Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Single-Cell RNA Sequencing Reveals Transcriptional Signatures and Cell-Cell Communication in Diabetic Retinopathy

Author(s): Muye Li, Yueling Peng, Lin Pang, Lin Wang and Junhong Li*

Volume 24, Issue 14, 2024

Published on: 21 February, 2024

Page: [1651 - 1663] Pages: 13

DOI: 10.2174/0118715303286652240214110511

Price: $65

Abstract

Background: Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs.

Methods: A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells.

Results: We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions.

Conclusion: Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.

[1]
W, B. The role of the gut microbiota in the pathogenesis of diabetes. Int. J. Mol. Sci., 2022, 23(1), 480.
[2]
Elafros, M.A. Patient and health care provider knowledge of diabetes and diabetic microvascular complications: A comprehensive literature review. Rev. Endocr. Metab. Disord., 2022, 24(2), 221-239.
[http://dx.doi.org/10.1007/s11154-022-09754-5] [PMID: 36322296]
[3]
Salzmann, J.; Limb, G.A.; Khaw, P.T.; Gregor, Z.J.; Webster, L.; Chignell, A.H.; Charteris, D.G. Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy. Br. J. Ophthalmol., 2000, 84(10), 1091-1096.
[http://dx.doi.org/10.1136/bjo.84.10.1091] [PMID: 11004090]
[4]
Wang, W.; Lo, A. Diabetic retinopathy: pathophysiology and treatments. Int. J. Mol. Sci., 2018, 19(6), 1816.
[http://dx.doi.org/10.3390/ijms19061816] [PMID: 29925789]
[5]
Roy, S.; Kim, D.; Lim, R. Cell-cell communication in diabetic retinopathy. Vision Res., 2017, 139, 115-122.
[http://dx.doi.org/10.1016/j.visres.2017.04.014] [PMID: 28583293]
[6]
Huang, H. Pericyte-endothelial interactions in the retinal microvasculature. Int. J. Mol. Sci., 2020, 21(19), 7413.
[http://dx.doi.org/10.3390/ijms21197413] [PMID: 33049983]
[7]
Liu, C.; Ge, H.M.; Liu, B.H.; Dong, R.; Shan, K.; Chen, X.; Yao, M.D.; Li, X.M.; Yao, J.; Zhou, R.M.; Zhang, S.J.; Jiang, Q.; Zhao, C.; Yan, B. Targeting pericyte–endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc. Natl. Acad. Sci., 2019, 116(15), 7455-7464.
[http://dx.doi.org/10.1073/pnas.1814874116] [PMID: 30914462]
[8]
Kim, D.; Mouritzen, U.; Larsen, B.D.; Roy, S. Inhibition of Cx43 gap junction uncoupling prevents high glucose-induced apoptosis and reduces excess cell monolayer permeability in retinal vascular endothelial cells. Exp. Eye Res., 2018, 173, 85-90.
[http://dx.doi.org/10.1016/j.exer.2018.05.003] [PMID: 29750972]
[9]
Oku, H.; Kodama, T.; Sakagami, K.; Puro, D.G. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest. Ophthalmol. Vis. Sci., 2001, 42(8), 1915-1920.
[PMID: 11431461]
[10]
Muto, T.; Tien, T.; Kim, D.; Sarthy, V.P.; Roy, S. High glucose alters Cx43 expression and gap junction intercellular communication in retinal Müller cells: promotes Müller cell and pericyte apoptosis. Invest. Ophthalmol. Vis. Sci., 2014, 55(7), 4327-4337.
[http://dx.doi.org/10.1167/iovs.14-14606] [PMID: 24938518]
[11]
González-Casanova, J.; Schmachtenberg, O.; Martínez, A.D.; Sanchez, H.A.; Harcha, P.A.; Rojas-Gomez, D. An update on connexin gap junction and hemichannels in diabetic retinopathy. Int. J. Mol. Sci., 2021, 22(6), 3194.
[http://dx.doi.org/10.3390/ijms22063194] [PMID: 33801118]
[12]
Tien, T.; Muto, T.; Zhang, J.; Sohn, E.H.; Mullins, R.F.; Roy, S. Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy. Exp. Eye Res., 2016, 146, 103-106.
[http://dx.doi.org/10.1016/j.exer.2015.12.011] [PMID: 26738943]
[13]
Tien, T.; Barrette, K.F.; Chronopoulos, A.; Roy, S. Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Invest. Ophthalmol. Vis. Sci., 2013, 54(10), 6518-6525.
[http://dx.doi.org/10.1167/iovs.13-11763] [PMID: 24008412]
[14]
Sato, T.; Haimovici, R.; Kao, R.; Li, A.F.; Roy, S. Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes, 2002, 51(5), 1565-1571.
[http://dx.doi.org/10.2337/diabetes.51.5.1565] [PMID: 11978657]
[15]
Tu, Z.; Li, Y.; Smith, D.S.; Sheibani, N.; Huang, S.; Kern, T.; Lin, F. Retinal pericytes inhibit activated T cell proliferation. Invest. Ophthalmol. Vis. Sci., 2011, 52(12), 9005-9010.
[http://dx.doi.org/10.1167/iovs.11-8008] [PMID: 22003106]
[16]
Xia, T.; Rizzolo, L.J. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res., 2017, 139, 72-81.
[http://dx.doi.org/10.1016/j.visres.2017.02.006] [PMID: 28347688]
[17]
Ponnalagu, M.; Subramani, M.; Jayadev, C.; Shetty, R.; Das, D. Retinal pigment epithelium-secretome: A diabetic retinopathy perspective. Cytokine, 2017, 95, 126-135.
[http://dx.doi.org/10.1016/j.cyto.2017.02.013] [PMID: 28282610]
[18]
Yang, J.; Li, Y.; Han, Y.; Feng, Y.; Zhou, M.; Zong, C.; He, X.; Jia, R.; Xu, X.; Fan, J. Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma. Cell Death Dis., 2021, 12(12), 1100.
[http://dx.doi.org/10.1038/s41419-021-04390-4] [PMID: 34815392]
[19]
Vallejo, J.; Cochain, C.; Zernecke, A.; Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res., 2021, 117(13), cvab260.
[http://dx.doi.org/10.1093/cvr/cvab260] [PMID: 34343272]
[20]
Zheng, K.; Lin, L.; Jiang, W.; Chen, L.; Zhang, X.; Zhang, Q.; Ren, Y.; Hao, J. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow Metab., 2022, 42(1), 56-73.
[http://dx.doi.org/10.1177/0271678X211026770] [PMID: 34496660]
[21]
Xia, D.; Wang, Y.; Xiao, Y.; Li, W. Applications of single-cell RNA sequencing in atopic dermatitis and psoriasis. Front. Immunol., 2022, 13, 1038744.
[http://dx.doi.org/10.3389/fimmu.2022.1038744] [PMID: 36505405]
[22]
Zhang, M.G.; Kuznetsoff, J.N.; Owens, D.A.; Gallo, R.A.; Kalahasty, K.; Cruz, A.M.; Kurtenbach, S.; Correa, Z.M.; Pelaez, D.; Harbour, J.W. Early mechanisms of chemoresistance in retinoblastoma. Cancers , 2022, 14(19), 4966.
[http://dx.doi.org/10.3390/cancers14194966] [PMID: 36230889]
[23]
Voigt, A.P.; Mulfaul, K.; Mullin, N.K.; Flamme-Wiese, M.J.; Giacalone, J.C.; Stone, E.M.; Tucker, B.A.; Scheetz, T.E.; Mullins, R.F. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc. Natl. Acad. Sci., 2019, 116(48), 24100-24107.
[http://dx.doi.org/10.1073/pnas.1914143116] [PMID: 31712411]
[24]
Menon, M.; Mohammadi, S.; Davila-Velderrain, J.; Goods, B.A.; Cadwell, T.D.; Xing, Y.; Stemmer-Rachamimov, A.; Shalek, A.K.; Love, J.C.; Kellis, M.; Hafler, B.P. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun., 2019, 10(1), 4902.
[http://dx.doi.org/10.1038/s41467-019-12780-8] [PMID: 31653841]
[25]
Van Hove, I.; De Groef, L.; Boeckx, B.; Modave, E.; Hu, T.T.; Beets, K.; Etienne, I.; Van Bergen, T.; Lambrechts, D.; Moons, L.; Feyen, J.H.M.; Porcu, M. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia, 2020, 63(10), 2235-2248.
[http://dx.doi.org/10.1007/s00125-020-05218-0] [PMID: 32734440]
[26]
Hu, Z.; Mao, X.; Chen, M.; Wu, X.; Zhu, T.; Liu, Y.; Zhang, Z.; Fan, W.; Xie, P.; Yuan, S.; Liu, Q. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes, 2022, 71(4), 762-773.
[http://dx.doi.org/10.2337/db21-0551] [PMID: 35061025]
[27]
Lv, K.; Ying, H.; Hu, G.; Hu, J.; Jian, Q.; Zhang, F. Integrated multi-omics reveals the activated retinal microglia with intracellular metabolic reprogramming contributes to inflammation in STZ-induced early diabetic retinopathy. Front. Immunol., 2022, 13, 942768.
[http://dx.doi.org/10.3389/fimmu.2022.942768] [PMID: 36119084]
[28]
Niu, T.; Fang, J.; Shi, X.; Zhao, M.; Xing, X.; Wang, Y.; Zhu, S.; Liu, K. Pathogenesis study based on high-throughput single-cell sequencing analysis reveals novel transcriptional landscape and heterogeneity of retinal cells in type 2 diabetic mice. Diabetes, 2021, 70(5), 1185-1197.
[http://dx.doi.org/10.2337/db20-0839] [PMID: 33674409]
[29]
Sun, L.; Wang, R.; Hu, G.; Liu, H.; Lv, K.; Duan, Y.; Shen, N.; Wu, J.; Hu, J.; Liu, Y.; Jin, Q.; Zhang, F.; Xu, X. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp. Eye Res., 2021, 210, 108718.
[http://dx.doi.org/10.1016/j.exer.2021.108718] [PMID: 34364890]
[30]
Jisna, V.A.; Jayaraj, P.B. Protein structure prediction: conventional and deep learning perspectives. Protein J., 2021, 40(4), 522-544.
[http://dx.doi.org/10.1007/s10930-021-10003-y] [PMID: 34050498]
[31]
McDermaid, A.; Monier, B.; Zhao, J.; Liu, B.; Ma, Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief. Bioinform., 2019, 20(6), 2044-2054.
[http://dx.doi.org/10.1093/bib/bby067] [PMID: 30099484]
[32]
Tomar, N.; De, R.K. Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene, 2013, 521(1), 1-14.
[http://dx.doi.org/10.1016/j.gene.2013.03.017] [PMID: 23537990]
[33]
Issa, N.T.; Stathias, V.; Schürer, S.; Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol., 2021, 68, 132-142.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.011] [PMID: 31904426]
[34]
Qian, X.B.; Chen, T.; Xu, Y.P.; Chen, L.; Sun, F.X.; Lu, M.P.; Liu, Y.X. A guide to human microbiome research: Study design, sample collection, and bioinformatics analysis. Chin. Med. J., 2020, 133(15), 1844-1855.
[http://dx.doi.org/10.1097/CM9.0000000000000871] [PMID: 32604176]
[35]
Huang, Y.; Peng, J.; Liang, Q. Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis. PLoS One, 2023, 18(1), e0280548.
[http://dx.doi.org/10.1371/journal.pone.0280548] [PMID: 36689408]
[36]
Youngblood, H.; Robinson, R.; Sharma, A.; Sharma, S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int. J. Mol. Sci., 2019, 20(19), 4755.
[http://dx.doi.org/10.3390/ijms20194755] [PMID: 31557880]
[37]
Wang, N.; Wei, L.; Liu, D.; Zhang, Q.; Xia, X.; Ding, L.; Xiong, S. Identification and validation of autophagy-related genes in diabetic retinopathy. Front. Endocrinol., 2022, 13, 867600.
[http://dx.doi.org/10.3389/fendo.2022.867600] [PMID: 35574010]
[38]
Wang, N.; Ding, L.; Liu, D.; Zhang, Q.; Zheng, G.; Xia, X.; Xiong, S. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Front. Endocrinol., 2022, 13, 918605.
[http://dx.doi.org/10.3389/fendo.2022.918605] [PMID: 35957838]
[39]
Kaur, S.; Bronson, S.M.; Pal-Nath, D.; Miller, T.W.; Soto-Pantoja, D.R.; Roberts, D.D. Functions of thrombospondin-1 in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(9), 4570.
[http://dx.doi.org/10.3390/ijms22094570] [PMID: 33925464]
[40]
Mesquita, J.; Castro-de-Sousa, J.P.; Vaz-Pereira, S.; Neves, A.; Passarinha, L.A.; Tomaz, C.T. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev., 2018, 39, 102-115.
[http://dx.doi.org/10.1016/j.cytogfr.2017.11.005] [PMID: 29248329]
[41]
Uemura, A.; Fruttiger, M.; D’Amore, P.A.; De Falco, S.; Joussen, A.M.; Sennlaub, F.; Brunck, L.R.; Johnson, K.T.; Lambrou, G.N.; Rittenhouse, K.D.; Langmann, T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog. Retin. Eye Res., 2021, 84, 100954.
[http://dx.doi.org/10.1016/j.preteyeres.2021.100954] [PMID: 33640465]
[42]
Wu, G.; Ma, Z.; Cheng, Y.; Hu, W.; Deng, C.; Jiang, S.; Li, T.; Chen, F.; Yang, Y. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol. Cancer, 2018, 17(1), 20.
[http://dx.doi.org/10.1186/s12943-018-0769-1] [PMID: 29386018]
[43]
Biasella, F.; Strunz, T.; Kiel, C.; Weber, B.H.F.; Friedrich, U. Vitronectin and its interaction with PAI-1 suggests a functional link to vascular changes in amd pathobiology. Cells, 2022, 11(11), 1766.
[http://dx.doi.org/10.3390/cells11111766] [PMID: 35681461]
[44]
Filippou, P.S.; Karagiannis, G.S.; Constantinidou, A. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene, 2020, 39(10), 2040-2054.
[http://dx.doi.org/10.1038/s41388-019-1124-8] [PMID: 31801970]
[45]
Jeon, C.J.; Strettoi, E.; Masland, R.H. The major cell populations of the mouse retina. J. Neurosci., 1998, 18(21), 8936-8946.
[http://dx.doi.org/10.1523/JNEUROSCI.18-21-08936.1998] [PMID: 9786999]
[46]
Spencer, B.G.; Estevez, J.J.; Liu, E.; Craig, J.E.; Finnie, J.W. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology, 2020, 28(3), 697-709.
[http://dx.doi.org/10.1007/s10787-019-00647-9] [PMID: 31612299]
[47]
Yang, J.; Liu, Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front. Endocrinol., 2022, 13, 816400.
[http://dx.doi.org/10.3389/fendo.2022.816400] [PMID: 35692405]
[48]
Xia, M.; Jiao, L.; Wang, X.H.; Tong, M.; Yao, M.D.; Li, X.M.; Yao, J.; Li, D.; Zhao, P.Q.; Yan, B. Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction. Theranostics, 2023, 13(8), 2515-2530.
[http://dx.doi.org/10.7150/thno.83532] [PMID: 37215579]
[49]
Zarkada, G.; Howard, J.P.; Xiao, X.; Park, H.; Bizou, M.; Leclerc, S.; Künzel, S.E.; Boisseau, B.; Li, J.; Cagnone, G.; Joyal, J.S.; Andelfinger, G.; Eichmann, A.; Dubrac, A. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev. Cell, 2021, 56(15), 2237-2251.e6.
[http://dx.doi.org/10.1016/j.devcel.2021.06.021] [PMID: 34273276]
[50]
Sanguineti, R.; Puddu, A.; Nicolò, M.; Traverso, C.E.; Cordera, R.; Viviani, G.L.; Maggi, D. miR-126 mimic counteracts the increased secretion of vegf-a induced by high glucose in ARPE-19 cells. J. Diabetes Res., 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/6649222] [PMID: 33709000]
[51]
Shin, D.H.; Jo, J.Y.; Kim, S.H.; Choi, M.; Han, C.; Choi, B.K.; Kim, S.S. Midkine is a potential therapeutic target of tumorigenesis, angiogenesis, and metastasis in non-small cell lung cancer. Cancers, 2020, 12(9), 2402.
[http://dx.doi.org/10.3390/cancers12092402] [PMID: 32847073]
[52]
Sheng, B.; Wei, Z.; Wu, X.; Li, Y.; Liu, Z. USP12 promotes breast cancer angiogenesis by maintaining midkine stability. Cell Death Dis., 2021, 12(11), 1074.
[http://dx.doi.org/10.1038/s41419-021-04102-y] [PMID: 34759262]
[53]
Kosugi, T.; Yuzawa, Y.; Sato, W.; Kawai, H.; Matsuo, S.; Takei, Y.; Muramatsu, T.; Kadomatsu, K. Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. Am. J. Pathol., 2006, 168(1), 9-19.
[http://dx.doi.org/10.2353/ajpath.2006.050488] [PMID: 16400005]
[54]
Erkoc, R.; Cikrikcioglu, M.A.; Aintab, E.; Erek Toprak, A.; Kilic, U.; Gok, O.; Yasin Cetin, A.I.; Zorlu, M.; Kiskac, M.; Cakirca, M.; Erkal, S.N.; Isen, H.C.; Karatoprak, C. GAS6 intron 8 c.834 + 7G > A gene polymorphism in diabetic nephropathy. Ren. Fail., 2015, 37(5), 866-870.
[http://dx.doi.org/10.3109/0886022X.2015.1034606] [PMID: 25869052]
[55]
Wu, W.; Xu, H.; Meng, Z.; Zhu, J.; Xiong, S.; Xia, X.; Lei, H. Axl is essential for in vitro angiogenesis induced by vitreous from patients with proliferative diabetic retinopathy. Front. Med., 2021, 8, 787150.
[http://dx.doi.org/10.3389/fmed.2021.787150] [PMID: 35004753]
[56]
Saik, O.V.; Klimontov, V.V. Bioinformatic reconstruction and analysis of gene networks related to glucose variability in diabetes and its complications. Int. J. Mol. Sci., 2020, 21(22), 8691.
[http://dx.doi.org/10.3390/ijms21228691] [PMID: 33217980]
[57]
Lauwen, S.; Baerenfaenger, M.; Ruigrok, S.; de Jong, E.K.; Wessels, H.J.C.T.; den Hollander, A.I.; Lefeber, D.J. Loss of the AMD-associated B3GLCT gene affects glycosylation of TSP1 without impairing secretion in retinal pigment epithelial cells. Exp. Eye Res., 2021, 213, 108798.
[http://dx.doi.org/10.1016/j.exer.2021.108798] [PMID: 34695439]
[58]
Chen, C.Y.; Melo, E.; Jakob, P.; Friedlein, A.; Elsässer, B.; Goettig, P.; Kueppers, V. N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration. Matrix Biol., 2018, 70, 84-101.
[59]
Popescu, M.; Bogdan, C.; Pintea, A.; Rugină, D.; Ionescu, C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. Drug Des. Devel. Ther., 2018, 12, 1985-1996.
[http://dx.doi.org/10.2147/DDDT.S156941] [PMID: 30013318]
[60]
Miyajima-Uchida, H.; Hayashi, H.; Beppu, R.; Kuroki, M.; Fukami, M. Production and accumulation of thrombospondin-1 in human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci., 2000, 41(2), 561-567.
[61]
Bhattacharyya, S.; Marinic, T.E.; Krukovets, I.; Hoppe, G.; Stenina, O.I. Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J. Biol. Chem., 2008, 283(9), 5699-5707.
[http://dx.doi.org/10.1074/jbc.M706435200] [PMID: 18096704]
[62]
Roy, S.; Bae, E.; Amin, S.; Kim, D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp. Eye Res., 2015, 133, 58-68.
[http://dx.doi.org/10.1016/j.exer.2014.08.011] [PMID: 25819455]
[63]
Kotajima, N.; Kanda, T.; Yuuki, N.; Kimura, T.; Kishi, S.; Fukumura, Y.; Tamura, J.; Kobayashi, I. Type IV collagen serum and vitreous fluid levels in patients with diabetic retinopathy. J. Int. Med. Res., 2001, 29(4), 292-296.
[http://dx.doi.org/10.1177/147323000102900405] [PMID: 11675902]
[64]
Roy, S.; Maiello, M.; Lorenzi, M. Increased expression of basement membrane collagen in human diabetic retinopathy. J. Clin. Invest., 1994, 93(1), 438-442.
[http://dx.doi.org/10.1172/JCI116979] [PMID: 8282817]
[65]
Arkkila, P.E.T.; Rönnemaa, T.; Koskinen, P.J.; Kantola, I.M.; Seppänen, E.; Viikari, J.S.A. Biochemical markers of type III and I collagen: association with retinopathy and neuropathy in Type 1 diabetic subjects. Diabet. Med., 2001, 18(10), 816-821.
[http://dx.doi.org/10.1046/j.1464-5491.2001.00576.x] [PMID: 11678972]
[66]
Hosoda, Y.; Okada, M.; Matsumura, M.; Ogino, N.; Honda, Y.; Nagai, Y. Intravitreal neovascular tissue of proliferative diabetic retinopathy: An immunohistochemical study. Ophthalmic Res., 1992, 24(5), 260-264.
[http://dx.doi.org/10.1159/000267176] [PMID: 1282231]
[67]
Jerdan, J.A.; Glaser, B.M. Retinal microvessel extracellular matrix: An immunofluorescent study. Invest. Ophthalmol. Vis. Sci., 1986, 27(2), 194-203.
[PMID: 3510998]
[68]
Masmiquel, L.L.; Burgos, R.; Mateo, C.; Martí, R.; Segura, R.M.; Simó, R. Effect of panretinal photocoagulation on serum levels of laminin in patients with diabetes: A prospective study. Br. J. Ophthalmol., 1999, 83(9), 1056-1059.
[http://dx.doi.org/10.1136/bjo.83.9.1056] [PMID: 10460775]
[69]
Pietschmann, P.; Schernthaner, G.; Schnack, C.H.; Gaube, S. Serum concentrations of laminin P1 in diabetics with advanced nephropathy. J. Clin. Pathol., 1988, 41(9), 929-932.
[70]
Masmiquel, L.; Segura, R.M.; Mateo, C.; Calatayud, M.; Martí, R.; Mesa, J.; Simó, R. Serum laminin as a marker of diabetic retinopathy development: A 4-year follow-up study. Am. J. Ophthalmol., 2000, 129(3), 347-352.
[http://dx.doi.org/10.1016/S0002-9394(99)00361-X] [PMID: 10704551]
[71]
Grant, D.S.; Kleinman, H.K.; Martin, G.R. The role of basement membranes in vascular development. Ann. N. Y. Acad. Sci., 1990, 588(1), 61-72.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb13197.x] [PMID: 2192650]
[72]
Oshitari, T.; Brown, D.; Roy, S. SiRNA strategy against overexpression of extracellular matrix in diabetic retinopathy. Exp. Eye Res., 2005, 81(1), 32-37.
[http://dx.doi.org/10.1016/j.exer.2005.01.006] [PMID: 15978252]
[73]
Qin, D.; Zhang, G.; Xu, X.; Wang, L. The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells. J. Diabetes Res., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/920280] [PMID: 25695094]
[74]
Casaroli Marano, R.P.; Preissner, K.T.; Vilaró, S. Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Exp. Eye Res., 1995, 60(1), 5-17.
[http://dx.doi.org/10.1016/S0014-4835(05)80079-X] [PMID: 7536680]
[75]
Brownlee, M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care, 1992, 15(12), 1835-1843.
[http://dx.doi.org/10.2337/diacare.15.12.1835] [PMID: 1464241]
[76]
Hammes, H.P.; Weiss, A.; Hess, S.; Araki, N.; Horiuchi, S.; Brownlee, M.; Preissner, K.T. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab. Invest., 1996, 75(3), 325-338.
[PMID: 8804356]
[77]
Esser, P.; Bresgen, M.; Weller, M.; Heimann, K.; Wiedemann, P. The significance of vitronectin in proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 1994, 232(8), 477-481.
[http://dx.doi.org/10.1007/BF00195357] [PMID: 7523258]
[78]
Lee, J.; Kim, K.E.; Choi, D.K.; Jang, J.Y.; Jung, J.J.; Kiyonari, H.; Shioi, G.; Chang, W.; Suda, T.; Mochizuki, N.; Nakaoka, Y.; Komuro, I.; Yoo, O.J.; Koh, G.Y. Angiopoietin-1 guides directional angiogenesis through integrin αvβ5 signaling for recovery of ischemic retinopathy. Sci. Transl. Med., 2013, 5(203), 203ra127.
[http://dx.doi.org/10.1126/scitranslmed.3006666] [PMID: 24048525]
[79]
Friedlander, M.; Theesfeld, C.L.; Sugita, M.; Fruttiger, M.; Thomas, M.A.; Chang, S.; Cheresh, D.A. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci., 1996, 93(18), 9764-9769.
[http://dx.doi.org/10.1073/pnas.93.18.9764] [PMID: 8790405]
[80]
Biasella, F.; Plössl, K.; Karl, C.; Weber, B.H.F.; Friedrich, U. Altered protein function caused by AMD-associated variant rs704 links vitronectin to disease pathology. Invest. Ophthalmol. Vis. Sci., 2020, 61(14), 2.
[http://dx.doi.org/10.1167/iovs.61.14.2] [PMID: 33259607]
[81]
Milewicz, D.M.; Braverman, A.C.; De Backer, J.; Morris, S.A.; Boileau, C.; Maumenee, I.H.; Jondeau, G.; Evangelista, A.; Pyeritz, R.E. Marfan syndrome. Nat. Rev. Dis. Primers, 2021, 7(1), 64.
[http://dx.doi.org/10.1038/s41572-021-00298-7] [PMID: 34475413]
[82]
Luís, C.; Fernandes, R.; Soares, R.; von Hafe, P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed. J., 2020, 5(6), e108.
[http://dx.doi.org/10.1097/j.pbj.0000000000000108] [PMID: 33324783]
[83]
Oruc, Y.; Celik, F.; Ozgur, G.; Beyazyildiz, E.; Ugur, K.; Yardim, M.; Sahin, I.; Akkoc, R.F.; Aydin, S. Altered blood and aqueous humor levels of asprosin, 4-hydroxynonenal, and 8-hydroxy-deoxyguanosine in patients with diabetes mellitus and cataract with and without diabetic retinopathy. Retina, 2020, 40(12), 2410-2416.
[http://dx.doi.org/10.1097/IAE.0000000000002776] [PMID: 32091490]
[84]
Atlı, H.; Onalan, E.; Yakar, B.; Kaymaz, T.; Duzenci, D.; Karakulak, K.; Dönder, E.; Gürsu, M.F.; Dayanan, R. The relationship of serum asprosin level with diabetic and non-diabetic retinopathy. Eur. Rev. Med. Pharmacol. Sci., 2022, 26(6), 2117-2123.
[PMID: 35363361]
[85]
Liang, G.; Qin, Z.; Luo, Y.; Yin, J.; Shi, Z.; Wei, R.; Ma, W. Exosomal microRNA-133b-3p from bone marrow mesenchymal stem cells inhibits angiogenesis and oxidative stress via FBN1 repression in diabetic retinopathy. Gene Ther., 2022, 29(12), 710-719.
[http://dx.doi.org/10.1038/s41434-021-00310-5] [PMID: 35125496]
[86]
Li, X.; Wang, C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci., 2021, 13(1), 36.
[http://dx.doi.org/10.1038/s41368-021-00146-0] [PMID: 34782601]
[87]
Sadikan, M.Z.; Abdul Nasir, N.A.; Lambuk, L.; Mohamud, R.; Reshidan, N.H.; Low, E.; Singar, S.A.; Mohmad Sabere, A.S.; Iezhitsa, I.; Agarwal, R. Diabetic retinopathy: A comprehensive update on in vivo, in vitro and ex vivo experimental models. BMC Ophthalmol., 2023, 23(1), 421.
[http://dx.doi.org/10.1186/s12886-023-03155-1] [PMID: 37858128]
[88]
Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight, 2017, 2(14), e93751.
[http://dx.doi.org/10.1172/jci.insight.93751] [PMID: 28724805]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy