018, 2784537.
[http://dx.doi.org/10.1155/2018/2784537] [PMID: 30065915]
[2]
Machado, M.V.; Diehl, A.M. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology, 2016, 150(8), 1769-1777.
[http://dx.doi.org/10.1053/j.gastro.2016.02.066] [PMID: 26928243]
[3]
Mahmoudi, A.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J. Cell. Physiol, 2022, 237(4), 2078-2094.
[http://dx.doi.org/10.1002/jcp.30699] [PMID: 35137416]
[4]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[5]
Wree, A; Broderick, L; Canbay, A; Hoffman, HM; Feldstein, AE; Eslam, M.; George, J. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol, 2013, Nov10(11), 627-36. Epub 2013 Aug 20.
[http://dx.doi.org/10.1038/nrgastro.2013.149] [PMID: 23958599]
[6]
Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord., 2022, 22(1), 63.
[http://dx.doi.org/10.1186/s12902-022-00980-1] [PMID: 35287643]
[7]
Kim, D.S.H.L.; Kim, J.Y. Total synthesis of calebin-A, preparation of its analogues, and their neuronal cell protectivity against β-amyloid insult. Bioorg. Med. Chem. Lett., 2001, 11(18), 2541-2543.
[http://dx.doi.org/10.1016/S0960-894X(01)00489-9] [PMID: 11549465]
[8]
Majeed, A.; Majeed, M.; Thajuddin, N.; Arumugam, S.; Ali, F.; Beede, K.; Adams, S.J.; Gnanamani, M. Bioconversion of curcumin into calebin-A by the endophytic fungus Ovatospora brasiliensis EPE-10 MTCC 25236 associated with Curcuma caesia. AMB Express, 2019, 9(1), 79.
[http://dx.doi.org/10.1186/s13568-019-0802-9] [PMID: 31144200]
[9]
Arafa, H.M.M.; Hemeida, R.A.; El-Bahrawy, A.I.M.; Hamada, F.M.A. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem. Toxicol., 2009, 47(6), 1311-1317.
[http://dx.doi.org/10.1016/j.fct.2009.03.003] [PMID: 19285535]
[10]
Oliveira, A.L.D.P.; Martinez, S.E.; Nagabushnam, K.; Majeed, M.; Alrushaid, S.; Sayre, C.L.; Davies, N.M. Calebin A: Analytical development for pharmacokinetics study, elucidation of pharmacological activities and content analysis of natural health products. J. Pharm. Pharm. Sci., 2015, 18(4), 494-514.
[http://dx.doi.org/10.18433/J32310] [PMID: 26626247]
[11]
Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B), 2895-2900.
[PMID: 11712783]
[12]
Nair, A.; Amalraj, A.; Jacob, J.; Kunnumakkara, A.B.; Gopi, S. Non-curcuminoids from turmeric and their potential in cancer therapy and anticancer drug delivery formulations. Biomolecules, 2019, 9(1), 13.
[http://dx.doi.org/10.3390/biom9010013] [PMID: 30609771]
[13]
Mahmoudi, A.; Kesharwani, P.; Majeed, M.; Teng, Y.; Sahebkar, A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf. B Biointerfaces, 2022, 215, 112481.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112481] [PMID: 35453063]
[14]
Majeed, M.; Nagabhushanam, K.; Natarajan, S.; Bani, S.; Pandey, A.; Karri, S.K. Investigation of repeated dose (90 day) oral toxicity, reproductive/developmental toxicity and mutagenic potential of ‘Calebin A’. Toxicol. Rep., 2015, 2, 580-589.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.009] [PMID: 28962393]
[15]
Lai, C.S.; Liao, S.N.; Tsai, M.L.; Kalyanam, N.; Majeed, M.; Majeed, A.; Ho, C.T.; Pan, M.H. Calebin-A inhibits adipogenesis and hepatic steatosis in high-fat diet-induced obesity via activation of AMPK signaling. Mol. Nutr. Food Res., 2015, 59(10), 1883-1895.
[http://dx.doi.org/10.1002/mnfr.201400809] [PMID: 26108684]
[16]
Lee, P.S.; Lu, Y.Y.; Nagabhushanam, K.; Ho, C.T.; Mei, H.C.; Pan, M.H. Calebin-A prevents HFD-induced obesity in mice by promoting thermogenesis and modulating gut microbiota. J. Tradit. Complement. Med., 2023, 13(2), 119-127.
[http://dx.doi.org/10.1016/j.jtcme.2022.01.001] [PMID: 36970457]
[17]
Brockmueller, A.; Mueller, A.L.; Kunnumakkara, A.B.; Aggarwal, B.B.; Shakibaei, M. Multifunctionality of Calebin A in inflammation, chronic diseases and cancer. Front. Oncol., 2022, 12, 962066.
[http://dx.doi.org/10.3389/fonc.2022.962066] [PMID: 36185259]
[18]
Oulas, A.; Minadakis, G.; Zachariou, M.; Sokratous, K.; Bourdakou, M.M.; Spyrou, G.M. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief. Bioinform., 2019, 20(3), 806-824.
[http://dx.doi.org/10.1093/bib/bbx151] [PMID: 29186305]
[19]
Mahmoudi, A.; Heydari, S.; Markina, Y.V.; Barreto, G.E.; Sahebkar, A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed. Pharmacother., 2022, 153, 113304.
[http://dx.doi.org/10.1016/j.biopha.2022.113304] [PMID: 35724514]
[20]
Mahmoudi, A.; Atkin, S.L.; Nikiforov, N.G.; Sahebkar, A. Therapeutic role of curcumin in diabetes: An analysis based on bioinformatic findings. Nutrients, 2022, 14(15), 3244.
[http://dx.doi.org/10.3390/nu14153244] [PMID: 35956419]
[21]
Mahmoudi, A.; Butler, A.E.; Majeed, M.; Banach, M.; Sahebkar, A. Investigation of the effect of curcumin on protein targets in NAFLD using bioinformatic analysis. Nutrients, 2022, 14(7), 1331.
[http://dx.doi.org/10.3390/nu14071331] [PMID: 35405942]
[22]
Mao, C.; Howard, T.D.; Sullivan, D.; Fu, Z.; Yu, G.; Parker, S.J.; Will, R.; Vander Heide, R.S.; Wang, Y.; Hixson, J.; Van Eyk, J.; Herrington, D.M. Bioinformatic analysis of coronary disease associated SNPs and genes to identify proteins potentially involved in the pathogenesis of atherosclerosis. J. Proteom. Genom. Res., 2017, 2(1), 1-12.
[http://dx.doi.org/10.14302/issn.2326-0793.jpgr-17-1447] [PMID: 29367937]
[23]
Mahmoudi, A.; Butler, A.E.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Identification of potent small-molecule PCSK9 inhibitors based on quantitative structure-activity relationship, pharmacophore modeling, and molecular docking procedure. Curr. Probl. Cardiol., 2023, 48(6), 101660.
[http://dx.doi.org/10.1016/j.cpcardiol.2023.101660] [PMID: 36841313]
[24]
Priscilla, L.; Viol Dhea, K.; Arif Nur Muhammad, A.; Muhammad Hermawan, W.; Rasyadan Taufiq, P.; Ahmad Affan Ali, M. In Silico phytochemical compounds screening of allium sativum targeting the Mpro of SARS-CoV-2. Pharmacogn. J., 2022, 14(3), 604-609.
[25]
Nur Sofiatul, A.; Viol Dhea, K.; Muhammad Hermawan, W.; Ahmad Affan Ali, M.; Rasyadan Taufiq, P.; Dora Dayu Rahma, T. In silico screening of bioactive compounds from syzygium cumini L. and Moringa oleifera L. Against SARS-CoV-2 via tetra inhibitors. Pharmacogn. J., 2022, 14(4)
[26]
Melge, A.R.; Manzoor, K.; Nair, S.V.; Mohan, C.G. In silico modeling of FDA-approved drugs for discovery of anti-cancer agents: A drug-repurposing approach. In silico drug design; Elsevier, 2019, pp. 577-608.
[27]
Mahmoudi, A.; Atkin, S.L.; Jamialahmadi, T.; Banach, M.; Sahebkar, A. Effect of curcumin on attenuation of liver cirrhosis via genes/proteins and pathways: A system pharmacology study. Nutrients, 2022, 14(20), 4344.
[http://dx.doi.org/10.3390/nu14204344] [PMID: 36297027]
[28]
Daina, A.; Michielin, O.; Zoete, V. Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[29]
Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 2016, 30(5), 413-424.
[http://dx.doi.org/10.1007/s10822-016-9915-2] [PMID: 27167132]
[30]
Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.O. SuperPred 3.0: Drug classification and target prediction—a machine learning approach. Nucleic Acids Res., 2022, 50(W1), W726-W731.
[http://dx.doi.org/10.1093/nar/gkac297] [PMID: 35524552]
[31]
Awale, M.; Reymond, J.L. The polypharmacology browser: A web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J. Cheminform., 2017, 9(1), 11.
[http://dx.doi.org/10.1186/s13321-017-0199-x] [PMID: 28270862]
[32]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[33]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[34]
Majeed, A.; Mukhtar, S. Protein–protein interaction network exploration using cytoscape. Methods Mol. Biol., 2023, 2690, 419-427.
[http://dx.doi.org/10.1007/978-1-0716-3327-4_32] [PMID: 37450163]
[35]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[36]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[37]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[38]
Sharma, P.K.; Yadav, I.S. Biological databases and their application. Bioinformatics; Elsevier, 2022, pp. 17-31.
[39]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[40]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Chemical biology; Springer, 2015, pp. 243-250.
[41]
Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8), 1091-1093.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[42]
Qiu, Y-Q. KEGG pathway database. In: Encyclopedia of Systems Biology; Dubitzky, W.; Wolkenhauer, O.; Cho, K-H.; Yokota, H., Eds.; Springer New York: New York, NY, 2013; pp. 1068-1069.
[http://dx.doi.org/10.1007/978-1-4419-9863-7_472]
[43]
Panahi, Y; Sahebkar, A.; Amiri, M; Davoudi, SM; Beiraghdar, F; Hoseininejad, SL; Kolivand, M. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr., 2012, Oct108(7), 1272-9. Epub 2011 Nov 18.
[http://dx.doi.org/10.1017/S0007114511006544] [PMID: 22099425]
[44]
Cicero, A.F.G.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur. J. Nutr., 2020, 59(2), 477-483.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[45]
Kahkhaie, K.R.; Mirhosseini, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 2019, 27(5), 885-900.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[46]
Keihanian, F.; Saeidinia, A.; Bagheri, R.K.; Johnston, T.P.; Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol., 2018, 233(6), 4497-4511.
[http://dx.doi.org/10.1002/jcp.26249] [PMID: 29052850]
[47]
Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621.
[http://dx.doi.org/10.1016/j.biopha.2022.113621] [PMID: 36055110]
[48]
Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[49]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[50]
Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem., 2019, 66, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[51]
Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[52]
Panahi, Y.; Fazlolahzadeh, O.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Johnston, T.P.; Sahebkar, A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J. Cell. Physiol., 2019, 234(2), 1165-1178.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[53]
Rodriguez-Cuenca, S.; Pellegrinelli, V.; Campbell, M.; Oresic, M.; Vidal-Puig, A. Sphingolipids and glycerophospholipids: The “ying and yang” of lipotoxicity in metabolic diseases. Prog. Lipid Res., 2017, 66, 14-29.
[http://dx.doi.org/10.1016/j.plipres.2017.01.002] [PMID: 28104532]
[54]
Musso, G.; Cassader, M.; Paschetta, E.; Gambino, R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology, 2018, 155(2), 282-302.e8.
[http://dx.doi.org/10.1053/j.gastro.2018.06.031] [PMID: 29906416]
[55]
Sztolsztener, K.; Konstantynowicz-Nowicka, K.; Harasim-Symbor, E.; Chabowski, A. Time-dependent changes in hepatic sphingolipid accumulation and PI3K/Akt/mTOR signaling pathway in a rat model of NAFLD. Int. J. Mol. Sci., 2021, 22(22), 12478.
[http://dx.doi.org/10.3390/ijms222212478] [PMID: 34830360]
[56]
Shen, H.; Yu, H.; Li, Q.; Wei, Y.; Fu, J.; Dong, H.; Cao, D.; Guo, L.; Chen, L.; Yang, Y.; Xu, Y.; Wu, M.; Wang, H.; Chen, Y. Hepatocyte-derived VEGFA accelerates the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via activating hepatic stellate cells. Acta Pharmacol. Sin., 2022, 43(11), 2917-2928.
[http://dx.doi.org/10.1038/s41401-022-00907-5] [PMID: 35508720]
[57]
Peluso, I.; Yarla, N.S.; Ambra, R.; Pastore, G.; Perry, G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin. Cancer Biol., 2019, 56, 185-195.
[http://dx.doi.org/10.1016/j.semcancer.2017.09.002] [PMID: 28912082]
[58]
Lawan, A.; Bennett, A.M. Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol. Metab., 2017, 28(12), 868-878.
[http://dx.doi.org/10.1016/j.tem.2017.10.007] [PMID: 29128158]
[59]
Wu, L.; Liu, Y.; Zhao, Y.; Li, M.; Guo, L. Targeting DUSP7 signaling alleviates hepatic steatosis, inflammation and oxidative stress in high fat diet (HFD)-fed mice via suppression of TAK1. Free Radic. Biol. Med., 2020, 153, 140-158.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.04.009] [PMID: 32311490]
[60]
Zai, W.; Chen, W.; Wu, Z.; Jin, X.; Fan, J.; Zhang, X.; Luan, J.; Tang, S.; Mei, X.; Hao, Q.; Liu, H.; Ju, D. Targeted interleukin-22 gene delivery in the liver by polymetformin and penetratin-based hybrid nanoparticles to treat nonalcoholic fatty liver disease. ACS Appl. Mater. Interfaces, 2019, 11(5), 4842-4857.
[http://dx.doi.org/10.1021/acsami.8b19717] [PMID: 30628769]
[61]
Zhang, L.; Tian, R.; Yao, X.; Zhang, X.J.; Zhang, P.; Huang, Y.; She, Z.G.; Li, H.; Ji, Y.X.; Cai, J. Milk fat globule–epidermal growth factor–factor 8 improves hepatic steatosis and inflammation. Hepatology, 2021, 73(2), 586-605.
[http://dx.doi.org/10.1002/hep.31277] [PMID: 32297339]
[62]
Lu, Y.; Jiang, Z.; Dai, H.; Miao, R.; Shu, J.; Gu, H.; Liu, X.; Huang, Z.; Yang, G.; Chen, A.F.; Yuan, H.; Li, Y.; Cai, J. Hepatic leukocyte immunoglobulin‐like receptor B4 (LILRB4) attenuates nonalcoholic fatty liver disease via SHP1‐TRAF6 pathway. Hepatology, 2018, 67(4), 1303-1319.
[http://dx.doi.org/10.1002/hep.29633] [PMID: 29091299]
[63]
Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M.F. Tumour necrosis factor signalling in health and disease. F1000 Res., 2019, 8(111), 111.
[http://dx.doi.org/10.12688/f1000research.17023.1] [PMID: 30755793]
[64]
Jang, D.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci., 2021, 22(5), 2719.
[http://dx.doi.org/10.3390/ijms22052719] [PMID: 33800290]
[65]
Lu, S.; Wang, Y.; Liu, J. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies. J. Genet. Genomics, 2022, 49(4), 269-278.
[http://dx.doi.org/10.1016/j.jgg.2021.09.009] [PMID: 34757037]
[66]
Wandrer, F.; Liebig, S.; Marhenke, S.; Vogel, A.; John, K.; Manns, M.P.; Teufel, A.; Itzel, T.; Longerich, T.; Maier, O.; Fischer, R.; Kontermann, R.E.; Pfizenmaier, K.; Schulze-Osthoff, K.; Bantel, H. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis., 2020, 11(3), 212.
[http://dx.doi.org/10.1038/s41419-020-2411-6] [PMID: 32235829]
[67]
Anderson, N.; Borlak, J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev., 2008, 60(3), 311-357.
[http://dx.doi.org/10.1124/pr.108.00001] [PMID: 18922966]
[68]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD): Pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[69]
Ferreira, A.V.M.; Mario, É.G.; Porto, L.C.J.; Andrade, S.P.; Botion, L.M. High-carbohydrate diet selectively induces tumor necrosis factor-α production in mice liver. Inflammation, 2011, 34(2), 139-145.
[http://dx.doi.org/10.1007/s10753-010-9217-0] [PMID: 20446026]
[70]
Oliveira, M.C.; Menezes-Garcia, Z.; Arifa, R.D.N.; Paula, T.P.; Andrade, J.M.O.; Santos, S.H.S.; Menezes, G.B.; Souza, D.G.; Teixeira, M.M.; Ferreira, A.V.M. Platelet-activating factor modulates fat storage in the liver induced by a high-refined carbohydrate-containing diet. J. Nutr. Biochem., 2015, 26(9), 978-985.
[http://dx.doi.org/10.1016/j.jnutbio.2015.04.004] [PMID: 26013469]
[71]
Saadati, S.; Sadeghi, A.; Mansour, A.; Yari, Z.; Poustchi, H.; Hedayati, M.; Hatami, B.; Hekmatdoost, A. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol., 2019, 19(1), 133.
[http://dx.doi.org/10.1186/s12876-019-1055-4] [PMID: 31345163]
[72]
Hui, J.M.; Hodge, A.; Farrell, G.C.; Kench, J.G.; Kriketos, A.; George, J. Beyond insulin resistance in NASH: TNF-? or adiponectin? Hepatology, 2004, 40(1), 46-54.
[http://dx.doi.org/10.1002/hep.20280] [PMID: 15239085]
[73]
Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, 115(5), 1111-1119.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[74]
Uysal, K.T.; Wiesbrock, S.M.; Marino, M.W.; Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature, 1997, 389(6651), 610-614.
[http://dx.doi.org/10.1038/39335] [PMID: 9335502]
[75]
Crespo, J.; Cayón, A.; Fernández-Gil, P.; Hernández-Guerra, M.; Mayorga, M.; Domínguez-Díez, A.; Fernández-Escalante, J.C.; Pons-Romero, F. Gene expression of tumor necrosis factor [alpha ] and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology, 2001, 34(6), 1158-1163.
[http://dx.doi.org/10.1053/jhep.2001.29628] [PMID: 11732005]
[76]
Tomita, K.; Tamiya, G.; Ando, S.; Ohsumi, K.; Chiyo, T.; Mizutani, A.; Kitamura, N.; Toda, K.; Kaneko, T.; Horie, Y.; Han, J.Y.; Kato, S.; Shimoda, M.; Oike, Y.; Tomizawa, M.; Makino, S.; Ohkura, T.; Saito, H.; Kumagai, N.; Nagata, H.; Ishii, H.; Hibi, T. Tumour necrosis factor signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut, 2006, 55(3), 415-424.
[http://dx.doi.org/10.1136/gut.2005.071118] [PMID: 16174657]
[77]
Tyagi, A.K.; Prasad, S.; Majeed, M.; Aggarwal, B.B. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization. Phytomedicine, 2017, 34, 171-181.
[http://dx.doi.org/10.1016/j.phymed.2017.08.021] [PMID: 28899500]
[78]
Buhrmann, C; Kunnumakkara, AB; Popper, B; Majeed, M; Aggarwal, BB; Shakibaei, M Calebin a potentiates the effect of 5-FU and TNF-beta (Lymphotoxin alpha) against human colorectal cancer cells: Potential role of NF-kappa B. Inter. J. Mole. Sci., 2020, (7), 2393.
[http://dx.doi.org/ 10.3390/ijms21072393] [PMID: 32244288]
[79]
Buhrmann, C.; Popper, B.; Kunnumakkara, A.B.; Aggarwal, B.B.; Shakibaei, M. Evidence that calebin a, a component of curcuma longa suppresses NF-κB mediated proliferation, invasion and metastasis of human colorectal cancer induced by TNF-β (Lymphotoxin). Nutrients, 2019, 11(12), 2904.
[http://dx.doi.org/10.3390/nu11122904] [PMID: 31805741]
[80]
Buhrmann, C.; Kunnumakkara, A.B.; Kumar, A.; Samec, M.; Kubatka, P.; Aggarwal, B.B.; Shakibaei, M. Multitargeting effects of calebin A on malignancy of CRC cells in multicellular tumor microenvironment. Front. Oncol., 2021, 11, 650603.
[http://dx.doi.org/10.3389/fonc.2021.650603] [PMID: 34660256]
[81]
Mueller, A.L.; Brockmueller, A.; Kunnumakkara, A.B.; Shakibaei, M. Calebin A, a compound of turmeric, down-regulates inflammation in tenocytes by NF-κB/Scleraxis signaling. Int. J. Mol. Sci., 2022, 23(3), 1695.
[http://dx.doi.org/10.3390/ijms23031695] [PMID: 35163616]
[82]
Zhao, J.; Qi, Y.F.; Yu, Y.R. STAT3: A key regulator in liver fibrosis. Ann. Hepatol., 2021, 21, 100224.
[http://dx.doi.org/10.1016/j.aohep.2020.06.010] [PMID: 32702499]
[83]
Stärkel, P.; De Saeger, C.; Leclercq, I.; Strain, A.; Horsmans, Y. Deficient Stat3 DNA-binding is associated with high Pias3 expression and a positive anti-apoptotic balance in human end-stage alcoholic and hepatitis C cirrhosis. J. Hepatol., 2005, 43(4), 687-695.
[http://dx.doi.org/10.1016/j.jhep.2005.03.024] [PMID: 16098628]
[84]
Stärkel, P.; Bishop, K.; Horsmans, Y.; Strain, A.J. Expression and DNA-binding activity of signal transducer and activator of transcription 3 in alcoholic cirrhosis compared to normal liver and primary biliary cirrhosis in humans. Am. J. Pathol., 2003, 162(2), 587-596.
[http://dx.doi.org/10.1016/S0002-9440(10)63852-7] [PMID: 12547716]
[85]
Choi, S.; Jung, H.J.; Kim, M.W.; Kang, J.H.; Shin, D.; Jang, Y.S.; Yoon, Y.S.; Oh, S.H. A novel STAT3 inhibitor, STX-0119, attenuates liver fibrosis by inactivating hepatic stellate cells in mice. Biochem. Biophys. Res. Commun., 2019, 513(1), 49-55.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.156] [PMID: 30935693]
[86]
Younes, M.; Zhang, L.; Fekry, B.; Eckel-Mahan, K. Expression of p-STAT3 and c-Myc correlates with P2-HNF4α expression in nonalcoholic fatty liver disease (NAFLD). Oncotarget, 2022, 13(1), 1308-1313.
[http://dx.doi.org/10.18632/oncotarget.28324] [PMID: 36473131]
[87]
Park, J.; Zhao, Y.; Zhang, F.; Zhang, S.; Kwong, A.C.; Zhang, Y.; Hoffmann, H.H.; Bushweller, L.; Wu, X.; Ashbrook, A.W.; Stefanovic, B.; Chen, S.; Branch, A.D.; Mason, C.E.; Jung, J.U.; Rice, C.M.; Wu, X. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J. Hepatol., 2023, 78(1), 45-56.
[http://dx.doi.org/10.1016/j.jhep.2022.08.022] [PMID: 36049612]
[88]
Liu, Y.; Wang, X.; Zeng, S.; Zhang, X.; Zhao, J.; Zhang, X. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma 06 biological sciences 0601 biochemistry and cell biology 11 medical and health sciences 1112 oncology and carcinogenesis. J. Exp. Clin. Cancer Res., 2018, 37(1), 303.
[http://dx.doi.org/10.1186/s13046-018-0959-0]
[89]
Liu, L.; Liu, Y.L.; Liu, G.X.; Chen, X.; Yang, K.; Yang, Y.X.; Xie, Q.; Gan, H.K.; Huang, X.L.; Gan, H.T. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int. Immunopharmacol., 2013, 17(2), 314-320.
[http://dx.doi.org/10.1016/j.intimp.2013.06.020] [PMID: 23856612]
[90]
Mahata, S.; Behera, S.K.; Kumar, S.; Sahoo, P.K.; Sarkar, S.; Fazil, M.H.U.T.; Nasare, V.D. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics. Int. J. Biol. Macromol., 2022, 208, 356-366.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.137] [PMID: 35346675]
[91]
Hahn, Y.I.; Kim, S.J.; Choi, B.Y.; Cho, K.C.; Bandu, R.; Kim, K.P.; Kim, D.H.; Kim, W.; Park, J.S.; Han, B.W.; Lee, J.; Na, H.K.; Cha, Y.N.; Surh, Y.J. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci. Rep., 2018, 8(1), 6409.
[http://dx.doi.org/10.1038/s41598-018-23840-2] [PMID: 29686295]
[92]
Chakraborty, A.; Uechi, T.; Kenmochi, N. Guarding the ‘translation apparatus’: Defective ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip. Rev. RNA, 2011, 2(4), 507-522.
[http://dx.doi.org/10.1002/wrna.73] [PMID: 21957040]
[93]
Pani, G.; Fusco, S.; Colavitti, R.; Borrello, S.; Maggiano, N.; Cravero, A.A.M.; Farré, S.M.; Galeotti, T.; Koch, O.R. Abrogation of hepatocyte apoptosis and early appearance of liver dysplasia in ethanol-fed p53-deficient mice. Biochem. Biophys. Res. Commun., 2004, 325(1), 97-100.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.213] [PMID: 15522206]
[94]
Derdak, Z.; Lang, C.H.; Villegas, K.A.; Tong, M.; Mark, N.M.; de la Monte, S.M.; Wands, J.R. Activation of p53 enhances apoptosis and insulin resistance in a rat model of alcoholic liver disease. J. Hepatol., 2011, 54(1), 164-172.
[http://dx.doi.org/10.1016/j.jhep.2010.08.007] [PMID: 20961644]
[95]
Derdak, Z.; Villegas, K.A.; Harb, R.; Wu, A.M.; Sousa, A.; Wands, J.R. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J. Hepatol., 2013, 58(4), 785-791.
[http://dx.doi.org/10.1016/j.jhep.2012.11.042] [PMID: 23211317]
[96]
Farrell, G.C.; Larter, C.Z.; Hou, J.Y.; Zhang, R.H.; Yeh, M.M.; Williams, J.; Dela Peňa, A.; Francisco, R.; Osvath, S.R.; Brooling, J.; Teoh, N.; Sedger, L.M. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J. Gastroenterol. Hepatol., 2009, 24(3), 443-452.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05785.x] [PMID: 19226377]
[97]
Panasiuk, A.; Dzieciol, J.; Panasiuk, B.; Prokopowicz, D. Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease. World J. Gastroenterol., 2006, 12(38), 6198-6202.
[http://dx.doi.org/10.3748/wjg.v12.i38.6198] [PMID: 17036395]
[98]
Yahagi, N.; Shimano, H.; Matsuzaka, T.; Sekiya, M.; Najima, Y.; Okazaki, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Inoue, N.; Nakagawa, Y.; Takeuchi, Y.; Ohashi, K.; Harada, K.; Gotoda, T.; Nagai, R.; Kadowaki, T.; Ishibashi, S.; Osuga, J.; Yamada, N. p53 involvement in the pathogenesis of fatty liver disease. J. Biol. Chem., 2004, 279(20), 20571-20575.
[http://dx.doi.org/10.1074/jbc.M400884200] [PMID: 14985341]
[99]
Sun, H.; Li, L.; Li, W.; Yang, F.; Zhang, Z.; Liu, Z.; Du, W. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep., 2021, 22(10), e52537.
[http://dx.doi.org/10.15252/embr.202152537] [PMID: 34459531]
[100]
Liou, W.S.; Lin, C.; Lee, P.S.; Kalyanam, N.; Ho, C.T.; Pan, M.H. Calebin-A induces cell cycle arrest in human colon cancer cells and xenografts in nude mice. J. Funct. Foods, 2016, 26, 781-791.
[http://dx.doi.org/10.1016/j.jff.2016.08.047]
[101]
Xie, Y.; Chen, L.; Xu, Z.; Li, C.; Ni, Y.; Hou, M.; Chen, L.; Chang, H.; Yang, Y.; Wang, H.; He, R.; Chen, R.; Qian, L.; Luo, Y.; Zhang, Y.; Li, N.; Zhu, Y.; Ji, M.; Liu, Y. Predictive modeling of MAFLD based on Hsp90α and the therapeutic application of teprenone in a diet-induced mouse model. Front. Endocrinol., 2021, 12, 743202.
[http://dx.doi.org/10.3389/fendo.2021.743202]
[102]
Asadzadeh-Aghdaei, H.; Zadeh-Esmaeel, M.M.; Esmaeili, S.; Rezaei Tavirani, M.; Rezaei Tavirani, S.; Mansouri, V.; Montazer, F. Effects of high fat medium conditions on cellular gene expression profile: A network analysis approach. Gastroenterol. Hepatol. Bed Bench, 2019, 12, S130-S135.
[PMID: 32099613]
[103]
Cai, Y.; Jogasuria, A.; Yin, H.; Xu, M.J.; Hu, X.; Wang, J.; Kim, C.; Wu, J.; Lee, K.; Gao, B.; You, M. The detrimental role played by lipocalin-2 in alcoholic fatty liver in mice. Am. J. Pathol., 2016, 186(9), 2417-2428.
[http://dx.doi.org/10.1016/j.ajpath.2016.05.006] [PMID: 27427417]
[104]
Lv, Y.; Gong, L.; Wang, Z.; Han, F.; Liu, H.; Lu, X.; Liu, L. Curcumin inhibits human cytomegalovirus by downregulating heat shock protein 90. Mol. Med. Rep., 2015, 12(3), 4789-4793.
[http://dx.doi.org/10.3892/mmr.2015.3983] [PMID: 26100249]
[105]
Chan, P.C.; Liao, M.T.; Hsieh, P.S. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance. Int. J. Mol. Sci., 2019, 20(13), 3115.
[http://dx.doi.org/10.3390/ijms20133115] [PMID: 31247902]
[106]
Liu, Y.; Liu, X.; Zhou, W.; Zhang, J.; Wu, J.; Guo, S.; Jia, S.; Wang, H.; Li, J.; Tan, Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine, 2022, 101(36), e30184.
[http://dx.doi.org/10.1097/MD.0000000000030184] [PMID: 36086766]
[107]
Novaes, J.; Lillico, R.; Sayre, C.; Nagabushanam, K.; Majeed, M.; Chen, Y.; Ho, E.; Oliveira, A.; Martinez, S.; Alrushaid, S.; Davies, N.; Lakowski, T. Disposition, metabolism and histone deacetylase and acetyltransferase inhibition activity of tetrahydrocurcumin and other curcuminoids. Pharmaceutics, 2017, 9(4), 45.
[http://dx.doi.org/10.3390/pharmaceutics9040045] [PMID: 29023392]
[108]
Seibert, K.; Masferrer, J.L. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor, 1994, 4(1), 17-23.
[PMID: 8038702]
[109]
Palanichamy, C.; Pavadai, P.; Panneerselvam, T.; Arunachalam, S.; Babkiewicz, E.; Ram Kumar Pandian, S.; Shanmugampillai Jeyarajaguru, K.; Nayak Ammunje, D.; Kannan, S.; Chandrasekaran, J.; Sundar, K.; Maszczyk, P.; Kunjiappan, S. Aphrodisiac performance of bioactive compounds from mimosa pudica linn.: In silico molecular docking and dynamics simulation approach. Molecules, 2022, 27(12), 3799.
[http://dx.doi.org/10.3390/molecules27123799] [PMID: 35744923]
[110]
Krstulović, L.; Leventić, M.; Rastija, V.; Starčević, K.; Jirouš, M.; Janić, I.; Karnaš, M.; Lasić, K.; Bajić, M.; Glavaš-Obrovac, L. Novel 7-chloro-4-aminoquinoline-benzimidazole hybrids as inhibitors of cancer cells growth: Synthesis, antiproliferative activity, in silico adme predictions, and docking. Molecules, 2023, 28(2), 540.
[http://dx.doi.org/10.3390/molecules28020540] [PMID: 36677600]
[111]
Bhal, S.K. LogP—making sense of the value; Advanced Chemistry Development: Toronto, ON, Canada, 2007, pp. 1-4.
[112]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy